ON THE LEAST PRIME IN
CERTAIN ARITHMETIC PROGRESSIONS

ANDREW GRANVILLE anp CARL POMERANCE

ABSTRACT

We find infinitely many pairs of coprime integers, a and g, such that the least prime congruent to a
(modulo g¢) is unusually large. In so doing we also consider the question of approximating rationals by
other rationals with smaller and coprime denominators.

1. Introduction

For any x > x, and for any positive valued function g(x) define
R(x) = ¢’log xlog, xlog, x/(log, x)?,
L(x) = exp (log xlog; x/log, x),
E,(x) = exp (log x/(log, x)7™).

Here log, x is the k-fold iterated logarithm, y is Euler’s constant, and x, is chosen
large enough so that log, x, > 1.

The usual method used to find large gaps between successive prime numbers is to
construct long sequences S of consecutive integers, each of which has a ‘small’ prime
factor (so that they cannot be prime); then, the gap between the largest prime before
S and the next, is at least as long as S.

Similarly if one wishes to find an arithmetic progression a (modgq), with
gcd (g,a) = 1, in which the least prime is fairly large, then it suffices to ensure that
each integer of the sequence a,a+gq,...,a+kq has a ‘small’ prime factor. Let n be
the product of those small primes (note that ged (q,n) = 1) and let the integer r be
an inverse of g (modn). As gcd(ar+i,n) = ged (a+ig,n) we see that each of
a,a+4q,...,a+kq has a small prime factor if and only if each of ar,ar+1,...,ar+k
does. Thus we are again considering long sequences of consecutive integers, each with
a ‘small’ prime factor.

Jacobsthal’s function j(n) is defined to be the number of integers in the longest
sequence of consecutive integers, each of which has a factor in common with n.
Rankin [10] has shown that if # is the product of the first k£ primes then

J(n) = {1+0(1)} R(n) (M
as k — c0; and Maier and Pomerance [7] have recently improved this to _
j(m) = {c+o(1)} R(n) @

as k — oo where ¢ (& 1.31246...) is the solution of 4/c—e % = 3. As a consequence
one knows that there are arbitrarily large pairs of successive prime numbers g > p
with difference as large as {c+o(1)} R(p).
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On the other hand, in 1978 Iwaniec [4] proved Jacobsthal’s original conjecture [5]
which stated that, there exists a constant x > 0 such that for all integers n > 2 we
have ‘

j(n) < xloghn, 3)
which is analogous to Cramér’s conjecture [1] that the largest gap between successive
primes ¢ > p is < log®p.

For any integer g with less than exp(logy/log,y) distinct prime factors,
Pomerance [8] showed that

s > {1+ o0} 22 R, @
where n_ is the product of the primes less than or equal to y that do not divide ¢. From
this he deduced that for any ¢ with less than exp (log, g/log, g) distinct prime factors,
there exists an integer a, prime to ¢, for which

p(g,a) = {1+0o(1)} $(q) R(9), ©)

where p(q, a) is the least prime in the arithmetic progression a (mod g).
By the method of [7] it is possible to improve (4) to

i) > e+ o)) 52 R, ©)
and deduce that (5) may be improved to

p(g,a) = {c+o(1)} $(9) R(9)- U]

The main result of this paper is an improvement of (7) for infinitely many pairs g, a.
However, rather than improving (4), we apply (4) to primes in arithmetic progressions
in a different way.

THEOREM 1. Let f(x) be a positive valued function that tends to 0 as x — c0. There
are at least x* | E{x) arithmetic progressions a (mod q), with (a,q) =1 and 1 < g < x,
for which
p(g,a) = {2+0(1)} gR(q).

Let P(g) = max,, ,_, p(¢,a). Linnik [6] has shown that P(q) < ¢* for some ¢’ > 0,
and Pomerance [8] that P(q) = {¢"+o(1)} ¢(q) log ¢ for all positive integers g. (Note
that P(g) = {1+ o(1)} ¢(g) log ¢ follows immediately from the prime number theorem.)
We conjecture that P(q) > ¢(g)log?¢q for all g.

