AN OLD NEW PROOF OF ROTH’S THEOREM

ENDRE SZEMERÉDI

In 1953 Roth [3] proved that for any fixed \(\delta > 0 \), if \(N \) is sufficiently large and \(A \) is any subset of \(\{1, 2, \ldots, N\} \) of size \(\geq \delta N \) then \(A \) contains a non-trivial 3-term arithmetic progression. In the 1980s I came up with an alternate proof that is in some aspects a little simpler but which I did not publish. This school gives me another opportunity to present this approach.

We suppose that \(A \subset \{1, 2, \ldots, N\} \) with \(|A| = \delta N \) (where \(|A| \geq 1000\sqrt{N} \)), and that \(A \) does not contain a non-trivial 3-term arithmetic progression, As usual we define \(e(t) = e^{2i\pi t} \) and

\[
\hat{A}(\alpha) = \sum_{a \in A} e(a\alpha).
\]

The number of solutions to \(a + c = 2b \) with \(a, b, c \in A \) is given by

\[
|A| = \sum_{a, b, c \in A} \int_0^1 e(\alpha(a + c - 2b))d\alpha = \int_0^1 \hat{A}(\alpha)^2 \hat{A}(-2\alpha)d\alpha
\]

(the \(|A| \) comes from the solutions with \(a = b = c \)). We will partition \(\mathbb{R}/\mathbb{Z} \) into the arcs \(I_j := [\frac{2j-1}{2MN}, \frac{2j+1}{2MN}] \) for \(j = 0, 1, \ldots, NM - 1 \) where \(M \) is the smallest integer \(\geq 2\pi/\delta \eta \), with \(\eta = 10^{-6} \). For real number \(t \) denote by \(||t|| \) the distance from \(t \) to the nearest integer. Note that \(|e(t) - 1| = 2|\sin(\pi t)| = 2|\sin(\pi ||t||)| \leq 2\pi ||t|| \). Hence if \(\alpha \in I_j \), that is \(\alpha = \frac{j}{MN} + \beta \) where \(||\beta|| \leq 1/2MN \), then

\[
|\hat{A}(j/MN) - \hat{A}(\alpha)| \leq \sum_{a \in A} |e(a\beta) - 1| \leq \sum_{a \in A} 2\pi ||a\beta|| \leq |A|2\pi N/2MN \leq \eta\delta^2 N/2.
\]

Let \(J \) be the set of integers in \([0, MN) \) for which \(|\hat{A}(j/MN)| \geq \eta\delta^2 N \); and then define the major arc, \(\mathcal{M} \) to be the union of the \(I_j \) with \(j \in J \). From (2) we deduce that

\[
|\hat{A}(\alpha)| \geq \eta\delta^2 N/2 \quad \text{if} \quad \alpha \in \mathcal{M}; \quad \text{and} \quad |\hat{A}(\alpha)| \leq 3\eta\delta^2 N/2 \quad \text{if} \quad \alpha \notin \mathcal{M}.
\]

From the second of these inequalities we deduce that

\[
\left| \int_0^1 \hat{A}(\alpha)^2 \hat{A}(-2\alpha)d\alpha \right| \leq \max_{\alpha \notin \mathcal{M}} |\hat{A}(\alpha)| \cdot \int_0^1 |\hat{A}(\alpha)| \cdot |\hat{A}(-2\alpha)|d\alpha
\]

\[
\leq \frac{3}{2} \eta\delta^2 N \left(\int_0^1 |\hat{A}(\alpha)|^2d\alpha \int_0^1 |\hat{A}(-2\alpha)|^2d\alpha \right)^{1/2} = \frac{3}{2} \eta\delta^3 N^2
\]

\(\text{Typeset by \LaTeX} \)
by Parseval’s identity that \(\int_0^1 |\hat{A}(\alpha)|^2d\alpha = |A| \). From the first of the inequalities we have that
\[
\delta N = |A| = \int_0^1 |\hat{A}(\alpha)|^2d\alpha \geq \int_{\alpha \in \mathcal{M}} |\hat{A}(\alpha)|^2d\alpha \geq |\mathcal{M}|(\eta \delta^2 N/2)^2,
\]
so that \(|\mathcal{M}| \leq 4/(\eta^2 \delta^3 N)\); and thus \(k := |J| \leq 4M/\eta \delta^3 \lesssim 8\pi/\delta^4 \eta^3 \). (Here we use the notation \(\lesssim \) (and later \(\sim \)) instead of \(\leq \) (and later \(\asymp \)), respectively, when there may be other terms that are negligible compared to the main term.)

