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Abstract. Assuming that there exist (infinitely many) Siegel zeros, we show that
the (Rosser-)Jurkat-Richert bounds in the linear sieve cannot be improved, and sim-
ilarly look at Iwaniec’s lower bound on Jacobsthal’s problem, as well as minor im-
provements to the Brun-Titchmarsh Theorem. We also deduce an improved (though
conditional) lower bound on the longest gaps between primes, and rework Cramér’s
heuristic in this situation to show that we would expect gaps around x that are
significantly larger than (log x)2.

1. The history of the problem

We are interested in determining sharp upper and lower bounds for the number of
integers with no small prime factors in a short interval; specifically, estimates on

S(x, y, z) := #{n ∈ (x, x+ y] : (n, P (z)) = 1}
where P (z) :=

∏
p≤z p. This question is an example of problems that can be attacked

by the small sieve (as is, for example, estimating pairs of integers that differ by 2,
which have no small prime factors). This more general set up goes as follows:

We begin with a set of integers A (of size X) to be sieved (in our case the integers
in the interval (x, x + y]). It is important that the proportion of elements of A that
is divisible by integer d is very close to a multiplicative function (in d): If Ad := {a ∈
A : d|a} then we write

#Ad =
g(d)

d
X + r(A, d)

where g(d) is a multiplicative function, which is more-or-less bounded by some constant
κ > 0 on average over primes p, even in short intervals (in our case each g(p) = 1):∏

y<p≤z

(
1− g(p)

p

)−1
≤
(

log z

log y

)κ(
1 +O

(
1

log y

))
(and, in our case, Merten’s Theorem allows us to take κ = 1, the linear sieve); and
r(A, d) is an error term that must be small on average (in our case each |r(A, d)| ≤ 1):∑

d|P (z)
d≤D

|r(A, d)| �A
X

(logX)A

Thanks to John Friedlander, Dimitris Koukoulopoulos and James Maynard for helpful responses to
emailed questions, and Kevin Ford for some useful comments, especially concerning the consequences
of Siegel zeros for Cramér’s conjecture discussed after the statement of Corollary 2, as well as on the
exposition.
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for any A > 0 where D = Xθ for some θ > 0 (in our case we can take any θ < 1). The
goal in sieve theory is to estimate

S(A, z) := {n ∈ A : (n, P (z)) = 1},
which “on average” equals

G(z)X where G(z) :=
∏
p≤z

(
1− g(p)

p

)
,

though here we are interested in the extreme cases; that is, the smallest and largest
values of S(A, z) under these hypotheses.

In 1965, Jurkat and Richert [9] showed for κ = 1 that if X = zu then

(f(u) + o(1)) ·G(z)X ≤ S(A, z) ≤ (F (u) + o(1)) ·G(z)X, (1)

where f(u) = eγ(ω(u) − ρ(u)
u

) and F (u) = eγ(ω(u) + ρ(u)
u

), and ρ(u) and ω(u) are
the Dickman-de Bruijn and Buchstab functions, respectively.1 One can define these
functions directly by

f(u) = 0 and F (u) =
2eγ

u
for 0 < u ≤ 2

(in fact F (u) = 2eγ

u
also for 2 < u ≤ 3) and

f(u) =
1

u

∫ u−1

1

F (t)dt and F (u) =
2eγ

u
+

1

u

∫ u−1

2

f(t)dt for all u ≥ 2.

Iwaniec [6] and Selberg [11] showed that this result is “best possible” by noting that
the sets

A± = {n ≤ x : λ(n) = ∓1}
where λ(n) is Liouville’s function (so that λ(

∏
p p

ep) = (−1)
∑
p ep) satisfy the above

hypotheses, with

S(A−, z) = (f(u) + o(1)) ·G(z)#A− and S(A+, z) = (F (u) + o(1)) ·G(z)#A+. (2)

If u ≤ 2 then S(A−, z) counts the integers ≤ x, which have an even number of prime
factors, all > z ≥ x1/2: The only such integer is 1, and therefore S(A−, z) = 1. Thus
sieving with these hypotheses (and minor variants) one cannot detect primes (this is
the so-called parity phenomenon).

In order to detect primes in [1, x] or just to better understand S(x, y, z), we need
some other techniques. The purpose of this article is to show that, even so, it will be
a (provably) difficult task. We know that if y = zu then

(f(u) + o(1)) ·G(z)y ≤ S(x, y, z) . F (u) ·G(z)y, where G(z) =
∏
p≤z

(
1− 1

p

)
,

since sieving an interval is, as we discussed, an example of this more general linear sieve
problem. In [12], Selberg asked “is it possible that these quantities [the best possible

1According to Selberg [11], section 5, Rosser had proved this result ten years earlier in unpublished
notes, with a proof that looks superficially different, but Selberg felt was probably fundamentally the
same.
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upper and lower bounds for sieving an interval] behave significantly differently [from
the bounds in the general linear sieve problem] ? ... We do not know the answer”.