The weaker conjecture that P(q)/¢(g)logg — co is still unsolved, though, by (5),
it can be seen to hold for almost all ¢. (This conjecture seems to be most difficult to
prove when ¢ is the product of the first k£ primes.)

Prachar [9] and Schinzel [11] have shown that there is some absolute constant
o > 0 such that for any fixed non-zero integer q, there are infinitely many integers g
with (¢,a) = 1 and

p'(g,0) = {a+o(1)} gR(g),
where p’(g, a) denotes the least prime p = a (mod g) with p > a. We now sketch a
proof that a > c. Let & > 0 be fixed and arbitrarily small. By the method in [7], one

can show that for all sufficiently large x, there are integers s, for each prime p < x
such that

(i) s, = 0 for each prime p that divides q,
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(i) 1<s,<p-—1 for each prime p < x, that does not divide q,
(iii) for each » in the range 1 < n < (c—eé) R(e”), there is some prime p < x for
which n = s, (mod p).

Choose g to be any integer in the range [[,..» < ¢ <2][,,p, for which g =1
(mod p) if p divides g, and gs, = —a (mod p) if p < x and p does not divide a.

As we may take x sufficiently large so that it lies in the range g+a > x > |a|, one
can easily see that gcd(g,a) = 1 and that for every » in the range

1 <n<(c—e)R(e),
the number gn+ a is composite. Therefore

P'(g,a) = {c—e+o(1)} gR(q).

We do not know how to further improve this result.
There are two main tools in the proof of Theorem 1. We start with the following
technical improvement of (4).

PrOPOSITION 1. Fix £ > > 0 and let n be the product of the primes less than or
equal to y. For any sufficiently large y (greater than ys) and any positive integer q with
less than exp (log y/log, y) distinct prime factors, there exist at least n/Eyn) disjoint
subintervals of [1,n], each of length (1—406)(4(q)/q) R(n), that contain only integers
which have some prime factor that does not divide q and is at most y.

REMARK. Taking g = 1in Proposition 1 we can see that if f{x) is a positive valued
function that tends to 0 as x — oo then there are at least x/E(x) disjoint subintervals
of [1, x] of length greater than or equal to {1 +o(1)} R(x) that contain only composite
numbers. If we were to suppose that these subintervals are ‘evenly’ spread across the
interval [1, x] then we should expect that such a subinterval would occur in [1, E(x)].
Thus, for any z, there would be a pair of consecutive prime numbers less than or equal
to z with difference > logzlog,z.

We also need the following.
THEOREM 2. For given positive integers m and n with n squarefree, we define T, (n)

to be the set of integers t, 0 < t < n—1, for which there do not exist integers p and q,
with 0 < p < g <mand(p,q) =(q,n) =1, for which

t p 1
If m = 2+/n then
(n/m)? < #T,(n) < (n/m)*log* n. )]

We believe that it should be possible to replace log*# by log?# in the upper bound
in (7); it would be interesting to know the correct order of #7,,(n).

2. The proof of Theorem 1

We shall assume that both Proposition 1 and Theorem 2 are true. Fix ¢ >0
and choose n as large as possible so that it is the product of the primes up to some
value of y, yet with n < x?/E,(x). Let r =[(1—12¢) R(n)] (which is larger than
(2—25¢) R(x)+1 for all sufficiently large x, by the prime number theorem).

7-2
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By taking g = 1, d = 3¢ in Proposition 1 and m = x in Theorem 2 we see that there
are at least C (= n/E, (n)+ O(x*log* x/ E, (x)?)) different values of ¢, less than n, with
no two values less than r+ 1 apart, such that each of

t,t+1,...,t+r

has a prime factor in common with #, and for which there exist positive integers p and

g, with p < ¢ < x and (p, q¢) = (¢,n) = 1, such that (8) holds. Then, by multiplying (8)

through by gn, we note that there exists an integer a, |a| < g, such that gz—pn = a and

(a,9) =1 (as (g, pn) = 1).
Now, if any one of

' a,atq,...,a+rq (10)

is prime then it must be a prime less than or equal to y, as (a+jg,n) = (t+j,n) > 1,
and so there are at most (r+ 1) n(y) such values of a, for any fixed ¢g. Thus at most

(r+ 1) n(y) x = O(xlog? x)

such pairs a and ¢ arise in this way.