We now claim that there exists a positive integer \(q \leq Q \) for which
\[
(4) \quad \left\| \frac{qj}{MN} \right\| \leq Q^{-1/k} \quad \text{for each} \ j \in J.
\]
To see this consider the vectors \(w_i \in (\mathbb{R}/\mathbb{Z})^k \) with coordinates indexed by \(j \in J \), where the \(j \)th coordinate is \(ij/mn \) (mod 1). If we cut the space up into the \(k \)-dimensional minicubes given by cutting each dimension into sides of length \(Q^{-1/k} \), then at least two of the vectors from \(w_0, w_1, \ldots, w_Q \) belong to the same minicube, by the pigeonhole principle. If these vectors are \(w_h \) and \(w_i \) with \(0 \leq h < i \leq Q \) then let \(q = i - h \) so that (4) holds as claimed.

Take \(L = [N^{1/3k}/8M] \) and \(Q = (8LM)^k \), so that \(Q \leq N^{1/3} \). If \(\alpha \in I_j \) with \(j \in J \) then \(\|q\alpha\| \leq \|qj/MN\| + \|q/2MN\| \leq Q^{-1/k} + Q/2M \), and thus if \(\ell \) is an integer for which \(|\ell| \leq 4L \) then \(\|\alpha q\ell\| \leq 4L(Q^{-1/k} + Q/2M) \leq 1/M \), since \(4LQ \leq Q^{1+1/k} \leq N^{2/3} \) as well. Therefore
\[
\left| \int_0^1 \hat{A}(\alpha)^2 \hat{A}(-2\alpha)e(\alpha \ell) d\alpha - \int_0^1 \hat{A}(\alpha)^2 \hat{A}(-2\alpha) d\alpha \right|
\leq 2\pi \int_{\alpha \in \mathcal{M}} |\hat{A}(\alpha)|^2 \cdot |\hat{A}(-2\alpha)| \cdot \|\alpha \ell\| d\alpha + 2 \int_{\alpha \notin \mathcal{M}} |\hat{A}(\alpha)|^2 \cdot |\hat{A}(-2\alpha)| d\alpha
\leq 2\pi \delta^2 N^2 \max_{\alpha \in \mathcal{M}} \|\alpha \ell\| + 3\eta \delta^3 N^2 \leq 4\eta \delta^3 N^2
\]
by (3). We deduce that for any \(|r|, |s|, |t| \leq L \) (taking \(\ell = r + t - 2s \) above) we have
\[
(5) \quad \# \{a, b, c \in A : (a + rq) + (c + tq) = 2(b + sq)\} \leq 5\eta \delta^3 N^2,
\]
using (1), since \(\delta N \geq \sqrt{N/\eta} \) by assumption.

This suggests that for most 3-term arithmetic progressions of integers \(u + w = 2v \) there cannot be many \(a = u - rq, b = v - sq, c = w - tq \in A \), which seems implausible if \(A \) is reasonably distributed in segments of residue classes mod \(q \). To show this define
\[
\kappa(n) = \#\{r : |r| \leq L, n - rq \in A\}.
\]
One expects that \(\kappa(n) \) is roughly \(\delta(2L + 1) \) for most integers \(n \). We will now prove that most integers belong to
\[
B = \left\{ n : 1 \leq n \leq N, \kappa(n) > \frac{\delta}{8}(2L + 1) \right\}
\]
unless \(\kappa(n) \) is surprisingly large for some \(n \). Let \(A(m) = 1 \) if \(m \in A \), and \(= 0 \) otherwise. Note that

\[
\sum_{n=1}^{N} \kappa(n) = \sum_{n=1}^{N} \sum_{r=-L}^{L} A(n-rq) = \sum_{a \in A} \# \{ r : |r| \leq L, 1 \leq a + rq \leq N \} \geq (2L + 1) \# \{ a \in A : Lq < a < N - Lq \} \geq (2L + 1)(\delta N - 2Lq).
\]

Now assume that each \(\kappa(n) \leq \frac{9\delta}{8}(2L + 1) \) so that

\[
\sum_{n=1}^{N} \kappa(n) \leq |B| \frac{9\delta}{8}(2L + 1) + (N - |B|)\frac{\delta}{8}(2L + 1).
\]

