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1. Introduction

Let U := {z : |z| ≤ 1} be the complex unit-disk. For a multiplicative function
f : N→ U and Re(s) > 0, write

Fx(s) =
∑
n

p|n =⇒ p≤x

f(n)

ns
=
∏
p≤x

(
1 +

f(p)

ps
+
f(p2)

p2s
+ . . .

)
.

Given ε ∈ [0, 1
1000

) and a θ ∈ (1
2

+ ε, 1] we define,

τε(θ) =

{
θ if θ > 7

12
+ ε,

2θ
2m+1

if 1
2

+ 1
8m+12

+ ε ≤ θ ≤ 1
2

+ 1
8m+4

+ ε,m ∈ N

Let τ(θ) = τ0(θ). Of particular interest to us are the end points of θ close to 1 and We shift a bit
to avoid issues
at the discontinu-
ities

θ close to 1
2
. Notice that for θ > 7

12
we have,

τ(θ) = θ

while for θ → 1
2

+

τ(θ) = 4(θ − 1
2
) +O((θ − 1

2
)2).

Below is a graphical representations of τ(θ). The black lines represent τ(θ). The
dotted blue line represents the lines y = x, while the dotted black line represents
the line y = 4(x− 1

2
) which corresponds to the asymptotic approximation to τ(θ) as

θ → 1
2
. It is confusing that there are two sorts of dotted black lines!

Date: June 11, 2020.
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We will now state our main technical result, from which various corollaries quickly
follow.

Theorem 1. Let ε ∈ (0, 1
1000

) and η > 0 be given. Let θ ∈ (1
2

+ ε, 1]. For a given
large x, let

y := xθ ≤ Y := x/(log x)3η/2.

Let f : N → U be a multiplicative function such that f(p) = 0 for p ≥ xτε(θ). Let t0
be a real number with |t0| ≤ (x/y) log20 x. ThenI find the formu-

lation without
the maximal
condition more
easy/flexible

∑
x≤n≤x+y

f(n) =

∫ x+y

x

uit0du · 1

Y

∑
x≤n≤x+Y

f(n)n−it0

+O

(
y(log log x)10/τε(θ)

(log x)η/2
·
∏
p≤x

(
1 +
|f(p)| − 1

p

)
+
y(log log x)10

log x

)

+O

y(log log x)10/τε(θ)

log x
· max
|t−t0|≥(log x)η

|t|≤2(x/y) log20 x

|Fy(1 + it)|

 .

Remark 1. An inspection of our proof shows that for θ < 7
12

the smoothness cut-off
τ(θ) can be increased. However this comes at the cost of a rather complicated τ(θ),
while the gains are small.

It is advantageous to take t0 that maximizes |F (1 + it)|. Otherwise the error term
might dominate over the main term.

There is a trade-off in the choice of the parameter η > 0. A large η leads to
(optimally) good error term, but leaves us with more difficulty in understanding the
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main term over the longer interval [x, x + Y ]. A choice of a small η > 0 makes
understanding the main term easy, but leads to weaker error terms. The various
corollaries that we will state are concerned with finding the right balance.

If one is not interested in the term∏
p≤x

(
1 +
|f(p)| − 1

p

)
and is willing to trivially bound it by � 1, then it is possible to replace

max
|t−t0|≥(log x)η

|Fx(1 + it)| by max
|t−t0|≥(log x)η/2

|Fx(1 + it)|.

This then leads to an error term that is reminiscent of the error term one gets in
Halasz’s theorem. Precisely we then get that for T0 ≥ 1,

1

y

∑
x≤n≤x+y

f(n) =
1

y

∫ x+y

x

uit0du · T
3/2
0

x

∑
x≤n≤x+x/T

3/2
0

f(n)n−it0

+O
( log log x

T0

+
log log x

log x
max
|t−t0|≥T0

|t|≤(x/y)(log x)20

|Fx(1 + it)|
)

We leave these modifications to the reader.
To do: some further remarks that need to be properly formatted:

Remark 2. We restrict our attention to y-smooth integers n since a prime > y can
hit at most one integer in the interval. There is a drop at 7/12 which is unavoidable
given the current technology, etc. Discussion of the best result one can hope for, etc.

Remark 3. I think we could extend these results to unbounded multiplicative func-
tions. Any interest in doing that? (I would count the coefficients of Dedekind zeta
functions or |λπ(n)|2 with π an cuspidal automorphic representation of GL(n) as
among the more interesting cases)

Remark 4. The power of log log x in the error term could be reduced with more care.
However we cannot avoid an error term of at least O(y/ log x). To clarify why we
note that one might alter the values of the f(p) for y/2 < p < y so as to maximize
the error term.

We are now ready to discuss the various corollaries of our technical result.
For real-valued multiplicative functions our results take a particularly simple form.

Corollary 1. Let ε ∈ (0, 1
1000

) and θ ∈ (1
2

+ ε, 1] be given. Let f : N → [−1, 1] be

multiplicative with f(p) = 0 for p > xτε(θ). Then, for y = xθ,

1

y

∑
x≤n≤x+y

f(n) =
1

x

∑
x≤n≤2x

f(n) +O
( 1

(log x)
1
4

(1− 2
π

+o(1))

)
.
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Note that the
constant is
slightly worse
than what we get
from the repul-
sion estimates,
this is due to the
Lipschitz stuff
– perhaps with
more care we
could reach a
better constant,
for instance by
playing a bit
with smoothings
in the Perron
formula section

Another immediate consequence of our result is an improvement of an old result
of Hildebrand on mean-values of multiplicative functions.

Corollary 2. Let f : N→ [−1, 1] be multiplicative. Then, uniformly in 1 ≤ w ≤ x,∣∣∣w
x

∑
x≤n≤x+x/w

f(n)− 1

x

∑
x≤n≤2x

f(n)
∣∣∣� logw

log x
+ (log x)−

1
4

(1− 2
π

+o(1))

Both results admit extensions to complex multiplicative functions. To do: We
should probably add this later

We now turn our attention to multiplicative functions that are frequently zero.

Corollary 3. Let κ,C, δ > 0, ε ∈ (0, 1
1000

) and θ ∈ (1
2

+ ε, 1] be given. Let f : N →
[−1, 1] be a multiplicative function such that for any 2 ≤ w ≤ z ≤ xδ, we have,∑

w≤p≤z

|f(p)|
p
≥ κ

∑
w≤p≤z

1

p
− C

logw
.

and such that f(p) = 0 for p > xτε(θ). Then, there exists an η = η(κ) > 0, such that
for y = xθ,

1

y

∑
x≤n≤x+y

f(n) =
1

x

∑
x≤n≤2x

f(n) +OC,δ,κ

( 1

(log x)η

∏
p≤x

(
1 +
|f(p)| − 1

p

))
.

This immediately implies a similar generalization of Hildebrand’s result to multi-
plicative functions that possibly vanish frequently.

Corollary 4. Let κ,C, δ > 0 be given. Let f : N → [−1, 1] be a multiplicative
function such that for any 2 ≤ w ≤ z ≤ xδ, we have,∑

w≤p≤z

|f(p)|
p
≥ κ

∑
w≤p≤z

1

p
− C

logw
.

