On Krasner's Criteria for the First Case of Fermat's Last Theorem Andrew Granville

The First Case of Fermat's Last Theorem is said to be true for prime p if there do not exist integers a_1 , a_2 , a_3 for which

$$a_1^p + a_2^p + a_3^p = 0$$
 and $p / a_1 a_2 a_3$ (1)p

In 1857, Kummer (see [4], pgs 115-125) established that if a_1 , a_2 , a_3 satisfy (1)p, then

$$B_{p-1-n} \cdot \left[\frac{d^{n+1} \log(a_1 + e^{v} a_1)}{dv^{n+1}} \right]_{v=0} \equiv 0 \pmod{p}$$
 (2)

for n = 1, 2, ..., p-2, where B_n is the nth Bernoulli number and i, j are two of the three indices 1, 2, 3.

In 1934, Krasner [2] used the criteria in (2) to show that if (1)p has solutions, where $p > (45!)^{88}$, then $B_{p-1-n} \equiv 0 \pmod{p}$ for $n = 1, 2, \ldots, 2[(\log p)^{1/3}]$. Recently Keller and Löh [1] have eliminated the condition $p > (45!)^{88}$ and Sami [5] has improved the upper bound to $[(\log p)^{2/5}]$. In this note, with a slight adaptation of Krasner's method, we prove the following:

THEOREM: If the First Case of Fermat's Last Theorem is false for prime p then p divides the numerator of B_{p-1-n} for $n=1,\,2,\,\ldots,\, [(\log\,p/\log\log\,p)^{1/2}]$.

GRANVILLE

In fact this theorem gives extremely strong heuristic evidence for supposing that the First Case of Fermat's Last Theorem is true. For, if one admits that the probability of p dividing B_{2n} is 1/p, then the probability that $B_{p-1-2n} \equiv 0 \pmod{p}$, for each $2n \leq \left[(\log p/\log\log p)^{1/2} \right]$ is approximately $\exp(-(\log p)^{3/2}/2(\log\log p)^{1/2})$.

Lehmer [3] has shown that (1)p has no solutions for $p < 6.10^9$, so that the expected number of primes for which (1)p has solutions is less than 10^{-13} !

Although such heuristic evidence is not valid proof, it is interesting to note that Wagstaff's computations of B_n , for $n \le 125,000$ (see [6]), conform well with our assumption.

We now proceed to the proof of the theorem.

Let
$$\Phi_n(X) = \sum_{k=1}^n \sum_{j=1}^k (-1)^j {k-1 \choose j-1} j^{n-1} X^k$$
 for each $n \ge 1$ and R_n

be the resultant of $\Phi_n(X)/X(1-X)$ and $X^n\Phi_n(X^{-1})/(1-X)$.

Krasner showed, for each $n \ge 1$, that

$$\Phi_{n}(t) = -\left[\frac{d^{n}\log(a_{i} + e^{v}a_{j})}{dv^{n}}\right]_{v=0} \text{ where } t = a_{i}/(a_{i} + a_{i})$$
(3)

Furthermore that

$$0 < |R_n| < (n-1)!^{2(n-2)}$$
 (4)

So suppose that (1)p has integer solutions a_1 , a_2 , a_3 for some prime $p > 6.10^9$, and that $B_{p-1-n} \not\equiv 0 \pmod{p}$ for some $n \leq (\log p/\log\log p)^{1/2}$.

Let t be the minimum positive residue of $a_2/(a_1+a_2)$ (mod p). Then $t \not\equiv 0$ or 1 (mod p), or else p divides $a_1a_2a_3$. Also, as $a_1+a_2+a_3 \equiv 0$ (mod p), $t^{-1} \equiv a_3/(a_1+a_3)$ (mod p).

Thus, by (2) and (3), $\Phi_{n+1}(t) \equiv \Phi_{n+1}(t^{-1}) \equiv 0 \pmod p$; and so p divides R_{n+1} .

Now, by Stirling's formula, n! < $(n/e)^n(2\pi n)^{1/2}e^{1/12n}$ for each $n \ge 1$. Thus, as $R_{n+1} \ne 0$,

$$log p \leq log |R_{n+1}|$$

$$< 2(n-1)\log n!$$
 by (4)

$$< (n-1)[(2n+1)\log n - 2n + \log 2\pi + 1/6n]$$

$$< 2n^2 \log n$$
 for $n \ge 2$

$$\leq 2 \cdot \frac{\log p}{\log \log p} \cdot \frac{1}{2} (\log \log p - \log \log \log p)$$

< log p which establishes a contradiction.

Thus $B_{p-1-n} \equiv 0 \pmod{p}$ for each $n \leq (\log p/\log \log p)^{1/2}$.

GRANVILLE

References

- [1] W. KELLER and G. LÖH, The Criteria of Kummer and Mirimanoff extended to include 22 Consecutive Irregular Pairs, Tokyo J. Math., 6, (1983), 397-402
- [2] M. KRASNER, Sur le premier cas du théorème de Fermat, C. R. Acad. Sci. Paris, 199, (1934), 256-258
- [3] D. H. LEHMER, On Fermat's quotient, base two, Math. Comp., 36 (1981), 289-290
- [4] P. RIBENBOIM, 13 Lectures on Fermat's Last Theorem, Springer,

 New York Heidelberg Berlin, 1979
- [5] Z. SAMI, On the first case of Fermat's Last Theorem, to appear in Glasnik Matematicki, 21 (1986)
- [6] S. S. WAGSTAFF, JR., The irregular primes to 125,000, Math. Comp. 32, (1978), 583-591

Department of Mathematics and Statistics, Queen's University,

Kingston, Ontario, Canada K7L 3N6

(Received March 11, 1986)