We will show that if there are infinitely many Siegel zeros then the general bounds
are also best possible for the problem of sieving intervals.

Corollary 1 Assume that there are infinitely many Siegel zeros. For each fixed v > 1,
there exist arbitrarily large x,X, y, z with y = zv such that

S(x, y, z) = (F (v) + o(1))G(z)y and S(X, y, z) = (f(v) + o(1))G(z)y

We will explain what exactly we mean by “Siegel zeros” in the next section.
Siebert in [15] proved a similar result though with a slightly broader sieve problem

(he allowed sieving arithmetic progressions), and he obtained a slightly weaker conclu-
sion because he did not realize that an estimate as strong as (7) was at his disposal.
Our proof is also a little easier since we determine our estimates in Corollary 1 by
calculating in terms of the Selberg-Iwaniec A± examples, rather than calculating com-
plicated explicit expressions for F (v) and f(v). One can deduce from Corollary 1 that
if π(qx; q, a) ≤ (2 − ε) q

φ(q)
x

log x
for x = qA with q sufficiently large then there are no

Siegel zeros, which reproves a result of Motohashi [10].2

Corollary 1 implies that if 1 < v ≤ 2 then there are arbitrarily large X, y, z with
y = zv for which

S(X, y, z) = o

(
y

log y

)
.

since f(2) = 0. However f(u) > 0 for u > 2 and so it is of interest to understand
S(x, y, z) when y = z2+o(1). The key result in this range is due to Iwaniec [7]3 who
showed that if y � z2 then

S(x, y, z) ≥ 4y

(log y)2
· (log(y/z2)−O(1)).

(In fact uniformly for 2 < u ≤ 3 he proved that

S(x, y, z) ≥
(
f(u)− c

log y

)
·
∏
p≤z

(
1− 1

p

)
y,

where f(u) = 2eγ log(u−1)
u

in this range.)

Proposition 1 Suppose that there is an infinite sequence of primitive real characters
χ mod q such that there is an exceptional zero β = βq of each L(s, χ). For each, there
exists a corresponding value of y such that if y1−ε > z > y1/2−o(1) then there exists an
integer X for which

S(X, y, z) .
4y

(log y)2
log+(qy/z2) + (1− βq)y

2Actually Motohashi showed the more precise bound that if π(qx; q, a) ≤ (2 − ε) q
φ(q)

x
log x and

L(β, χq) = 0 with β ∈ R then β < 1− cε
log q . We obtain a similar result in the first part of Proposition

2. Motohashi remarked that “an extension of [his] theorem in a direction similar to Siebert is quite
possible”..

3A slightly weaker version of this result more-or-less follows from Iwaniec’s much earlier Theorem
2 in [6].
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where log+ t = max{0, log t}. We can take y = qA−1 with A→∞ as slowly as we like.

We will also deduce the following:

Corollary 2 Suppose that there are infinitely Siegel zeros β with 1 − β < 1
(log q)B

for

some integer B ≥ 1. Then there are infinitely primes pn (where pn is nth smallest
prime) for which

pn+1 − pn � log pn(log log pn)B−1.

One can obtain longer gaps between primes from the proof if there are Siegel zeros
even closer to 1. Pretty much the same lower bounds on the maximal gaps between
primes were recently given by Ford [4] (by fundamentally the same proof). Uncondi-
tionally proved lower bounds on the largest prime gaps [3] are slightly smaller than
log pn(log log pn), and the techniques used seem unlikely to be able to prove much more
than log pn(log log pn)2, so we are in new territory here once B > 3.

It is believed that there are gaps pn+1 − pn � (log pn)2 but that seems out of reach
here. However, after the proof of Corollary 2, we show that the standard heuristic (see
e.g. [5]) implies that if there are infinitely many Siegel zeros then

lim sup
x→∞

maxpn≤x pn+1 − pn
(log x)2

→∞

(as suggested to me by Ford). Moreover under the hypothesis of Corollary 2 with
B = 2/ε− 1, this same heuristic implies that there are infinitely pn for which

pn+1 − pn � (log pn)2(log log pn)1−ε.