We can combine the last two inequalities to obtain \(|B| \geq 7N/8 + O(N^{2/3}) \). On the other hand, by (5) we have, writing \(a = u - rq, \ b = v - sq, \ c = w - tq \),

\[
5\eta\delta^3 N^2(2L + 1)^3 \geq \sum_{|r|,|s|,|t| \leq L} \# \{ a, b, c \in A : (a + rq) + (c + tq) = 2(b + sq) \} = \sum_{u+w=2v} \kappa(u)\kappa(v)\kappa(w) \geq \sum_{u+w=2v} \kappa(u)\kappa(v)\kappa(w)
\]

\[
\geq \left(\frac{\delta}{8}(2L + 1) \right)^3 \# \{ u, v, w \in B : u + w = 2v \};
\]

that is

\[
(6) \quad \# \{ u, v, w \in B : u + w = 2v \} \leq 5 \cdot 8^3 \eta N^2 < N^2/300.
\]

We can bound \(\# \{ u, v, w \in B : u + w = 2v \} \) from below by taking all \(\sim N^2/4 \) solutions to \(u + w = 2v \) with \(1 \leq u, v, w \leq N \), and then subtracting, for each \(u \notin B \) the number of \(v \) for which \(1 \leq 2v - u \leq N \) (that is \((N - |B|) \times N/2 \)) and similarly for \(w \), and then subtracting, for each \(v \notin B \) the number of \(u, w \in B \) for which \(u + w \in B \) (which is no more than \((N - |B|) \times |B| \)). Thus

\[
\# \{ u, v, w \in B : u + w = 2v \} \gtrsim N^2/4 - (N^2 - |B|^2) \gtrsim N^2/64
\]

as \(|B| \gtrsim 7N/8 \), which contradicts (6). Therefore the assumption is false, so that there exists \(n \) with \(\kappa(n) > \frac{9\delta}{8}(2L + 1) \).

We deduce that the set

\[A_0 := \{ r + L + 1 : n - rq \in A \} \subset \{ 1, \ldots, 2L + 1 \} \]

has \(\geq \frac{9\delta}{8}(2L + 1) \) elements, but no 3-term arithmetic progression. Let \(N_1 := \lfloor N^{\delta^4/10^{20}} \rfloor \), which is smaller than \(2L + 1 \). Select the subinterval \([s + 1, s + N] \) of \([1, 2L + 1] \) containing the most elements of \(A_0 \), so that

\[A_1 := \{ j : 1 \leq j \leq N \text{ and } s + j \in A_0 \} \]
does not contain any non-trivial 3-term arithmetic progressions, and has $\gtrsim \frac{9}{8}\delta N_1$ elements. We have therefore proved the following:

If A is a subset of $\{1, 2, \ldots, N\}$, with δN elements, which does not contain a non-trivial 3-term arithmetic progression, then there exists a subset A_1 of $\{1, 2, \ldots, N_1\}$, with $\gtrsim \frac{9}{8}\delta N_1$ elements, which does not contain a non-trivial 3-term arithmetic progression.

Suppose that $\delta \geq \delta_g = (8/9)^g$. If we iterate the above result j times then we have a subset $A_j \subset \{1, 2, \ldots, N_j\}$ containing $\delta_j = \frac{9}{8}j$ elements, no three of which form an arithmetic progression, where $N_j \sim N^{\eta_j}$ with $\eta_j := (8/9)^{2(2g+1)j-j^2}/10^{20j}$. Therefore A_g contains all the integers up to N_g and so must contain many three term arithmetic progressions, a contradiction, provided N_g is sufficiently large. This will be the case if $\eta_g \gg 1/\log N$ which follows provided $g < (\log \log N/(2 \log(9/8)))^{1/2} + O(1)$. Hence we may take any

$$\delta \gg 1/\exp(c\sqrt{\log \log N})$$

where $c = \sqrt{\frac{1}{2} \log \frac{9}{8}}$. One can optimize our argument to slightly increase the value of c.

We have therefore proved the following result:

Theorem. There exists a constant $c > 0$ such that if A is a subset of $\{1, 2, \ldots, N\}$ with N sufficiently large, where A contains at least

$$N/\exp(c\sqrt{\log \log N})$$

elements, then A contains a non-trivial three-term arithmetic progression.

Stronger results are proved in [1], [2] and [4].

Acknowledgements: This article was written by Antal Balog and Andrew Granville, based on the lecture given by the author at the school.

References