Then, there exists an η = η(κ) > 0 such that uniformly in 1 ≤ w ≤ x,∣∣∣w
x

∑
x≤n≤x+x/w

f(n)− 1

x

∑
x≤n≤2x

f(n)
∣∣∣�C,κ,δ

( logw

log x

)η
·
∏
p≤x

(
1 +
|f(p)| − 1

p

)
.

Building on Corollary 3 we notice that if we do not insist on an asymptotic then
we can obtain the order of magnitude of rather general functions.

Corollary 5. Let κ,C, δ > 0 be given. Let θ ∈ (1
2
, 1] be given. Let f : N→ [0, 1] be

a multiplicative function such that for any 2 ≤ w ≤ z ≤ xδ we have,∑
w≤p≤z

|f(p)|
p
≥ κ

∑
w≤p≤z

1

p
− C

logw
.
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Then, for y = xθ,

1

y

∑
x≤n≤x+y

f(n) �C,κ,δ
1

x

∑
x≤n≤2x

f(n).

Combining Corollary 3 and Corollary 5 gives consequences for norm-forms.

Corollary 6. Let K be a number field over Q. Let n1 < n2 < . . . be the sequence of
norm forms of K. Let θ ∈ (1

2
, 1] be given. Then, for y = xθ,

1

y

∑
x≤ni≤x+y

1 �K,θ
∏
p≤x
p6=Na

(
1− 1

p

)

where the product is taken over all the primes that are not integral ideals of K.

Corollaries 2 and 4 admit quick direct proofs, that we sketch in the appendix To
do: needs to be added later Lior Bary-

Soroker tells me
that one of his
students recently
proved an asymp-
totic in function
fields (of course
using the Rie-
mann Hypothesis
which is known in
function fields).

To prove Theorem 1 we will first dispose of some sparse subsets of the integers
that do not factor nicely, and then we factorise the remaining integers in a convenient
way. Then we use a consequence of Perron’s formula (Lemma 2 below) to relate the
average of f on short interval to an average of Dirichlet polynomials. These averages
can be understood through mean and large value results of Dirichlet polynomials
thanks to the factorisation which allows us to study suitable products of Dirichlet
polynomials. To do: Needs to be expanded in particular with the discussion of the
exponent 7

12

2. Standard Lemmas

2.1. Shiu’s/Henriot’s bounds. We will freely use (without further reference) the
following bound originally due to Shiu.

Lemma 1. Let ε > 0 be given. Let f : N→ [0, 1] be a multiplicative function. Then,
for H > xε, ∑

x≤n≤x+H

f(n)�ε H
∏
p≤x

(
1 +

f(p)− 1

p

)
.

Proof. See [?] or [?]. �

2.2. Perron’s formula.



6 ANDREW GRANVILLE, ADAM HARPER, KAISA MATOMÄKI, AND MAKSYM RADZIWI L L

Lemma 2. Let η > 0 be given. Let |an| ≤ 1 and A(s) :=
∑

n�x ann
−s. If 1 ≤ y ≤

Y = x/(log x)3η/2 then for any |t0| ≤ (x/y)(log x)20,∣∣∣ ∑
x≤n≤x+y

an −
∫ x+y

x

uit0du · 1

Y

∑
x≤n≤x+Y

ann
−it0
∣∣∣� y

(log x)η
·
∏
p≤x

(
1 +
|f(p)| − 1

p

)
+ log log x max

x/y≤T≤(x/y)(log x)20

x

T

∫
|t|≤T

|t−t0|>(log x)η

|A(1 + it)| dt+
y

(log x)10
.

Proof. We begin by using Perron to get that∑
x≤n≤x+y

an =

∫ (x/y)(log x)20

−(x/y)(log x)20
A(1 + it)

(x+ y)1+it − x1+it

1 + it
dt+O(y(log x)−10).

The “main term” comes from the integral∫ t0+(log x)η

t0−(log x)η
A(1 + it)

(x+ y)1+it − x1+it

1 + it
dt.

Now
(x+ y)1+it − x1+it

1 + it
=

∫ x+y

x

uitdu,

and writing t = t0 + t′ with |t′| ≤ (log x)η, we have

uit = uit0uit
′
= uit0xit

′
(1 +O((y/x)(log x)η)).

Therefore the main term equals∫ x+y

x

uit0du

∫ log x

− log x

A(1 + it0 + it′)xit
′
dt+O

(
y(y/x)(log x)2η ·

∏
p≤x

(
1 +
|f(p)| − 1

p

))
and this error term is

� y

(log x)η

∏
p≤x

(
1 +
|f(p)| − 1

p

)
provided y ≤ x/(log x)3η/2. Now ∑

x≤n≤x+Y

ann
−it0

has main term ∫ (log x)η

−(log x)η
A(1 + it+ it0)

(x+ Y )1+it − x1+it

1 + it
dt

= Y

∫ (log x)η

−(log x)η
A(1 + it+ it0)xitdt+O

(
(Y 2/x)

∫ (log x)η

−(log x)η
|A(1 + it+ it0)||t|dt

)
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using the Taylor series expansion, and this last error term is O((Y 2/x)(log x)2η)
which is

� Y

(log x)η

∏
p≤x

(
1 +
|f(p)| − 1

p

)
provided Y ≤ x/(log x)3η/2. Therefore∑

x≤n≤x+y

an −
∫ x+y

x

uit0du · 1

Y

∑
x≤n≤x+Y

ann
−it0 �

� y

(log x)η

∏
p≤x

(
1 +
|f(p)| − 1

p

)
+

∫
|t|≤(x/y)(log x)20

|t−t0|>(log x)η

|A(1 + it)|min

{
y,

x

1 + |t|

}
dt

since | (x+y)1+it−x1+it
1+it

| � min{y, x/(1 + |t|)}, and in the Y -integral we have an analo-

gous bound but the integral only goes up to (x/Y )(log x)20. This last term is

�
20 log log x∑

k=1

y

ek

∫
|t|≤(x/y)ek

|t−t0|>(log x)η

|A(1 + it)| dt

� log log x max
x/y≤T≤(x/y)(log x)20

x

T

∫
|t|≤T

|t−t0|>(log x)η

|A(1 + it)| dt.

�

3. Large values of Dirichlet polynomials

In this section and later we say that U ⊂ R is well-spaced if |u − v| ≥ 1 for all
distinct u, v ∈ U . Halász’s large value result for Dirichlet polynomials states that for
A(s) =

∑
N≤n≤2N ann

−s and U ⊂ [−T, T ] a sequence of well-spaced points, one has

(1)
∑
t∈U

|A(it)|2 �
(
N + |U|

√
T log 2T

) ∑
N≤n≤2N

|an|2.

We need a variant of this which works well when the length of the polynomial N is
quite small compared to T , the coefficients an are sparsely supported and we have a
very good upper bound for |U|. The following lemma does this.