Jacobsthal’s function J(m) is defined to be the smallest integer J such that every
J consecutive integers contains one which is coprime to m. Therefore if m = P (z)
then J(m) is the smallest integer y for which S(x, y, z) ≥ 1 for all x. It is not difficult
to show that J(m) ∼ m

φ(m)
ω(m) for almost all integers m, but we are most interested

in maxm≤M J(m), and believe that the maximum occurs either for the largest m =
P (z) ≤M or for another integer that has almost as many prime factors.

Iwaniec’s result above establishes that J(P (z)) � z2; by the prime number theo-
rem which means that J(m) � (ω(m) logω(m))2 (where ω(m) denotes the number
of distinct prime factors of m), and Iwaniec [7] deduced (cleverly) that this upper
bound then holds for all integers m. The proof in [3] implies that if m = P (z) then

J(m) � ω(m)(logω(m))2 log3 ω(m)
log2 ω(m)

, and the methods there suggest the conjecture that

the largest J(m) gets is something like ω(m)(logω(m))3+o(1). However our proof of
Corollary 2 implies that if there are infinitely Siegel zeros β with 1 − β < 1

(log q)B
for

some integer B ≥ 1, then there exist integers m with J(m) � ω(m)(logω(m))B; and
therefore this conjecture is untrue if B can be taken to be > 3. (This is also easily
deduced from the discussion in Ford [4].)
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Corollary 1 implies that if 1 ≤ v ≤ 3 (that is, z ≥ y1/3+o(1)) then4

S(x, y, z) ∼ 2y

log y
.

A subset A of the integers in [0, y] has length ≤ y, and is admissible if for every
prime p there is a residue class mod p that does not contain an element of A. It is
believed that the largest admissible set of length y contains ∼ y

log y
elements. It is worth

emphasizing that our results show that this belief is untrue if there are Siegel zeros:

Corollary 3 Suppose that there are infinitely many Siegel zeros. Then there are arbi-
trarily large y for which there are admissible sets A(y) of length y with

A(y) ∼ 2y

log y
.

We can be more precise about sets that have many integers left unsieved:

Proposition 2 Suppose that there is an infinite sequence of exceptional zeros β corre-
sponding to real primitive characters of conductor q, and let z = yu with 1 ≤ u ≤ 3.
Then there exists values of X such that:

• If 1− β ≤ δ2

log q
for some fixed δ > 0 then

S(X, y, z) ≥ 2y

log y
− (2δ C(u) + o(1))

y

log y

where C(u) =
√

2(1− log+(u− 1));
• If 1− β ≤ 1

(log q)κ
for some fixed κ > 1 then

S(X, y, z) ≥ 2y

log y
− Cκ(u)(log y)

2
κ+1

y

(log y)2
;

for some constant Cκ(u) > 0;
• If 1− β ≤ exp(−(log q)1/τ ) for some fixed τ ≥ 1 then

S(X, y, z) ≥ 2y

log y
− cτ (log log y)τ

y

(log y)2
;

for some constant cτ > 0;
• If 1− β ≤ 1/qε and ε→ 0 slowly with q then

S(X, y, z) ≥ 2y

log y
− (2/ε+ o(1))

y log log y

(log y)2
.

One consequence of the first part is that if one can show that for all integers x and
y sufficiently large we have

S(x, y, y1/2) ≤ (2− η)
y

log y

4Selberg explains in [13], section 18 that, before his elementary proof of the prime number theorem,
when analyzing what prevented him from substantially improving the upper bound < 2y

log y , he found

all of the main contribution to the terms in the sieve sum came from integers with an odd number of
(large) prime factors, and therefore came up with the A± examples. Bombieri greatly expanded on
this phenomenon in [2].
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then any real zeros β of L(s, χ) for a primitive quadratic character χ (mod q) satisfy

β ≤ 1− η2 + o(1)

8 log q
;

that is, there are no Siegel zeros. (Again, this is closely related to the work of Motohashi
[10].)

In [12] Selberg noted that he could find examples for u ≤ 3 with

S(A, z) ≥ 2y

log y

(
1− c(log log y)2

log y

)
(which we obtain from Proposition 2 if 1 − β = exp(−(log q)1/2+o(1))), and he states
that he thought he could reduce the (log log y)2 to log log y in the secondary term.
Thanks to Siegel’s Theorem this is (just) beyond the realms of possibility with our
construction (see the last part of Proposition 2).