Also observe that any two arithmetic progressions a (mod g) corresponding to
different values of 1 must themselves be different. (Else, if gt —pn = aand g’ —p'n = o
where a =a’ (modg), then p=p’, as p=p’ (modg) and 1<p, p’<gq, and so
' =t—1,tort+1, as a =a—gq, a or a+gq, which contradicts |t—1| > r.)

Discarding values of ¢ that give rise to a prime value in (10), we are left with
C+O(xlog®x) (which is greater than x*/E/(x) for all sufficiently large x) distinct
arithmetic progressions a (mod ¢), with (a,¢q) = 1 and g < x, for which

p(g;a) > (2—25¢) R(x) g = (2—25¢) g R(q)-

The result follows by letting ¢ — 0.

3. On the number of ‘well-sieved’ intervals

Proof of Proposition 1. The proof is based on that of [8, Theorem 3]. Let
U--40PDRe).  A=107 B=yflogy,

The idea is to assign, in at least n/Ey(n) different ways, arithmetic progressions a,
(mod p) for each prime p dividing m (where m =[], , ,1P), in such a way that
every integer in [1, U] belongs to at least one of these progressions. Let ¢ be the least
positive integer for which ¢t = —a, (mod p) for each prime p dividing m; then every
integer in the interval [+ 1, 1+ U] has a prime factor in common with m. (Note that
if j = a, (mod p) then p divides 7+/.)

In each of our assignments we shall take the arithmetic progressions 0 (mod p) for
pe(A, B] and so the values of ¢ will be congruent modulo r (where r = [ [, <5 pso P)-
As U < r for all sufficiently large y, so all of the intervals are distinct and we have
proved Proposition 1.
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Define yw(x;z) to be the number of positive integers less than or equal to x, free
of prime factors greater than z. In [2], de Bruijn showed that y(x;z) = x/s**°® as s
tends to infinity, uniformly in the range x > z > exp ((log x)?), where s = log x/logz.
From this one can immediately deduce that

w(U; A) = U/(log y)!/@-+o®m (11)

as (1-50)ylog, y/log,y < U < ylogy.

Now, after we remove all multiples of primes dividing r from [1, U], we are left
with the w(U; A) integers composed only of primes less than or equal to A4, the
Y - 5[U/p] integers divisible by primes greater than B, and the remaining integers
that are divisible by some prime from (4, B] which divides g. Now

Z[U]<U Y, —< Ulo G(O’i—g){uo(l)}

p>B p B<p<Up
log, y
<{1+2 1 —=27
{14+25+ o )}Ulogy

and the third set of integers above has cardinality at most
U _ log, y
o) = o UREL),

where w(q) is the number of distinct prime factors of ¢. By taking these estimates
together with (11) we see that we have

R, < 1°g2y{1+25+o(1)}

integers left.

In our ‘second sieving’ we choose the arithmetic progression a, (mod p), for each
successive prime p < A which does not divide g, so that we cover as many of the
remaining unsieved integers as possible. Then the number of integers left is

q 1)
<R, R, 1—=
FI;[A ( ) ¢(q) pl:IA ( p
24
4)2@Eylogylogylog,y g e  logyy

<{1+25+0(1)}(1— (log,y)*  logy ¢(q)(1—o)logylog,y

<(1—5+0(1)}$.