Lemma 3. Let P be a subset of the primes ≤ N and let A(s) =
∑

N≤n≤2N ann
−s be

a Dirichlet polynomial with an supported on integers n with no prime factors from
P. Assume that |an| ≤ 1 for all n. Let U ⊂ [−T, T ] be a sequence of well-spaced
points. Then, for any η > 0,∑

t∈U

|A(1 + it)|2 �
∏
p∈P

(
1− 2

p

)
+ |U|T 9η3/2/2(log T )2/3N−η/2.
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Proof. This follows from [?, Proof of Lemma 8?] taking η′ = 1/4 and changing the
sieve weights slightly to pick up the condition p | n =⇒ p 6∈ P instead of the
condition n ∈ P. The proof follows the proof of orginal Halász-Montgomery (see [?,
Proof of Theorem 9.6]) with a few changes: One restricts the sums over n to its
support, and then after using duality, one inserts sieve weights, and furthermore
one estimates the appearing

∑
mm

itr1−itr2 using a result of Ford [?, Theorem 1] on
bounding ζ-function close to Re s = 1. �

When we apply Lemma 3, we need a good upper bound for a certain choice of U .

Lemma 4. Let
P (s) =

∑
P≤p≤2P

ap
ps

with |ap| ≤ 1.

Let U ⊂ [−T, T ] be a sequence of well-spaced points such that |P (1 + it)| ≥ V −1 for
every t ∈ U . Then

|U| � T 2 log V
logP V 2 exp

(
2

log T

logP
log log T

)
.

Proof. This consequence of the discrete mean value theorem for Dirichlet polynomials
is proven in [?, Lemma 8]. �

Actually we will want to have a version of the previous result for a polynomial
over the integers rather than primes.

Lemma 5. There exists an absolute constant c > 0 such that the following holds.
Let Q ≥ P ≥ 1 and H ≥ 1, and write U = (log(Q/P ) + 3)H. Let am, bm and cp be
1-bounded sequences such that{

amp = bmcp whenever P < p ≤ Q and p - m
am = 0 if m has no prime factor in the interval (P,Q].

Write
A(s) =

∑
N<n≤2N

an
ns

Let 1 ≤ V ≤ c ·min{H,P}, and let U ⊂ [−T, T ] be a sequence of well-spaced points
such that |A(1 + it)| ≥ 1/V for every t ∈ U . Then

|U| � T 2
log(2UV )

logP U3V 2 exp

(
2

log T

logP
log log T

)
.

Proof. Write

ω(P,Q](n) =
∑

P<p≤Q
p|n

1.
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By a Buchstab/Ramaré type identity (see also [?, Lemma 12] for a related argument)
we can write

A(s) =
∑

P<p≤Q

∑
N/p<m≤2N/p

amp
(ω(P,Q](m) + 1(p,m)=1)(mp)s

=
∑

P<p≤Q

∑
N/p<m≤2N/p

bmcp
(ω(P,Q](m) + 1)(mp)s

+O(1/P )

=
∑

bH logP c≤j≤H logQ

∑
p∈(ej/H ,e(j+1)/H ]

P<p≤Q

cp
ps

∑
N/ej<m≤2N/ej

bm
(ω(P,Q](m) + 1)ms

+O

(
1

P
+

1

H

)
.

Writing

Pj(s) =
∑

p∈(ej/H ,e(j+1)/H ]
P<p≤Q

cp
ps
,

we see that

|A(1 + it)| ≤ U max
bH logP c≤j≤H logQ

|Pj(1 + it)|+O

(
1

P
+

1

H

)
.

Hence, for any t ∈ U , there exists j ∈ [bH logP c, H logQ] such that |Pj(1 + it)| ≥
1/(2UV ). The claim follows then from Lemma 4. �

In particular if H, V � (log T )B and T 10 � Q > P � (log T )A in the situation of

Lemma 5, then |U| � T
4B+2+o(1)

A .

4. A variant of Halász’s theorem

In this section we shall deduce a slight variant of Halász theorem from the orginal.
For this we need the following lemma about truncated Euler series.

Lemma 6. Let |ap| ≤ 1 be complex numbers and let x ≥ u > log x. Then∣∣∣∏
p≤u

(
1 +

ap
p

)∣∣∣� max
|t|≤1

∣∣∣∏
p≤x

(
1 +

ap
p1+it

)∣∣∣.
Proof. Let h be an even, smooth analytic function, with supp ĥ ⊂ [−1, 1]. Then∑

p≤u

ap
p
· ĥ
( log p

log u

)
=

log u

2π

∫
R

∑
p≤x

ap
p1+it

h
(t log u

2π

)
dt
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We pick ĥ(x) = 1 − |x| for |x| ≤ 1 and ĥ(x) = 0 otherwise. Notice that h(x) ≥ 0,
and h(x)� (1 + |x|)−2 and ∑

p≤u

ap log p

p log u
= O(1)

Therefore we get for T ≥ 1,

Re
∑
p≤u

ap
p
≤ log u

2π

∫ T

−T

(
Re
∑
p≤x

ap
p1+it

)
· h
(t log u

2π

)
dt+O

( log log x

T log u

)
+O(1)

≤ ĥ(0) max
|t|≤T

Re
∑
p≤x

ap
p1+it

+O
( log log x

T log u
+ 1
)

Since ĥ(0) = 1 and u > log x, the claim follows by taking T = 1. �

The previous lemma allows us to obtain the following variant of Halász’s theorem.

Lemma 7. Let η > 0. Let f be a multiplicative function taking values in the unit
disc and let x ≥ w ≥ 1 and z ≤ exp( log x

log log x
). Then∣∣∣∣∣∣∣∣∣

∑
n∼x

p|n =⇒ p≤w
∃p≥z : p|n

f(n)

n1+it0

∣∣∣∣∣∣∣∣∣�
log log x

(log x)η/2

∏
p≤x

(
1 +
|f(p)| − 1

p

)
+

log log x

log x
· max
|t−t0|≤

1
10

(log x)η
|Fx(1 + it)|

Proof. First note that ∣∣∣∣∣∣∣
∑
n∼x

p|n =⇒ p≤z

1

n

∣∣∣∣∣∣∣� (log x)−100,

so it suffices to show the claimed upper bound for∣∣∣∣∣∣∣
∑
n∼x

p|n =⇒ p≤w

f(n)

n1+it0

∣∣∣∣∣∣∣ .
Now we need a slightly modified version of Halasz’s theorem. Let

H(β)2 =
∑
k∈Z

1

k2 + 1
· max
|τ−k|≤1

2

|Fw(1 + β + it+ iτ)|2
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According to Montgomery,

(2)
1

x

∣∣∣ ∑
x<n≤2x

p|n =⇒ p≤w

f(n)n−it
∣∣∣� 1

log x

∫ 1

1/ log x

H(β)

β
dβ.

We also have,

|Fw(1 + β + it+ iτ)| � exp
(
<

∑
p≤max(exp(1/β),w)

f(p)

p1+it+iτ

)
On the part of the sum defining H(β) corresponding to |k| > 1

10
(log x)η−1 we simply

apply the trivial bound and get that the total contribution of this part to the right
hand side of (2) is bounded by,

log log x

(log x)η/2

∏
p≤x

(
1 +
|f(p)| − 1

p

)
.