It is feasible that the limits

lim
y→∞

max
x

S(x, y, y1/u)

/
y

log y
and lim

y→∞
min
x
S(x, y, y1/u)

/
y

log y

might not exist; indeed if the extremal examples all come from Siegel zeros (as in this
paper), and if Siegel zeros are very spaced out (as we might expect if they do exist),
then these limits will not exist. Therefore, one needs to work with lim sup and lim inf,
respectively, in this kind of formulation of our results (Selberg [12] made the analogous
point about S(A, z).)

Tao wrote in his blog:5 “The parity problem can also be sometimes overcome when
there is an exceptional Siegel zero ... [this] suggests that to break the parity barrier, we
may assume without loss of generality that there are no Siegel zeroes” (see also section
1.10.2 of [14]). The results of this article suggest that this claim needs to be treated
with caution, since its truth depends on the context.

2. Exceptional zeros

Landau proved that there exists a constant c > 0 such that if Q is sufficiently large
then there can be no more than one modulus q ≤ Q, one primitive real character χ
(mod q) and one real number β for which L(β, χ) = 0, with

β ≥ 1− c

logQ
.

These are the so-called exceptional zeros (or Siegel zeros); we do not believe that they
exist (as they would contradict the Generalized Riemann Hypothesis), but they are
the most egregious putative zeros that we cannot discount.

If we assume that exceptional zeros exist then there are some surprising but simple
organizing principles:

• We can assume that if they exist then there are infinitely many, else we simply
change the value of c to c = 1

2
minq(1−β) log q and then there are no exceptional

zeros.

5https://terrytao.wordpress.com/2007/06/05/open-question-the-parity-problem-in-sieve-theory/



SIEVING INTERVALS AND SIEGEL ZEROS 7

• We may also assume that one can take c arbitrarily small for if one does not
have exceptional zeros for a small enough c then we are done.

So henceforth we will assume that there are infinitely many Siegel zeros ; that is, for
any κ > 0 arbitrarily small, there is a sequence (qj, χj, βj)j≥1 such that

βj ≥ 1− κ

log qj
for all j ≥ 1. (3)

We now plug this zero into the explicit formula for primes in arithmetic progressions.
To do this we slightly modify section 18.4 of [8]:

Lemma 1 There exists a (large) constant A such that if there is a Siegel zero β of a
real quadratic character mod q and

qA ≤ x ≤ e1/(1−β)

with (a, q) = 1 then

φ(q)ψ(x; q, a) = (1− χ(a))x+ (1− β)(χ(a) +O((1− β) log x))x(log x− 1) (4)

We deduce, by partial summation and the prime number theorem, that

φ(q)π(x; q, a) = (1− χ(a))π(x) + (1− β)(χ(a) +O((1− β) log x))x (5)

for qA+c ≤ x ≤ e1/(1−β).

Proof. We let A = 2(c2+1/c3) with c2, c3 as in [8] and then select T so that x = (qT )A/2,
which ensures that T ≥ q. Then (18.82) of [8] (with our value of T replacing theirs)
yields that

φ(q)ψ(x; q, a) = x− χ(a)
xβ

β
+O(((1− β) log x)2x+ x1−c0)

for some constant c0 > 0, since ( (qT )
c2

x
)η = (qT )−η/c3 = (1 − β) log qT � (1 − β) log x

in the calculation in [8] with η = c3
| log((1−β) log qT )|

log qT
as in (18.11) of [8]. Therefore (4)

follows since Siegel’s theorem implies that 1 − β �ε q
−ε ≥ x−ε, so our second error

term is smaller than the first, and then we estimate the main term from its Taylor
series. �

Corollary 4 There exists a (large) constant A such that if there is a Siegel zero β of
a real quadratic character χ mod q satisfying β ≥ 1− κ

log q
then for any

x ≥ qA with (1− β) log x ≤ ∆ = ∆β(x) (6)

and (a, q) = 1 we have

π(x; q, a) =
π(x)

φ(q)
·

{
O(∆) if χ(a) = 1;

2 +O(∆) if χ(a) = −1.
(7)

In particular, for fixed ∆ ∈ (0, 1] and B > A we can take κ = ∆/B and (7) holds for
all x in the range qA ≤ x ≤ qB.

Proof. The first part follows immediately from (5) and the prime number theorem. For
the last part note that (1− β) log x ≤ κ log x

log q
≤ κB = ∆ by hypothesis. �
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Let πk(x, z) be the number of integers n ≤ x where n = p1 · · · pk and the pi are all
primes > z; and πk(x, z; q, a) to be the number of these integers that are ≡ a (mod q).
Let πk,q(x, z) be those that are coprime to q. These definitions are of interest when
x > 2zk in which case one can deduce immediately from the prime number theorem
that if x ≤ zO(1) then

πk,q(x, z) �k
x

log z
. (8)

Theorem 2.1 There exists a (large) constant A such that if there is a Siegel zero β of
a real quadratic character χ mod q satisfying β ≥ 1− κ

log q
then for any z in the range

(6), and any fixed u > 1, if k is a positive integer < u with x = zu and (a, q) = 1 then
we have, uniformly,

πk(x, z; q, a) = (1 + (−1)kχ(a) +O(∆β(x)))
πk,q(x, z)

φ(q)
.