Let P be the set of primes in (B, y] that do not divide ¢, which has cardinality

y 1 1
- 1— 10) :
logy< log”y+ (1ogy))

Note that R, <II, and then select IT— R, different integers in [1, U] to take
together with those integers remaining from our sievings, so that we now have a set
N of T distinct integers in [1, U]. Any bijection 6 from P to N assigns an arithmetic
progression for each of the remaining primes (that is 8(p) (mod p) for each prime p in
P), so that every integer in [1,U] belongs to at least one of our arithmetic
progressions. There are IT! such bijections. It is possible, however, that many such
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bijections may lead to the same set of arithmetic progressions and so we must take
account of this. Each prime p in P is greater than B and so there are no more than
(U/B)+1 elements of N in any given arithmetic progression a, (mod p). Therefore at
most {(U/B)+ 1} bijections give rise to the same value of ¢. Therefore the number of
distinct values of ¢ that we get is at least

)3
1! / (%@ 1)' = exp{y(1 —log™*y+ O(log, y/log »))}

> n/exp (logn/(loglogn)?)
for y sufficiently large, as logn = y+ O(y/log y).

4. Approximation of rationals by rationals with coprime denominators
Proof of Theorem 2. Fix r and consider the set of fractions a/b with
0<a<sbsr

and (a,b) = 1. We order them

0 a a a, 1

[~ b, b2<"'<bk—l’
so that, by the theory of Farey fractions (see Hardy and Wright [3, pp. 23-24]), we
have

bi+biy 21, ‘ (12)
ged (b, b,.) =1, (13)
and
Q1 & 1

— = 14
b bbb (49
foreachi=1,2,...,k—1.

Clearly any rational of the form #/n, with 0 <t < n—1, lies in such an interval

[a;/b1, 45.1/b:11] foOr sSOme .

Lower bound. Let r = m and consider any b, < n/4m. There are at least n/mb,—3
integers ¢ for which
Ee I:&.i__l_ a“'l_l] .

n|b, nb,, n

as a;,,/b,,,—a,/b, = 1/mb, (= 4/n); and

. t p . a 1
mn |-—=[2 mn |-—|=2-
ogp<osm I 4 jetori+1 | 1 j n
(g, n)=1
for any such ¢. Therefore
n
#T,) > Y, — =3

p<ajam (a.py=11D

S ML

b<n/dm b m
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Upper bound. We shall prove the following.

LEMMA. There exists a constant k > 0 such that if a, b, ¢, d and n are positive
integers, with n squarefree and bc—ad =1, then there exist integers u and v with
(u,v) = (v,n) = 1, a/b < ufv < ¢/d and v < k(b+d)logn.

Now let r = m/(2x log? n) and suppose that t/nela,/b;, a,,,/b,.,], where b, b, ; > n.
By (14) and the lemma, there exist integers p and g with (p,q) = (¢,n) =1,
p/q€la;/b,a;.,/b;,,) and g < m, and so
1

1
T Bibyy

Q1 %

by b

nq

tp1<

Therefore
kol ) t [a, a,
#T,(n) < ), #{mtegers t:—e[—i, ”1}}. (15)
=1 nob; by
bibyy S

Now, whenever b,b,,, < n, we have

. Poia; G n 3n
S el LS 2L
#{mtegers ne[b.’ bm]} h bi+1+ 55 (16)

i 17+l
and min{b,, b,,;} < 2n/r, as max {b,, b,,;} > r/2 by (12). Therefore, by (15) and (16),

12

Lm< Y Y —
b<2n/r (a,b)=1 br

12n  24n* n?

< —_— =< —

bsgnlr r r? <m2

log*n.
Proof of the lemma. Let g = (d,n), m = n/g and e be an inverse of d (mod m). We
know that there exists a positive integer r < x log? m for which (be+r,m) = 1, by (3),

and so
(b+rd,m)y = (bed+rd,m) = (be+r,m) =1

as (d,m) = 1. Furthermore, (b+rd, g) = (b, g) which divides (b,d) = 1 (as g divides d),
and so (b+rd,n) = 1.

Let u=a+rc, v=>b-+rd. Then (v,n) =1, a/b<ufv<c/d, v<r(b+d)log®n,
and finally (u,v) =1 as co—du = 1.

REMARK. We examined at most x log?n possible values for r and s when finding
u = cr+as and v = dr-+ bs such that (u,v) = (v,n) = 1. If, instead of as above, we let
r and s both go through the positive integers < logn then perhaps we would find such
values for u and v. If so, then v < (b+d)logr and, by taking r < m/logn in the
above, we would get #7, (n) < (nlogn/m)® in (9).
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