On terms with |k| ≤ 1
10

(log x)η and |β| < 1/ log log x we use Lemma 6. This shows
that the total contribution of this part to the right-hand side of (2) is

� log log x

log x
max

|t−t0|≤
1
10

(log x)η
|Fx(1 + it)|.

Finally we bound trivially the terms with |k| ≤ 1
10

(log x)η and 1 ≥ |β| ≥ (log log x)−1,
getting that the total contribution of such terms to the right-hand side of (2) is

� log log x

log x
.

Combining the above bounds we conclude that,

1

x

∣∣∣ ∑
n∼x

p|n =⇒ p≤w

f(n)

n1+it0

∣∣∣� log log x

(log x)η/2

∏
p≤x

(
1+
|f(p)| − 1

p

)
+

log log x

log x
max

|t−t0|≤
1
10

(log x)η
|Fx(1+it)|

as claimed (one can show that the maximum of the Euler product is always � 1,
allowing us to omit the term log log x/ log x) � To see this sim-

ply note that the
integral of the
real-part of sum
over the primes
is close o(1),
therefore there
exists a value in
the neighborhood
of t0 that is
≥ −o(1)

5. Analyzing means of Dirichlet polynomials

Throughout this section we shall assume that each |a`|, |bm|, |cn| ≤ 1.

Proposition 1. Let M,N, T ≥ 2. Suppose that, for some η ∈ (0, 1/2), U ⊂ [−T, T ]
be well-spaced and such that

|U| �
min{ Mη/2

(logM)2
, Nη/2

(logN)2
}

T 9η3/2/2(log T )2/3
.
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Suppose that bm and cn are only supported on integers m,n whose prime factors do
not belong to subsets of primes PB ⊂ [1, 2M ] and PC ⊂ [1, 2N ] respectively. Then

∑
t∈U

∣∣∣∣∣∣∣∣∣
∑
`∼L
m∼M
n∼N

a`bmcn
(`mn)1+it

∣∣∣∣∣∣∣∣∣ dt�
(

max
t∈U

∣∣∣∣∣∑
`∼L

a`
`1+it

∣∣∣∣∣
) ∏

p∈PB

(
1− 1

p

)
·
∏
p∈PC

(
1− 1

p

)
.

Proof. We first estimate the sum over ` by the maximal t, then Cauchy and apply
Lemma 3, which gives∑

t∈U

∣∣∣∣∣∑
m∼M

bm
m1+it

∣∣∣∣∣
2
1/2

�
∏
p∈PB

(
1− 1

p

)
,

and similarly for the Dirichlet polynomial with coefficients cn. �

The following proposition follows from the proof of [?, Lemma 7.3].

Proposition 2. Let C > 0 be given. Let η ∈ (0, 1
2
]. Let T ⊂ [−T, T ], and let

L,M,N ≥ 1 be such that LMN � x and

max{M/N,N/M} ≤ C · x2η

(log x)1000
and L ≤ C · xγ

where

γ =



4η+1
3

if 1
8
≤ η ≤ 1

2

4η if 1
4·(2g+1)

≤ η ≤ 1
8g
, g ∈ N

4η − 1−4η(2g+1)
4g−1

if 1
8g+6− 4

4g+1

≤ η ≤ 1
4·(2g+1)

, g ∈ N

4η − 4η(2g+2)−1
4g+3

if 1
4·(2g+2)

≤ η ≤ 1
8g+6− 4

4g+1

, g ∈ N

Then, ∫
T

∣∣∣ ∑
`∼L
m∼M
n∼N

a`bmcn
(`mn)1+it

∣∣∣dt�C (log x)20 ·
(

(log x)−100 + max
t∈T

∣∣∣∑
`∼L

a`
`1+it

∣∣∣).
Remark 5. In all cases 4η ≥ γ ≥ 4η − 4η2 + O(η3). In particular if 1

4·(2g+3)
≤ η ≤

1
4·(2g+1)

with g ∈ N, then 1
2g+3
≤ γ ≤ 4η ≤ 1

2g+1
.
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6. Combinatorial decompositions

In order to apply Proposition 2 we need to be able to split an integer into a
product of three factors of convenient sizes. For this we will use the following two
combinatorial lemma. The first lemma below will be used when addressing intervals
of length y > x7/12.

Lemma 8. Suppose that η ≥ 1
12

. If 1
2

+ η ≥ a1 ≥ . . . ≥ ar > 0 with a1 + . . .+ ar = 1
then one can partition {1, 2, . . . , r} into union of three disjoint subsets I, J and K
such that ∣∣∣∣∣∑

i∈I

ai −
∑
i∈J

ai

∣∣∣∣∣ ≤ 2η and

∣∣∣∣∣∑
i∈K

ai

∣∣∣∣∣ ≤ 1

3
.

This bound on the ai’s is best possible, since otherwise let a1 >
1
2

+ η and then

the sum of the other αi’s is < 1
2
− η and their difference is > 2η.

Proof of Lemma 8. We may assume that ar−1 + ar >
1
2

+ η else we may replace ar−1

and ar by their sum, and deduce the partition needed here from the partition there.
Therefore we may assume r ≤ 3 else 1 ≥ a1 +a2 +a3 +a4 ≥ 2(1

2
+η), a contradiction.

Now a1 <
1
2
− η else we can take I = {1}, J = {1, . . . , r} \ I and K = ∅. But then

r ≥ 3 as ra1 ≥ a1 + . . .+ ar = 1, and so r = 3.
Now a2 >

1
2
(1

2
+ η) (as a2 + a3 >

1
2

+ η), which is > 1
2
− 3η, and so a1 − a2 < 2η.

We also have a3 ≤ 1
3

as 3a3 ≤ a1 + a2 + a3 = 1. Hence we can take I = {1}, J = {2}
and K = {3}. �

In order to tackle intervals that are shorter than x7/12 we need the following re-
finement.

Lemma 9. Fix integer m ≥ 1 and suppose that 1
2m+3

≤ τ ≤ 4η ≤ 1
2m+1

. Let

y = y(η, τ) := max{τ, 1+2η
2m+2
}. For any 0 < ar ≤ . . . ≤ a2 ≤ a1 ≤ y, such that

a1 + · · ·+ ar = 1, there exists a partition of {1, . . . , r} = I ∪ J ∪K such that∣∣∣∣∣∑
i∈I

ai −
∑
j∈J

aj

∣∣∣∣∣ ≤ 2η and
∑
k∈K

ak ≤ τ.

This is best possible for if a1 = . . . = a2m+1 = y(η, τ) + ε and a2m+2 = 1− (2m+ 1)a1

for some arbitrarily small ε > 0 then a1 > a2m+2 + 2η.

Proof. We may assume that ar + ar−1 > y for if not we may replace ar and ar−1 by
their sum, use the rsult, and then deduce the result for our original ai’s. Therefore
ar−1 > y/2 ≥ a1/2.