Proof. We saw above that this is true for k = 1. Then we proceed by induction on
k > 1. We write n = mp so that

πk(x, z; q, a) =
1

k

∑
z<p≤x/zk−1

p-q

πk−1(x/p, z; q, a/p) + Error;

where the error comes from terms on the right-hand side of the form rp2, and r is
counted by πk−2(x/p

2, z; q, a/p2)� x/qp2. Therefore,

Error� 1

k

∑
p>z

x

qp2
� x

kqz log z
� πk,q(x, z)

zφ(q)
� ∆

πk,q(x, z)

φ(q)

by Siegel’s Theorem as 1/z ≤ q−A � 1−β ≤ ∆ := ∆β(x). By the induction hypothesis,
we then have

πk(x, z; q, a) =
1

k

∑
z<p≤x/zk−1

p-q

(1− (−1)kχ(a/p) +O(∆))
πk−1,q(x/p, z)

φ(q)
+O

(
∆
πk,q(x, z)

φ(q)

)
.

Summing over (a, q) = 1 we also have

1

k

∑
z<p≤x/zk−1

p-q

πk−1,q(x/p, z) = (1 +O(∆))πk,q(x, z).

We can obtain this complete sum from our equation for πk(x, z; q, a) plus some extra
terms as follows:

πk(x, z; q, a) =
1 + (−1)kχ(a) +O(∆)

k

∑
z<p≤x/zk−1

p-q

πk−1,q(x/p, z)

φ(q)

− 2
(−1)kχ(a)

k

∑
z<p≤x/zk−1

χ(p)=1

πk−1,q(x/p, z)

φ(q)
+O

(
∆
πk,q(x, z)

φ(q)

)
.



SIEVING INTERVALS AND SIEGEL ZEROS 9

The first line of the right-hand side gives the main term in the result, and the last error
term is acceptable. By (8) the second sum is

�k

∑
z<p≤x/zk−1

χ(p)=1

x/p

φ(q) log z
� x

φ(q) log z
·∆ log

(
log x/zk−1

log z

)
� ∆

πk,q(x, z)

φ(q)

using partial summation on (7) (for each a with χ(a) = 1) to obtain the upper bound
on the sum over primes, and then (8) for the last inequality, and since x = zO(1). This
is acceptable in our error term, and the error term can be given uniformly since we
iterate this process only finitely often because of the range for k. �

Now let N(x, z) be the number of integers n ≤ x all of whose prime factors are > z,
N(x, z; q, a) be the number of these integers that are ≡ a (mod q), and Nq(x, z) those
coprime with q. Let N(x, z)± count these integers with λ(n) = ∓1, and then Nq(x, z)

±

those coprime with q.

Corollary 5 There exists a (large) constant A such that for any constants u > 1 which
is not an integer and ∆ > 0, assume there are infinitely many Siegel zeros β of real
quadratic characters χ mod q satisfying β ≥ 1− κ

log q
with κ = ∆/Au. For z = x1/u = qA

we have, uniformly, if χ(a) = −1 then

N(x, z; q, a) = (F (u) +O(∆)) · 1

φ(q)

∏
p≤z

(
1− 1

p

)
x

and if χ(a) = 1 then

N(x, z; q, a) = (f(u) +O(∆)) · 1

φ(q)

∏
p≤z

(
1− 1

p

)
x.

Proof. Theorem 2.1 implies that

N(x, z; q, a) =
1

φ(q)
(2Nq(x, z)

± +O(∆Nq(x, z))

since N(x, z; q, a) =
∑

k≤u πk(x, z; q, a) and Nq(x, z) =
∑

k≤u πk,q(x, z). Now the inte-
gers n counted in N(x, z) belong to congruence classes coprime to q, and are already
coprime to all of the primes ≤ z that do not divide q. Since q < z we deduce that
Nq(x, z)

± = N(x, z)±, and Nq(x, z) = N(x, z)
Now N(x, z)± = S(A±, z) and so, applying (2) we have

