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1. Introduction. In the late eighteenth century, Lagrange proved that every
positive integer can be represented as a sum of at most four squares of integers.
This cannot be improved to three squares as there are infinitely many integers
(e.g., 7) which cannot be represented as a sum of three squares of integers:

Lemma 1 (Legendre, 1798). A positive integer n cannot be expressed as the sum of
three squares of integers if and only if n is of the form n = 2**(8m + 7) where m and
k are non-negative integers.

In this article we shall prove two recent conjectures about whether various
binomial coefficients can be written as the sum of less than four squares, using
methods from the elementary theories of numbers, stochastic matrices and of
graphs. First we will prove a conjecture stated by Alvan Beall, Blair Kelly, and Bob
Morris at the Western Number Theory Conference in December, 1987:

THEOREM 1. For every positive integer n, except 1,2, 3,4,5,9, 14, 17, 18, 20, 21,
35 and 41, there exists an integer m,0 < m < n, divisible by 4, for which (") cannot
be represented as a sum of three squares.

We will also prove a conjecture of Neville Robbins [3]:

Treorem 2. The set of integers n, for which (>') cannot be represented as a sum of
three squares, has asymptotic density 1/8 in the set of all natural numbers.

Our proof of Theorem 1 will rely on the following result, which we shall prove
in Section 2:

ProrosITiON 1. Suppose that m and n are positive integers with m divisible by 4. If
() cannot be written as the sum of three squares then neither can ( =)y (20 S,
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We define E| to be the set of exceptional n in the hypothesis of Theorem 1. We
define S to be the set of positive integers that cannot be written as the sum of
three squares of integers. We can now give the

Proof of Theorem 1. Let E, and E; be the sets of values of n that are given in
Tables I and II respectively. We see there that for each such n there exists a value
of m for which (7) € §; moreover if n € E;, then m is divisible by 4.

TasLE I. The least m with () € §, foreach n € E,.

m n m n m n
1 7,28,71, 284 9 164 17 142
2 8,11, 43,57, 136 10 40 18 37
3 82 11 56 19 73
5 10, 34, 83 14 36

6 19, 165 15 68

TasLE II. The least m, divisible by 4, with () € S, for each n € E;.

n Binary Expansion m n Binary Expansion m
16 10000 4 81 1010001 4
272 100010000 4 328 101001000 100
273 100010001 20 329 101001001 28
137 10001001 52 330 101001010 36
69 1000101 20 331 101001011 12
70 1000110 4 166 10100110 4
568 1000111000 100 167 10100111 28
569 1000111001 84 42 101010 20
285 100011101 4 86 1010110 68
143 10001111 12 87 1010111 4
72 1001000 28 22 10110 20
146 10010010 36 23 10111 4
147 10010011 44 6 110 4
74 1001010 12 112 1110000 44
75 1001011 36 113 1110001 36
38 100110 4 114 1110010 60
39 100111 12 115 1110011 4
80 1010000 20 29 11101 4
15 1111 12

One can also see, from Table 1I, that for any positive integer n, not in E, U E,,
there exists an integer e € E, such that the first few digits in binary notation of n
are precisely those of e: in other words, there exist integers k and r such that

0 <r <2 —1 where

n=e-2%+r.

(As an example, suppose that n = 13 = (1101), in binary notation. Now 6 =
(110); € E; and so 13 = 6.2 + 1. Try also 575 = (1000111111),; we have 143 =
(10001111); € E, and so 575 = 143.2% + 3))
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We shall prove that for any positive integer n & E; U E, there exists a value of
m, divisible by 4, for which () € §, by induction on k.

For k = 0, this is trivial as n = ¢ € E,, and the value of m is given in Table I
So suppose the result holds for k — 1:

For n = e2% + r let s = r/2 (r even), (r — 1)/2(r odd) and p = €2*~' + 5. As
0 <s < 2%"!' — 1, we have a value of ¢, divisible by 4, for which (*) € S, by the
induction hypothesis. Therefore, () € S by Proposition 1.

Remark. We see, from the proof, that if n = e2* + r where e € E; and (;)
cannot be written as the sum of three squares, then neither can ( zfm).
We will prove a stronger result than Theorem 2 in Section 3

TuHeoREM 3. Fora =0,1,2 and 3,
#{n <x:n=a(mod4),n!'€ S} =x/32 + o(x).

We see that Theorem 2 follows easily from Theorem 3 by the following result,
which we’ll prove in Section 2:

ProrosiTiON 2. For any positive integers m and n,

neS ifandonly m’neS.
Proof of Theorem 2.
#(n sx:(zn") € S} = #{n <x:(2n)!€ S} by Proposition 2
= #{m <2x:m =0(mod2) and m!e S}
=x/8 + o(x) by Theorem 3.

Theorem 2 is perhaps surprising, as the positive integers n <x, for which
n € S, actually have density 1/6. By Lemma 1,

#n<x:neS) =Y #{n<x:n=2%@Bm+7) forsome m =0}
k=0
log x
= X {x/2% + 0(1))
k=0

=x/6 + 0(log x).