If one has a set of integers c1, ..., cs with each ci ≤ 2η then we can assign signs so
that | ± c1 ± c2 ± · · · ± cs| ≤ 2η simply by being greedy.
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Suppose that a1 ≤ τ . Since ar−1 ≥ y/2 ≥ τ/2 the differences ai− ai+1 ∈ [0, τ/2] ∈
[0, 2η]. So the cj’s in the last paragraph can be taken to be a2`−1 − a2` with 1 <
2` ≤ r − 1. If r is odd let K = {r} and we are done. If r is even we either have
ar−1− ar ≤ 2η or ar < ar−1− 2η ≤ τ − 2η ≤ 2η. In the first case we let ar−1− ar be
a cj and we are done, in the second we let ar be a cj, and let K = {r − 1}.

We may now assume that a1 = y > τ .
If every a2`−1 − a2` ≤ 2η then the inequalities are satisfied, unless r is odd and

ar > τ (else we let K = {ar}). But then r
2m+3

≤ rτ < 1 ≤ ry ≤ r
2m+1

and so

r = 2m + 1 and each ai = 1
2m+1

. However this is impossible since a1 > y (for if
1+2η
2m+2

≥ 1
2m+1

then 2η ≥ 1
2m+1

, contradicting the hypothesis).
Now assume a2`+1 − a2`+2 > 2η, so that a2`+2 < y − 2η.
If r > 2`+ 2 then a2`+2 + ar− a1 ∈ (0, y− 4η). We now take this and a2− a3, a4−

a5, . . . , a2`− a2`+1 as ci’s as these are all ≤ 2η (for, if not, then y− 4η > a2`+2 > y/2
which is false). For the remaining ai’s no two can differ by more than 2η else they
would sum to less than y. Therefore we can pair them up and any one left over
becomes the set K.

Hence r = 2`+ 2. If ar ≤ 2η then a2`+1 > τ , else we can place it in K. If ar > 2η
then a2`+1 > ar + 2η > 4η ≥ τ . Therefore

2`+ 1

2m+ 3
≤ (2`+ 1)τ <

2`+2∑
i=1

ai = 1 ≤ (2`+ 2)y − 2η <
2`+ 2

2m+ 1

and so ` = m.
Now a2m+2 = 1 −

∑2m+1
i=1 ai ≤ 1 − (2m + 1)y = y − 2η. We can therefore use the

differences a2`−1 − a2` for ` = 1, . . . ,m+ 1 as our ci. �

7. Proof of the theorem

We need to split into two cases according to whether n has a large prime factor or
not.

7.1. Case P+(n) < x4/7. Write z = exp(b log x
log log x

c). We will want to exclude some

subset of the following small subsets of the integers n ∈ (x, x+ y]:

• The integers that have two prime factors p, q ∈ [z, 4y1/2] such that p, q ∈
(ei, ei+1] for some i. The number of such integers in an interval of length y is

�
∑

blog zc≤i≤log(4y1/2)

∑
p,q∈(ei,ei+1]

y

pq
� y

∑
blog zc≤i≤log(4y1/2)

1

i2
� y

log log x

log x
.

using the prime number theorem.
• Integers that have no prime factors in [(log x)A, z] for some fixed A ≥ 2. The

number of these is �A y(log log x)/ log z � y(log log x)2/ log x.
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• Integers whose z-smooth part is ≥ xε/100. Any such n must have a z-smooth
divisor r ∈ R := [xε/100, xε/100z), and so the number of such n is � y

∑
r 1/r

over the z-smooth integers r ∈ R. Now the density of such integers r is

� 1/uu where u := log xε/100

log z
� log log x; therefore number of such n is

O(y/(log x)10).

Let

% = %(θ) = min
{4

7
, τε(θ)

}
Let us write

N0 := {x < n ≤ x+y : P+(n) < x% and the second largest prime factor of n is at most 4y1/2}
and

M = {m ∈ N : There is no i and p1, p2 ∈ (ei, ei+1] such that p1p2 | m}.
Write N for the set of integers n ∈ N0 such that n = mv, where

• v is z-smooth and has a prime factor ≥ (log x)A

• v ≤ xε/100

• m ∈M is z-rough.

By the above ∑
x<n≤x+y
n∈N0\N

1� y
(log log x)2

log x
.

We shall factor m in such a way that, after an application of Lemma 2, we can split
the integral coming from that lemma in such a way that for the typical t we can
use Proposition 2 together with Lemma 8 and Lemma 9 and for some exceptional t
we can use Proposition 1. To faciliate this, we just need to factor m in an unique
way to a product of a bounded number of factors shorter than x% that lie on e-adic
intervals and do not have any cross-conditions between them. Essentially we write
m = r1 · · · rk+1q1 · · · qk where to r1 we collect largest prime factors of m until it is
≥ x%/2, take q1 the next largest prime factor of m, then again collect remaining
largest prime factors to r2 until it is ≥ x%/2 etc. The following technical construction
does this rigorously.

For each n ∈ N , there exists unique k ≤ d2
%
e + 1 and dlog x%e = i0 > i1 > . . . >

ik > ik+1 = log z such that n = vr1 · · · rk+1q1 . . . qk, where

• v is z-smooth and has a prime factor ≥ (log x)A

• v ≤ xε/100

• qj ∈ (eij , eij+1] for all j = 1, . . . , k.
• p | rj =⇒ p ∈ (eij+1, eij−1 ]
• rj ∈ [x%/2, x%) ∩M for all j = 1, . . . , k
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• rj/P−(rj) < x%/2 for all j = 1, . . . , k + 1.
• rk+1 ∈ ({1} ∪ (z, x%]) ∩M.

We only treat the case rk+1 6= 1, the opposite case being treated completely similarly
with one less factor.

Furthermore we split rj into e-adic intervals rj ∈ (ehj , ehj+1]. Then v � xe−(i1+...+ik+h1+...+hk+1)

and
log x1−ε/100 −O(1) ≤ i1 + . . .+ ik + h1 + . . .+ hk+1 ≤ log

x

(log x)A
.

By Lemma 2 we then have∑
x≤n≤x+y
n∈N
rk+1 6=1

f(n)−
∫ x+y

x

uit0du· 1
Y

∑
x≤n≤x+Y

n∈N
rk+1 6=1

f(n)n−it0 � y

(log x)η

∏
p≤x

(
1+
|f(p)| − 1

p

)
+

y

(log x)10

plus log log x times the maximum, over x/y ≤ T ≤ (x/y)(log x)20 of,

x

T

d2/%e+1∑
k=1

∑
log x%>i1>...>ik>log z

log x%/2≤h1,...,hk≤log x%

log z<hk+1≤log x%

log x1−ε/100−O(1)≤i1+...+ik+h1+...+hk+1≤log x

(log x)A

∫
|t|≤T

|t−t0|>(log x)η

|Qi1(1 + it) . . . Qik(1 + it)

·Ri1,i0,h1(1 + it) · · ·Rik+1,ik,hk+1
(1 + it)Vlog x−(i1+...+ik+h1+...+hk+1)(1 + it)|dt,

(3)

where

Qi(s) =
∑

p∈(ei,ei+1]

f(p)

ps
, Ri,j,h(s) =

∑
r∈(eh,eh+1]∩M
p|r =⇒ p∈(ei+1,ej ]

r/P−(r)≤x%/2

f(r)

rs
and Vi(s) =

∑
n�ei

n is z-smooth
∃p≥(log x)A : p|n

f(n)

ns
.