N(x, z)− ∼ f(u) ·
∏
p≤z

(
1− 1

p

)
x

2
and N(x, z)+ ∼ F (u) ·

∏
p≤z

(
1− 1

p

)
x

2

as #A+,#A− ∼ x
2

by the prime number theorem. �

Proof of Corollary 1. We select triples q, qy (in place of x) and z as in Corollary 5.
Let Pq(z) =

∏
p≤y, p-q p and select r so that rq ≡ 1 (mod Pq(z)), and then let b ≡ ra

(mod Pq(z)). Then b+j ≡ r(a+jq) (mod Pq(z)) so that (b+j, Pq(z)) = (a+jq, Pq(z)).
Let S := {j ∈ [0, y − 1] : (b+ j, Pq(z)) = 1} so that

#S = #{j ∈ [0, y − 1] : (a+ jq, Pq(z)) = 1} = N(qy, z; q, a).



10 ANDREW GRANVILLE

Therefore if χ(a) = −1 then

#S = (F (u) +O(∆)) · q

φ(q)

∏
p≤z

(
1− 1

p

)
y

by Corollary 5.
If q = pe11 · · · p

ek
k with select a1 (mod p1) to minimize {s ∈ S : s ≡ a1 (mod p1)}

and let S1 := {s ∈ S : s 6≡ a1 (mod p1)} so that #S1 ≥ (1 − 1
p1

)#S. We then do the

same for p2, . . . and select an integer B for which B ≡ b (mod Pq(z)) and B ≡ −aj
(mod pj) for all j. Therefore

#{j ∈ [0, y − 1] : (B + j, P (z)) = 1} ≥ φ(q)

q
#S ≥ (F (u) +O(∆))

∏
p≤z

(
1− 1

p

)
y.

Now qy = zu and y = zv so that as z = qA we have u = v + 1
A

. Therefore

F (u) +O(∆) = F

(
v +

1

A

)
+O(∆) = F (v) + oA→∞(1),

since F (.) is continuous. Therefore, letting A→∞ we have

#{n ∈ (x, x+ y] : (n, P (y1/v)) = 1} & F (u)
∏
p≤z

(
1− 1

p

)
y,

A lower bound of the same size follows from Jurkat and Richert’s result given in (1),
and therefore the asymptotic result follows.

If χ(a) = 1 then we proceed analogously but instead we select our arithmetic pro-
gressions aj (mod pj) to maximize the number in this arithmetic progression in the
already-sifted set. �

Proof of Corollary 3. Fix ε > 0. Take v = 1/(1− ε) in Corollary 1] so that there exists
an integer x for which

S(x, y, y1−ε) ∼ 2eγ(1− ε)
∏

p≤y1−ε

(
1− 1

p

)
y ∼ 2y

log y
.

Let B be the set of positive integers n ≤ y for which x+ n has no prime factor ≤ y1−ε

so that #B = S(x, y, y1−ε), and B contains no integers ≡ −x (mod p) for every prime
p ≤ y1−ε. If the primes in (y1−ε, y] are p1 < p2 < · · · < pk, we let B1 = B and
then for j = 1, . . . , k we select the arithmetic progression aj (mod pj) containing the
least number of elements of Bj, and let Bj+1 be Bj less that arithmetic progression.
Therefore #Bj+1 ≥ (1− 1

pj
)#Bj for each j, and so A := Bk+1 is an admissible set with

2y

log y
∼ #B ≥ #A ≥

∏
y1−ε<p≤y

(
1− 1

p

)
#B & (1− ε) 2y

log y
;

that is, #A = (2 +O(ε)) y
log y

. The result follows letting ε→ 0+. �



SIEVING INTERVALS AND SIEGEL ZEROS 11

At the sifting limit, redux

The link between exceptional zeros and the sifting limit was discussed in section 9 of
[1]. We now develop these ideas further when y = z2+o(1). Here we will take y = qA−1

with A→∞ as slowly as we like.

Proof of Proposition 1. We will assume that ∆ = ∆β(x) ≤ 1. By (5), for x ≥ qA we
have

π(x; q, a) = (1− χ(a))
π(x)

φ(q)
+ (χ(a) +O(∆))(1− β)

x

φ(q)
.

Proceeding as in the proof of Corollary 1, we have, for b ≡ a/q (mod Pq(z)),

#{j ∈ [0, y − 1] : (b+ j, Pq(z)) = 1} = N(x, z; q, a).