However, the reason that we get 1/8 in Theorem 2 (instead of 1/6) can most
easily be explained by realizing that the parity of the power of 2 dividing n! is
equally distributed between even and odd, whereas this is not the case for ordinary
integers.

2. Sequences of 0’s and 1’s (Proofs of Propositions 1 and 2). Any positive
integer n can be written in the form 2°b where a and b are nonnegative integers,
and b is odd. Let v(n) be the residue class of a(mod?2) and f(n) be the residue
class of b(mod 8). Lemma 1 may be expressed as

neS iff v(n)=0 and f(n)=7. )
We also note that

v(mn) =v(m) +v(n) and f(mn) = f(m)f(n). 2)
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for any integers m and n. We can immediately give the

Proof of Proposition 2. By (2) we see that

v(m?n) = 2v(m) + v(n) =v(n) and f(m?n) = f(m)*f(n) = f(n).
Thus, by (1), n € § iff v(n) = 0, and f(n) =7
iff v(m?n) =0, and f(m?n)=7
iff m’nes.

Define w(n) = v(n!) and g(n) = f(n!). Also, for any fixed sequence af - y
of O’s and 1Is, define o, ...,(n) to be the number of occurrences of this sequence
in the binary expansion of n. We prove

LemmMma 2. For any given positive integer n,
(@) w(n) = n — o(nXmod 2), and
(b) gln) = 300+ a0 g0l + o) (mod 8).

Proof. Suppose that the binary expansion of n is LZ_; a;2‘ where each a, = 0
or 1. Then the power of 2 dividing nlis

n - d o d i o
£[2]- £ Lazmi= Loz 2
j=1 2 jzli=j i=1 j=1
d

= E ai(zi = 1) =n - oy(n).

i=1

Now, as
m 1 m=0,1,2,7
[1j={3 if m=3,4 (mod8),
j=1 7 m=5,6
jodd
we can see that
n i [n/2/‘]
gm) = TT 5z = T1 I1 j(mods)
k>0i=1 k=0 j=1
25 jodd

= 3#k=0:mi=30r 47k 2 0i =5 0r 6} 8)

where 7, = 4a,,, + 2a,,, + a,, which establishes the result.
- By noting that 3°7° = 7(mod 8) if and only if a is even and b is odd, we can
deduce, from Lemma 2 and (1), the following result.

CoroLLarY 1. For a given positive integer n, n! is an element of S if and only if
® on) = n(mod2), (i) oy (n) =og(nXmod2) and (i) o (n) = o4(n)
+ 1(mod 2).

In practice, Corollary 1 provides an efficient algorithm for determining whether
n!is an element of S: Simply write n in its binary notation, count the frequency of
occurrences of the various digit patterns 1, 011, 100, 101 and 110, and then check
whether (1), (ii), and (iii) are satisfied.

We can also deduce from Lemma 2:



490 ANDREW GRANVILLE AND YILIANG ZHU [June-July

CoroLrLary 2. For any positive integer n, w(n + 1) = w(2n) = w(n) +
n(mod2) and g(2n + 1)/g(n) and g(2n)/g(n) are congruent to 1 and 1,3 and 1,7
and 3, and 1 and 7(mod 8) as n = 0, 1, 2, 3(mod 4), respectively.

Proof. w(2n + 1) = w(2n) = v(2n + 1) = 0, by definition, and w(2n) — w(n)
= (2n - 0/2n)) - (n — o(n)) = n(mod 2) by Lemma 2(a). Also g(2n + 1)/g(2n)
=2n + 1(mod 8) and g(2n)/g(n) =1, 1, 3 and 7(mod 8) as n = 0, 1, 2, 3(mod 4)
by Lemma 2(b).

From this, we can immediately deduce

CoroLLARY 3. Suppose that m is divisible by 4 with 0 < m < n. Then

(2% ) =A(30)) = ¥((2)

2n+ 1)) _ 2n V) _ n
f(( 2m )) ﬁf((Zm}) _f((m))'
Proposition 1 follows immediately from (1) and Corollary 3.

3. Proof of Theorem 3. Define g(0) = 1,w(0) = 0 and let
T(x,a;8,w) = #{0 <n <x:n = a(mod 4), g(n) =g andw(n) =w)

-and

for
a=0,1,2,0or3, g=1,3,50r7 and w=0orl.... (3)

Let p(x, a; g,w) = T(x, a; g, w)/x, which can be thought of as the “probability”
that an integer n < x has the properties that n = a(mod 4), g(n) = g and w(n) =
w. By (1), Theorem 3 is evidently implied by

THEOREM 4. For each a, g and w in the range (3), we have
p(x,a;g,w)~1/32 as x> =,
We shall prove, in Section 4,

ProposiTiON 3. Fix € > 0. If n is sufficiently large (> n, say), then
1
43n 5 - —l <
p(2®"x,a; g, w | <¢

for any a, g and w in the range (3) and integer x > 1.
From this, we can immediately give the