We write

T = {|t| ≤ T : |Vlog x−i| ≤ (log x)−1000 for each i ∈ {1, 2, . . . , log x− A log log x}}
and U = [−T, T ] \ T .

Consider first the integral in (3) over t ∈ U . By Lemma 5 we know that, for any
δ > 0, once A is large enough in terms of δ, we have |U| � T δ, and by Lemma 7 we
know that, for all such t′ and i

|Vlog x−i(1 + it′)| � log log x

(log x− i)η/2
∏
p≤x

(
1 +
|f(p)| − 1

p

)
+

log log x

log x− i
max

|t−t′|≤ 1
10

(log x)η
|Fx(1 + it)|

� log log x

(log x− i)η/2
∏
p≤x

(
1 +
|f(p)| − 1

p

)
+

log log x

log x− i
max

|t−t0|> 1
2

(log x)η
|Fx(1 + it)|,
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since |t− t′| ≤ 1
10

(log x)η and |t′ − t0| > (log x)η and so |t− t0| > 1
2
(log x)η.

Furthermore eh1 ≥ x%/2 and either eh2 ≥ x%/4 or ei1 ≥ x%/4. For simplicity let us
assume we are in the first case — the second case is treated similarly. Bounding
trivially

|Qi(1 + it)| � 1

i
and |Rij ,ij−1,hj(1 + it)| � 1

log z

for i = 1, . . . , k and j = 3, . . . , k + 1 in the integral over U in (3), we see that this
part contributes to the integral at most

x

T

d2/%e+1∑
k=1

∑
log x%>i1>...>ik>log z
log x%/2≤h1,...≤log x%

log z<hk+1≤log x%

log x1−ε/100−O(1)≤i1+...+ik+h1+...+hk+1≤log x

(log x)A

1

i1 · · · ik
· 1

(log z)k−1

·
∫

t∈U
|t−t0|>(log x)η

|Ri1,i0,h1(1 + it)Ri2,i1,h2(1 + it)Vlog x−(i1+...+ik+h1+...+hk+1)|dt.

By the above bound for V (1 + it) and Proposition 1 applied to a well-spaced subset
U ′ ⊂ U , this is

x

T

d2/%e+1∑
k=1

∑
log x%>i1>...>ik>log z

log x%/2≤h1,...,hk+1≤log x%

(1−ε/100) log x−O(1)≤i1+...+ik+h1+...+hk+1≤log x−A log log x

1

i1 · · · ik
· (log log x)k+1

(log x)k+1

·
( log log x

(log x− i1 − · · · − ik − h1 − · · ·hk+1)η/2

∏
p≤x

(
1 +
|f(p)| − 1

p

)
+

log log x

log x
max

|t−t0|≥ 1
2

(log x)η
|Fx(1 + it)|

)
� (log log x)2k+3

(log x)η/2

∏
p≤x

(
1 +
|f(p)| − 1

p

)
+

(log log x)2k+3

log x
· max
|t−t0|≥ 1

2
(log x)η

|Fx(1 + it)|
)

Now we can concentrate to the integral over T in (3). If θ > 7
12

+ ε then we apply
Lemma 8 with k replaced by 2k + 1 to the set

{α1, . . . , α2k+1} =

{
i1

log x
, . . . ,

ik
log x

,
h1

log x
, . . . ,

hk+1

log x

}
.

We see that, for any appearing combination of ij, hj, we can write

Qi1(1+it) . . . Qik(1+it)Ri1,i0,h1(1+it) · · ·Rik+1,ik,hk+1
(1+it) = M(1+it)N(1+it)A(1+it)
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such that the lengths M,N,A of the polynomials satisfy

max{M/N,N/M} � x2θ−1 and A� x
1
3

Then we can apply Proposition 2 with η > 1
12

+ ε
4

to the Dirichlet polynomials M(s),
N(s) and A(s)V (s) (note that V (s) add only o(1) to γ which is acceptable since
η > 1

12
+ ε

4
). This leads to a satisfactory bound for the integral over T in (3).

Now consider the case 1
2
< θ < 7

12
+ ε. Let γ = γ(θ) be the exponent appearing

in Proposition 2 with η = θ − 1
2
. Since τε(θ) < max{γ(θ − ε), τ0(θ − ε)}, since the

length of each polynomial Q,R does not exceed O(xτε(θ)) and since there exists an
m such that 1

2m+3
≤ γ(θ − ε) ≤ 4(θ − ε − 1

2
) ≤ 1

2m+1
it follows from Lemma 9 that

we can group these polynomials into a product

M(s)N(s)A(s)

where the lengths M,N,A of the polynomials M(s), N(s), A(s) satisfy

max{M/N,N/M} = O(x2θ−1) and A = O(xγ(θ−ε)) = O(xγ(θ)−ε10)

Therefore we can apply Proposition 2 to the polynomials M(s), N(s) and A(s)V (s)
(with as usual V adding at most o(1) to γ). This leads to a satisfactory bound for
the integral over T in (3).

Next we consider

N1 := {x < n ≤ x+y : P+(n) ≤ x4/7 and the second largest prime factor of n is at least y1/2}.
This works completely similarly except we first write∑

n∈N1

f(n) =
1

2!

∑
x<p1p2n′≤x+y
4y1/2<p1,p2≤y
p|n′ =⇒ p≤4y1/2

f(p1p2n
′) +

1

3!

∑
x<p1p2n′≤x+y

4y1/2<p1,p2,p3≤y
p|n′ =⇒ p≤4y1/2

f(p1p2p3n
′) +O(x1/2)

and then write n′ = vm where v is as before and m is decomposed as before. Now
the Dirichlet polynomials over pi play similar roles in the arguments as those over qi
and ri. The reason we needed to separate this case is that we were not able to show
that the numbers with two factors from an interval (ei, ei+1] ⊂ [4y1/2, 2x1/2] are rare
To do: Did not really think about whether we could actually do this .

7.2. Case P+(n) ≥ x4/7. Write y′ = y/ exp((log log x)2). The number of integers in
an interval of length y that have a prime factor in [y′, y] is O(y(log log x)2/(log x))
which is negligible.

We consider

N2 := {x < n ≤ x+ y : x4/7 ≤ P+(n) < y′} =
⋃

4
7

log x≤j≤log y′

N2,j,
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where

N2,j = {x < n ≤ x+ y : P+(n) ∈ (ej, ej+1]}
are disjoint. Let N be the set of integers such that there exists j ∈ [4

7
log x, log y′]

such that n ∈ N2,j and n = pmv, where

• p ∈ (ej, ej+1]
• v is zj := exp( log y−j

log log x
)-smooth and has a prime factor ≥ (log x)A

• v ≤ (y/ej)1/4

• m is zj-rough.