If x1/2 < z ≤ x and χ(a) = 1 then the above implies that

N(x, z; q, a) = π1(x, z; q, a) = π(x; q, a)− π(z; q, a) = (1 +O(∆ + λ))(1− β)
x

φ(q)

where λ = λ(z, x) := 1
log x

+ z
x
. Letting x = qy and selecting residue classes for each

prime dividing q as in the proof of Corollary 1, we deduce that there exists an integer
B for which

#{j ∈ [0, y − 1] : (B + j, P (z)) = 1} ≤ φ(q)

q
N(x, z; q, a) ≤ (1− β)y(1 +O(∆ + λ)).

In the range x1/2 ≥ z > x1/3 we have N(x, z; q, a) = π1(x, z; q, a) + π2(x, z; q, a), and

π2(x, z; q, a) =
∑

z<p<
√
x

p-q

π1(x/p; q, a/p)− π1(p; q, a/p)

=
∑

z<p<
√
x

p-q

(
(1− χ(a/p))

π(x/p)− π(p)

φ(q)
+ (χ(a/p) +O(∆))(1− β)

x/p− p
φ(q)

)
.

Summing over all (a, q) = 1 we obtain

π2,q(x, z) =
∑

z<p<
√
x

p-q

π(x/p)− π(p) +O

(
∆(1− β)

x

p

)

=
∑

z<p<
√
x

p-q

(π(x/p)− π(p)) +O(∆(1− β)x)

Therefore φ(q)π2(x, z; q, a)− (1 + χ(a))π2,q(x, z) equals χ(a) times

= −2
∑

z<p<
√
x

χ(p)=1

(π(x/p)− π(p)) + (1− β)
∑

z<p<
√
x

χ(p)(x/p− p) +O(∆(1− β)x)
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Since #{p ≤ x : χ(p) = 1} = 1
2
(1 + O(∆))(1 − β)x we deduce by partial summation

that

2
∑

z<p<
√
x

χ(p)=1

(π(x/p)− π(p)) = (1− β)

∫ √x
z

x

t log(x/t)
dt+O(∆(1− β)x)

= (1− β)x

(
log(u− 1)− log

u

2
+O(∆)

)
,

for x = zu while∑
z<p<

√
x

χ(p)(x/p− p) = −x log

(
log
√
x

log z

)
+O((∆ + λ)x) = −x

(
log

u

2
+O(∆ + λ)

)
.

So if x = zu with u ≥ 2 then

φ(q)π2(x, z; q, a) = (1 + χ(a))π2,q(x, z)− χ(a)(1− β)x(log(u− 1) +O(∆ + λ)).

Therefore if 2 ≤ u < 3 then

N(x, z; q, a) = π1(x, z; q, a) + π2(x, z; q, a)

= (1− χ(a))
π(x)

φ(q)
+ (1 + χ(a))

π2(x, z)

φ(q)
+ χ(a)(1− β)

x

φ(q)
(1− log(u− 1) +O(∆ + λ)).

In this range for x we have λ � 1
log x

. We use the prime number theorem to obtain

π2,q(x, z) = π2(x, z) ∼

{
x

log x
log(u− 1) if x/z2 →∞;

2x
(log x)2

(log c− (1− 1
c
)) if x = cz2, c > 1.

The latter estimate yields that if x > z2 then

π2(x, z) .
2x log x/z2

(log x)2
≤ 2qy log qy/z2

(log y)2

when x = qy. If χ(a) = 1 then, as above, there exists an integer B for which

S(B, y, z) ≤ φ(q)

q
N(x, z; q, a) = 2

π2(qy, z)

q
+ (1− β)y(1− log(u− 1) +O(∆ + λ))

.
4y log qy/z2

(log y)2
+ (1− β)y(1 +O(∆))

since y � z2.
The claimed result now follows: For any ε > 0 we let y = q1/ε−1 and κ = ε2 so that

∆ = (1− β) log qy ≤ κ
log q
· ε−1 log q = ε, and is therefore arbitrarily small. �

More than the proof of Proposition 2. Taking χ(a) = −1 in the previous proof we ob-
tain that if x1/3 < z � x

log x
then

φ(q)N(x, z; q, a) = (2 +O(λ))
x

log x
− (1− β)x(1− log+(u− 1) +O(∆ + λ)).
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Proceeding as before (but now removing the arithmetic progressions with the least
number of unsieved elements), this implies that there exists an integer X for which

S(X, y, z) ≥ (2 +O(λ))
y

log qy
− 1

2
(1− β)y(C(u)2 +O(∆ + λ))

≥ 2y

log y

(
1− log q +O(1)

log y
+O

((
log q

log y

)2))
− 1

2
(1− β)y(C(u)2 +O(∆ + λ))

≥ 2y

log y

(
1− 1

A
− C(u)2

4B
+O

(
1

A log q
+

1

A2
+

1

B2

))
writing y = qA and 1− β = 1

B log y
so that ∆� 1

B
. We select

A =
2

C(u)

√
1

(1− β) log q
and B =

C(u)

2

√
1

(1− β) log q

so that

S(X, y, z) ≥ 2y

log y

(
1− C(u)

√
(1− β) log q +O

(√
1− β
log q

+ (1− β) log q

))
=

2y

log y
− (1 + o(1))

4y log q

(log y)2

since C(u)
√

(1− β) log q = 2 log q
log y

. The results claimed in the proposition therefore

follow by inserting the given values for 1− β and determining log q in terms of y. �

3. Largest gaps between primes, when there are Siegel zeros

Proof of Corollary 2. In the proof of Proposition 1 we have seen that there exists and
integer X for which N := S(X, y, z) . (1 − β)y where z = (qy)1/2. Let a1, . . . , aN be
the integers in {X + a ∈ (X,X + y] : (X + a, P (z)) = 1}, and p1 < p2 < · · · < pN be
primes taken from the interval (z, Z] where Z := (1 + ε)(1− β)y log y. This is possible
since z = (qy)1/2 = o((1 − β)y) (as 1 − β � q−o(1) by Siegel’s theorem, and y = qA

with A large) so, by the prime number theorem there are more than N primes in the
interval.

We now select an integer x such that x ≡ X (mod P (z)) and x ≡ −aj (mod pj)
for 1 ≤ j ≤ N . We see that S(x, y, Z) = 0. Therefore if pn is the largest prime
≤ x and pn+1 is the next smallest prime then pn+1 − pn > y while we can select
x ∈ (P (Z), 2P (Z)]. Therefore we see that Z ∼ log x by the prime number theorem,
and

y ∼ Z/(1− β)

logZ

letting ε → 0+. We deduce that A log q ∼ log y ∼ logZ ∼ log log x. Therefore if
1− β = 1

(log q)B
then 1

1−β = (log q)B ∼ A−B(log log x)B, and so

y ∼ A−B log x(log log x)B−1.

The result follows taking A fixed but large. �
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Cramér conjectured that the largest gap between primes ≤ x should be ∼ (log x)2;
however Cramér made this conjecture based on a model for the distribution of primes
that does not take into account divisibility by small primes. A modified model is dis-
cussed in [5] (as well as [1]) which does take into account the small primes. Proposition
1 of [5] suggests that we take z = ε log x and y = y(x) a little larger than (log x)2 so
that

min
X

S(X, y, z) ∼
∏
p≤z

(
1− 1

p

)
(log x)2

then the largest gap between primes in [x, 2x] should be ∼ y(x). By making certain
guesses about the sieve, the authors of [5] then predict that y(x) ∼ 2e−γ(log x)2 (or
perhaps with a slightly larger constant than “2e−γ”, depending on a certain sieve
constant). However we see have seen here that the existence of Siegel zeros plays havoc
on our guesses about sieving intervals. If we use Mertens’ Theorem and substitute in the
bound from Proposition 1 then we obtain, writing y = w(log x)2 where w = w(x) ≥ 1,

w(log(qw/ε2) + (1− βq)(log log x)2) & e−γ log log x

where y = qA−1 with A → ∞ as slowly as we like. Now log q � 1
A

log log x and so we
see from here that w(x)→∞, letting A→∞. The question is how fast?

The proof of Proposition 1 give log y � 1
1−β and so log log x � log y � qo(1) by

Siegel’s Theorem We will be unable to prove w to be any larger than log log x� qo(1)

so the above inequality can be taken to be

w(4 log q + (1− βq)(log y)2) & 2e−γ log y.

We optimize by taking log y = 2
√

log q
1−β and so this becomes

w &
e−γ log y

4 log q

What does this mean in terms of x?
If we can only say that there are infinitely many Siegel zeros than this heuristic

implies that

lim sup
x→∞

maxpn≤x pn+1 − pn
(log x)2

→∞.

Suppose instead that we have infinitely many q for which 1 − β � 1/(log q)2c−1 for
some c > 1. Then our heuristic implies that there are infinitely pn for which

pn+1 − pn � (log pn)2(log log pn)1−
1
c .

If 1 − β < 1/ exp(log q)1/c) for some c > 1 then our heuristic implies that there are
infinitely pn for which

pn+1 − pn � (log pn)2
log log pn

(log log log pn)c
.

Much the same predictions can be deduced from the heuristic in [1], as pointed out to
me by Ford.
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