Proof of Theorem 4. Fix & > 0 and choose n > n, ,, (where n, is as in Proposi-
tion 3). For any z > 2***(1 + 2/¢) choose x to be that integer for which 24**(x — 1)
<z < 2%7x, Then

243nx'

+ 243n
32

V4
T(Z,a;g,w) - '3—2_ =<

T(2*"x,a; g,w) —

EX
< 2‘3"(7 + 1) < ez.
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4. Stochastic matrices. Let p(x) be the 32 by 1 vector with entries p(x, a, g, w).
Let Q be the 32 by 32 matrix indexed in both directions by (a, g, w); where the
entry in the (a’, g’, w)th row and (e, g, w)th column is

0 0 1 0
0 2 3 0
1 0 1 0
172 if a = é a= % g'/g= Z(modS) wo—ws= ?(mod2)
2 3 7 1
3 1 3 1
3 3 1 1
0 otherwise.

Note that Q is a doubly stochastic matrix all of whose entries are non-negative.
(A matrix M is said to be stochastic if the sum of the entries in each of its columns
is 1, doubly stochastic if the same is true for each of its rows). In Section 5 we shall
prove

ProrosiTioN 4. A = Q% is a doubly stochastic matrix all of whose entries are
positive. ~

Now Corollary 2 implies that p(2x) = Qp(x) for any positive integer x; by
iterating this n times we get

Lemma 3. For any positive integers n and x, p(2"x) = Q"p(x).

For a given matrix M and vector x we say that lim,_, ., M”"x exists and equals y
if the ith component of M"x tends to the ith component of -y as n tends to «, for
each i. An important result on stochastic matrices has been given by Perron (see
[1, p. 216] for a nice proof).

LemMma 4. Suppose that M is a stochastic matrix all of whose entries are positive.
There exists a vector a (= a(M)) such that, for any stochastic vector v with
components all nonnegative, we have lim, _,, M"v = a.

n—w

We can now give a proof of Proposition 3 by using the three results directly
above:

Proof of Proposition 3. M = Q% is a doubly stochastic matrix, all of whose
entries are positive, by Proposition 4. Let v be the 32 X 1 vector with each entry
equal to 1/32. As each row sum of M is 1 we see that Mv = v, and so the value of
a in Lemma 4 is given by

a=LimM"v = Limv =v.

n-—co n— o

Therefore,
Lim p(2¥"x) = LimM"p(x) by Lemma 3,

n—o n—oo
=y by Lemma 4,
and the result follows immediately, by definitions.
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5. Graphs of Stochastic matrices. Suppose that M is an n X n matrix, all of
whose entries are non-negative. The directed graph G(M) of such a matrix is
obtained by taking n vertices vy, ..., v, and putting a directed edge from v, to v; if
and only if the (i, j)th entry of M is non-zero. A path of length k from v to w isa
sequence of k (not necessarily distinct) directed edges, starting at v and ending at
w; e.g.,

v=a, to a,,a, to a,a, to as...,a,, 0O a =w.
From this definition we have

LEMMA 5. Suppose that M is an n X n matrix all of whose entries are non-negative
-and k is a positive integer. Every entry of M k is positive if and only if there is a directed
path of length k, in both directions, between every pair of (not necessarily distinct)
vertices in G(M).

Proof of Proposition 4. It is not difficult to show that the product of any two
doubly stochastic matrices is itself doubly stochastic; therefore, as Q is doubly
stochastic, so are 0%, Q%,...,0% = 4.

In FicURE 1 we give a subgraph of G(Q). By visual inspection one can see that
there is a directed path of length a (< 17) from v to 071, and one of length
b,( < 26) back from 071 to v, for each vertex v in G(Q). Therefore, for any pair of
(not necessarily distinct) vertices v and w in G(Q) we let P,,, be the path given by
joining the path of length a, from v to 071, t0 43 —a, — b, circuits of the edge
from 071 to itself, to the path of length b, from 071 to w. As P, has length 43 in
each case, we know that every entry of 4 = Q* is positive, by Lemma 5.

Fic. 1. The vertices are indexed by three numbers which, in order, correspond to 4, g and w.

6. Some final comments. A number of related questions can be asked:

1. If we fix k what is the density of integers n for which (}) € §? It seems
possible to derive a complicated general formula that gives a variety of different
values as we vary over values of k.

2. In the proof of Theorem 1 the values of m — @ as n — . Is it true that
there exists an integer m,, such that for all n & E, we have (}) € § for some
m < m,? The answer to this is yes with m, = 74; however our proof is extremely
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complicated and uses the idea of an infinite system of congruences that cover the
integers (see [2] for a review).

3. Let P(n) be the number of integers m in row n of Pascal’s triangle for which
(7)€ S. Let TN) = P(1) + P(2) + -+ +P(N). Does Lim_ TI(N)/(N?/2)
exist? If so, what is it?, i.e., is there a density of integers in Pascal’s triangle that
are not representable as a sum of three squares?
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