Here we are ignoring two sorts of numbers

• Those that do not have a prime factor from [(log x)A, zj], the number of these
is ∑

( 4
7
−2ε) log x≤j≤log y′

∑
ej<p≤ej+1

∑
x/p<m<(x+y)/p

q|m =⇒ q 6∈[(log x)A,zj ]

�
∑

4
7

log x≤j≤log y′

∑
ej<p≤ej+1

y log log x

p log zj

� y(log log x)2 ·
∑

4
7

log x≤j≤log y′

1

j · (log y − j)
� y

(log log x)3

log x
.

• Those whose zj-smooth part is at least (y/ej)1/4. The number of these is∑
4
7

log x≤j≤log y′

∑
(y/ej)1/4≤v≤2x/ej

v zj-smooth

∑
m�2x/(vej)
m zj-rough

∑
x/(mv)<p≤(x+y)/mv

1

�
∑

4
7

log x≤j≤log y′

∑
(y/ej)1/4≤v≤2x/ej

v zj-smooth

1

v
,

where we estimated sums over p and m trivially. Since log(y/ej)1/4

log zj
� log log x,

the last sum here is O((log x)−100) by an estimate for the number of smooth
numbers (see e.g. [?, formula (1.12)]).

By above ∑
x<n≤x+y
n∈N2\N

1� y
(log log x)2

log x
.
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Splitting also m to intervals (eh, eh+1] and applying Lemma 2, we are led to study-
ing

x

T

∑
4
7

log x≤j≤log y′

h≤log 2x/ej

log x

(y/ej)1/4
≤h+j≤log x

(log x)A

∫
|t|≤T

|t−t0|>(log x)η

|Qj(1 + it)Mj,h(1 + it)Vj,log x−j−h(1 + it)| dt,

where

Qj(s) =
∑

p∈(ej ,ej+1]

f(p)

ps
, Mj,h(s) =

∑
m∈(eh,eh+1]
m zj-rough

f(m)

ms
and Vj,h(s) =

∑
v�eh

v zj-smooth
∃p≥(log x)a : p|v

f(v)

vs
.

Like previously, we write

T = {|t| ≤ T : |Vlog x−i| ≤ (log x)−1000 for each i ∈ [1, log x− A log log x]}

and U = [−T, T ] \ T .
Consider first the integral in (3) over U . By Lemma 5 we know that, for any δ > 0,

once A is large enough in terms of δ, we have |U| � T δ, and by Lemma 7 we know
that, for all t and j, h

|Vlog x−j−h(1+it)| � log log x

(log x− h− j)η/2
∏
p≤x

(
1+
|f(p)| − 1

p

)
+

log log x

log x
· max
|t−t0|≤ 1

10
(log x)η

|Fx(1+it)|.

Applying this and Proposition 1 we see that the integral over U contributes∑
4
7

log x≤j≤log y′

h≤log 2x/ej

log x

(y/ej)1/4
≤h+j≤log x

(log x)A

( log log x

(log x− h− j)η/2
∏
p≤x

(
1 +
|f(p)| − 1

p

)

+
log log x

log x
· max
|t−t0|> 1

10
(log x)η

|Fx(1 + it)|
)
· 1

j

1

log zj

which is acceptable.
For the integral over T we can apply Proposition 2 with m-polynomial Mj,h(s),

n-polynomial Qj(s) and `-polynomial Vj,h(s) since

ej

eh
� e2jx/(ej+h)

x
≤ e2j

x
·
( y
ej

)1/4

≤ y′2

x

(
y

y′

)1/4

≤ y2

x(log x)1000
.

since ej ≤ y′.
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8. Proof of the Corollaries

8.1. Proof of Corollary 1 and Corollary 2. Corollary 1 follows from the lemma
below and the Vinogradov repulsion estimate proven in the appendix.

Lemma 10. Let f : N → [−1, 1] be a multiplicative function. Let η > 0 be given.
Then,∣∣∣(log x)η

x

∑
x≤n≤x+x/(log x)η

f(n)− 1

x

∑
x≤n≤2x

f(n)
∣∣∣� ( 1

log x

)1−2/π

· (log x)η+o(1)

Proof. Let w = 1 + (log x)−η. Then,

(log x)η

x

∑
x≤n≤x+x/(log x)η

f(n) =
1

x(w − 1)

∑
n≤xw

f(n)− 1

x(w − 1)

∑
n≤x

f(n)

By a result of Granville-Soundararajan,

1

x

∑
n≤xw

f(n) =
w

x

∑
n≤x

f(n) +O
(( log 2w

log x

)1− 2
π

+o(1))
And so it follows that,

(log x)η

x

∑
x≤n≤x+x/(log x)η

f(n) =
1

x

∑
n≤x

f(n) +O
(

(log x)η ·
( 1

log x

)1− 2
π

+o(1))
.

By another, similar application of Granville-Soundararajan, we also find that,

1

x

∑
n≤x

f(n) =
1

x

∑
x≤n≤2x

f(n) +O
(

(log x)−(1− 2
π

+o(1))
)
.

and the result follows. �

Proof of Corollary 1. We choose t0 = 0 in Theorem 1. Subsequently we apply
Lemma 10 and the repulsion estimate from the appendix. This shows that for any
η > 0,

1

y

∑
x≤n≤x+y

f(n) =
1

x

∑
x≤n≤2x

f(n)+

+O
(

(log x)3η/2−(1− 2
π

+o(1)) + (log x)−η/2+o(1) + (log x)−
1
3
·(1− 2

π
)+o(1)

)
The optimal choice is η = 1

2
· (1− 2

π
) and the claim follows. �
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Proof of Corollary 2. Without loss of generality we can assume that w ≤ x1/100.
Corollary 2 follows from Corollary 1 upon noticing that the number of integers that
have a prime factor > x/w is less than the number of integers that don’t have a prime
factor in [w, x1−1/100] and the number of such integers in a short interval [x, x + h]
(with h > x1/2) is by a sieve bound

�
∏

w≤p≤x1/10

(
1− 1

p

)
� logw

log x
.

�

8.2. Proof of Corollary 3 and Corollary 4. We will use the following Lipschitz
estimate.

Lemma 11. Let κ,C, δ > 0 be given. Suppose that f : N→ [−1, 1] is a multiplicative
function such that for any 2 ≤ w ≤ z ≤ xδ,∑

w≤p≤z

|f(p)|
p
≥ κ

∑
w≤p≤z

1

p
− C

logw
.

Then, there exists an η = η(κ) > 0 such that for all 0 < γ < η,∣∣∣(log x)γ

x

∑
x≤n≤x+x(log x)−γ

f(n)− 1

x

∑
x≤n≤2x

f(n)
∣∣∣� (log x)γ−η

∏
p≤x

(
1 +
|f(p)| − 1

p

)
.

Proof. Similarly to the proof of Lemma 10 the result will follow if we are able to
show that for 1

10
≤ w ≤ 10,∣∣∣w

x

∑
n≤x/w

f(n)− 1

x

∑
n≤x

f(n)
∣∣∣� (log x)−η

∏
p≤x

(
1 +
|f(p)| − 1

p

)
.

Combining Proposition 3.3 and Lemma 2.2 in Granville-Soundararajan, we see that
the left-hand side is bounded by

(4)
log log x

log x
·
(

max
|t|≤log x

|(1− w−it) · Fx(1 + it)|+ 1
)
.

Note that |1−w−it| � min(|t|, 1). Using the repulsion estimate from Lemma 13 (see
the Appendix) we find that the above is

� (log log x) · max
|t|≤log x

( min(|t|, 1)

(1 + |t| log x)η
+

1

(log x)η

)
·
∏
p≤x

(
1 +
|f(p)| − 1

p

)
+

log log x

log x
.

In turn this is,

� log log x

(log x)η/2

∏
p≤x

(
1 +
|f(p)| − 1

p

)
+

log log x

log x
.
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We can then eliminate the second term, by fiddling with the value of η, since it is
allowed to depend on κ. �

Proof of Corollary 3. Let η = η(κ) be the smallest of the constants appearing in
Lemma 11 and Lemma 13 . Then by Theorem 1 and the repulsion estimate from in reality they

are the same
constants

Lemma 13 (see the Appendix) we find,

1

y

∑
x≤n≤x+y

f(n) =
(log x)η/2

x

∑
x≤n≤x+x(log x)−η/2

f(n)

+O
(

(log x)−η/3+o(1)
∏
p≤x

(
1 +
|f(p)| − 1

p

)
+

1

(log x)η+o(1)

∏
p≤x

(
1 +
|f(p)| − 1

p

))
Then using Lemma 11 allows us to conclude. �

Proof of Corollary 4. Without loss of generality we assume that w ≤ x1/100. Corol-
lary 4 follows from Corollary 3 on noticing that for H > x1/2,∣∣∣ ∑

x≤n≤x+H
n=ap
p>x/w

f(n)
∣∣∣ ≤ ∑

x≤n≤x+H
p|n =⇒ p 6∈[w,x1/4]

|f(n)| � H
logw

log x

∏
p≤w

(
1 +
|f(p)| − 1

p

)

In turn by our assumption this is

�
∏
p≤x

(
1 +
|f(p)| − 1

p

)
·
∏

w≤p≤xδ

(
1− |f(p)|

p

)
�
∏
p≤x

(
1 +
|f(p)| − 1

p

)
·
( logw

log x

)κ
.

�

8.3. Proof of Corollary 5 and Corollary 6.

Proof of Corollary 5. The upper bound follows immediately from Shiu’s bound. To
obtain the lower bound we restrict to number that are xε smooth and apply Corollary
3

�

Proof of Corollary 6. This is in fact immediate from the previous Corollary for num-
ber fields K with class number one. For number fields with class number > 1 we
appeal to a Lemma from a pre-print of Matomaki-Radziwill to see that the indica-
tor function of norm-forms is a linear combination of complex valued multiplicative
functions. To do: Add it later?

�
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Appendix A. Vinogradov repulsion

We state below two repulsion estimates.

Lemma 12. Let f be a multiplicative function with each |f(n)| ≤ 1. Select t1 ∈ R
with |t1 − t0| ≥ log x and |t1| ≤ 2(x/y) log20 x which maximize s |Fy(1 + it1)|. Then

|Fy(1 + it1)|
log x

�
(

(log log x)4

log x

) 1
3

(1− 2
π

)

If f(n) ≥ 0 for all n then we obtain the analogous result with 1
π

in place of 2
π

.

Proof. Now

log |Fy(1 + it1)| ≤ 1

2
(log |Fy(1 + it0)|+ log |Fy(1 + it1)|)

=
∑
p≤y

Re

(
f(p)

p1+iu

(piτ + p−iτ )

2

)
+O(1)

≤
∑
p≤y

1

p
| cos(τ log p)|+O(1),

where τ = |t0 − t1|/2 and u = (t0 + t1)/2.
Now if T ≥ 1 and exp(C(log T )2/3(log log 10T )4/3) ≤ N ≤ y, we have∑

N≤p≤y

1

p
| cos(T log p)| = 2

π
log
( log y

logN

)
+O(1)

by approximating | cos(T log n)| by a polynomial in cos(T log n), and then apply-
ing the explicit formula for the number of primes up to x with the Vinogradov–
Korobov zero-free region, σ ≥ 1 − c/((log |t|)2/3(log log |t|)1/3), and noting that∫ 1

0
| cos(2πt)|dt = 2

π
.

We apply this with N = exp(C(log x)2/3(log log x)4/3), and the trivial bound for
smaller p, to obtain

log
|Fy(1 + it1)|

log y
≤ −

(
1− 2

π

)
log
( log y

logN

)
+O(1)

If f(n) ≥ 0 for all n, then t0 = 0 and Fy(1− it1) = Fy(1 + it1), so

log |Fy(1 + it1)| = 1

2

∑
p≤y

1

p
Re
(
f(p)(p−it1 + pit1)

)
≤
∑
p≤y

max{0, cos(t log p)}
p

and we get the same results, with
∫ 1

0
max{0, cos(2πt)}dt = 1

π
replacing 2

π
. �
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Lemma 13. Let f : N → [−1, 1] be a multiplicative function. Suppose that, there
exists a constant κ, δ, C > 0 such that,∑

w≤p≤z

|f(p)|
p
≥ κ

∑
w≤p≤z

1

p
− C

logw

for all 3 ≤ w ≤ z ≤ yδ. Then, there exists a η = η(κ) > 0 such that for all |t| ≤ y,

|Fy(1 + it)|
log y

�
( 1

(1 + |t| log y)η
+

1

(log y)η

)
·
∏
p≤y

(
1 +

f(p)− 1

p

)
.

Proof. Let ε ∈ (0, 1
1000

) be a small fixed quantity. Notice that,

log |Fy(1 + it)| = <
∑
p≤y

f(p) cos(t log p)

p
+O(1)

≤
∑
p≤y

f(p)

p
−
∑
p≤y

f(p)(1− | cos(t log p)|)
p

≤
∑
p≤y

f(p)

p
− κε

∑
| cos(t log p)|≤1−ε

N≤p≤y

1

p

where N = max(e1/|t|, (log y)2/3+ε). Let Φ(x) =
∑
|`|≤∆ a(`)e(x`) be a trigonometric

polynomial of degree ∆ such that,

1| cos(t log p)|≤1−ε ≥ Φ(t log p)

with ∆ choosen large enough so that, a(0) ≥ 1
2
. It follows from this and Vinogradov-

Korobov that, ∑
N≤p≤y

| cos(t log p)|≤1−ε

1

p
≥
∑

N≤p≤y

Φ(t log p)

p
= a(0) log

( log y

logN

)
+O(1).

Thus

log |Fy(1 + it)| ≤
∑
p≤y

f(p)

p
− κε

2
log
( log y

logN

)
+O(1)

and the claim follows. �


