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A Hering configuration of type k and order » is a factorization of the complete
digraph K, into n factors each of which consists of an isolated vertex and the edge-
disjoint union of directed k-cycles, which has the additional property that for any
pair of distinct factors, say G, and G;, there is precisely one pair of vertices, say
{a, b}, such that G, contains the directed edge (a, b) and G; contains the directed
edge (b,a). Clearly a necessary condition for a Hering configuration is n=1
(mod k). It is shown here that for any fixed &, this condition is asymptotically, and,
it is shown to be always sufficient for k=4.  © 1995 Academic Press, Inc.

1. INTRODUCTION

Let n>1 be an integer and let K, denote the complete digraph on the
n-element vertex set V. We consider collections 4 ={G,, G,, .., G,} of
spanning subdigraphs of K,. Note that the number of digraphs in 4
coincides with the size of V. We call ¢ an orthogonal cover of K,, if

(i) every directed edge of K, belongs to exactly one of the G/,
and
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(i1) for every two subdigraphs G; and G,(i # j) there is a unique pair
{a, b} of vertices such that G, contains the directed edge (a, b) and G,
contains the directed edge (b, a).

Since the number of members of % equals the number of vertices, we can use
the vertex set J to index the members of 4. Since each G, i € V'is spanning, we
can consider the vertex in G, to be distinguished, and we will refer to i as the
root vertex (or simply the root) of G,. Then we refer to G, as being the ith page
of the cover. Furthermore, G; is said to be idempotent if the vertex i occurs as
an isolated vertex in G,. The cover ¥ is said to be idempotent if every page of
4 is idempotent. Note that every page must have exactly n — 1 edges.

Hering [6] raised the question of determining, for a fixed integer & > 3,
for which values of n does there exist an orthogonal cover of K, in which
every page consists of an isolated vertex and a vertex disjoint union of
directed cycles of length k. Such an configuration will be called a Hering
configuration of type k£ and order n.

Clearly a necessary condition for the existence of a Hering configuration
of type k, defined on K,,, is that n=1 (mod k). Let S, = {n: there exists a
Hering configuration of type k and order n}. It will be shown that for each
integer k >3, there exists an integer N, such that if n=1 (mod k) and
n>=N,, then ne S,.

2. CONSTRUCTIONS

In this section we discuss two constructions for Hering configurations,
one of which is direct, and the other recursive.

THEOREM 2.1. Let k be an integer, k = 3. Suppose that n is a prime power
such that n=1 (mod k). Then there exists a Hering configuration of type k
and order n.

Proof. Let GF(n) denote the finite field of order n. Since n =1 (mod k),
there exists a kth root of unity f in GF(n). Define a quasigroup
Q= (GF(n), 0) by xoy =fx+ (1 —f)»y for x, ye GF(n). Then Q is idempo-
tent, that is xox =, for all xe GF(n). Also

(---((xop)0y)---)ey)
7

—
~
k times
=pf---Px+(1=By)+(1=Fy)-)+(A=F)y
N ./
k times

=B+ (BT I+ BT A DU =By
=px+(1-py=x
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since B is a kth root of unity. Further, for a given pair of elements x and
¥, there exists a unique element » such that (uox) oy =u. Given these facts,
it is easily verified that by defining G; by

G={}v U {(x xoi)}

x € GF(n)
x#EI

for ie GF(n), a Hering configuration of type k and order n is obtained. ||

For the recursive construction, the notion of pairwise balanced design
(PBD) is required. Let v be a positive integer, and K a subset of the
positive integers. Then a pairwise balanced design PBD[v, K] is a pair
(V, ) where V is a v-set and & is a family of subsets (called blocks) of
v which satisfies the following:

(i) every pair of distinct elements of ¥ occur in precisély one block;
(ii) the cardinality (size) of every block lies in K.

A set S of positive integers is said to be PBD-closed if it has the property
that the existence of a PBD[v, S] implies that v lies in S. A well known
theorem of R. M. Wilson [9] states that a PBD-closed set S is ultimately
periodic with period a = GCD{s(s—1): s€ S}.

THEOREM 2.2. Let k be a fixed integer > 3. Then the set ‘S, = {n: there
exists a Hering configuration of type k and order n} is PBD-closed.

Proof. It is shown in [4] that if there exists a PBD [n, S] and for each
se S there exists an idempotent orthogonal covering of K, then there
exists an idempotent orthogonal covering of K, whose pages each consist
of the idempotent together with vertex disjoint unions of the connected
components, apart from the idempotents, of the pages of the.covering K.
In the case at hand, these components are all directed cycles-of length £,
so the resulting configuration is a Hering configuration of type k and
order n. Therefore S, is PBD-closed. |}

3. ASYMPTOTIC RESULTS ON THE SETS .,

In this section, we show that for fixed k>3, there exists an integer N,
such that if n=1 (mod k) and n > N,, then there exists a Hering configura-
tion of type k and order n. To this end, let k& be any integer, k> 2, and let
P(k)={p:pis a prime, p=1 (mod k)}, and let Q(k)={q:g=p',pisa
prime, ¢ is a positive integer, ¢=1 (mod k)}. For any non-empty set of
positive integers S let f(S)=GCD{s(s—1):s€S}.




348 NOTE

LEMMA 3.1. Let k be an integer, k > 2. Then there exist two primes p,
and p, in P(k) such that GCD(p,(p,—1), p,(p,—1))=2k.

Proof. By Dirichlet’s Theorem on primes in an arithmetic progression
(see [1]), there exists a prime p, such that p,=1 (mod2k), say
P1=1+42ka for some positive integer a. Further by Dirichlet’s theorem
there exists a prime p, such that p,=1+2k (mod2kp,a), say
P>=1+2k +2kp, ab for some positive integer b. Note that p, > p,. There-
fore

GCD(p.(py—1). p2(p>—1)) = GCD(p,(p, ~ 1), p— 1)
=GCD(p, 2ka, 2k + 2kp, ab)
=2kGCD(p,a, 1 + p,ab)
=2k,

as required. |J

COROLLARY 3.1.1. Let k be an integer, k = 3. Then

(1) B(P(k)) divides 2k.
(i1)  Further if k is even, then B(P(k))=k.

Proof. Part (i) is a direct consequence of Theorem 3.1 and the defini-
tion of B(P(k)). For part (ii), assume that k is even, that is, k = 2s where
s>2. By Theorem 3.1, there exist primes p, and p, in P(s) such that
GCD(p,(p,—1), p,(p;—1))=2s=k. But p, and p, are both odd and they
are both relatively prime to s, since they lie in P(s). Hence 2s divides both
p,—1 and p, —1, so p, and p, are in P(k).

These are then the required primes. |

These results can be applied to the sets S, as follows.

THEOREM 3.2. Let k be any integer, k > 3. Then there exists a constant
N, such that if n= N, and n=1 (mod k), then ne S,.

Proof. By Theorem 2.1, we have P(k) < Q(k) < S, so S, is non-empty
and k < f(S,) <2k, with B(S,) =k if k is even.

Wilson’s theory states that the PBD-closed set S is ultimately periodic
with period f(S,), and that for any m in S, there exists a constant C,, such
that if n > C,, and if n=m (mod B(S,)), then ne S,. We consider two cases,
namely £ odd and k even. Suppose first that & is even. Then.f(S;) =k, and
since S, contains some member m =1 mod k, then by Wilson’s theorem
there exists a constant N, as in the enunciation of this theorem.
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Now consider the case when k is odd. Then the argument is slightly
more difficult, since in this case §(S;) = 2k. Now suppose that m =1 mod k.
If m is odd, then m=1 (mod 2k), and if m is even, then m=k+1
(mod 2k). Therefore if we can show that S, contains both odd and even
integers, an argument similar to that above applied to each of these cases
will establish the existence of the required integer N,. But since &k is odd,
then 2 =1 (mod k) where ¢(k) is the Euler phi function, so 2¢*) e Q(k).
Therefore S, contains both odd and even integers, and the theorem
follows. J

4. THE SPECTRUM OF HERING CONFIGURATIONS OF TYPE 4

Ganter and Gronau [2] have shown that S;={n:n>4, n=1 (mod 3),
n#10}. To obtain an analogous result for S, we require the notion of the
closure of a set of positive integers. Let K be any nonempty set of positive
integers. Then B[K]={n:there exists a PBD[n, K]} is clearly PBD

- closed and is called the closure of K.

It is shown in [5] and [7] that B[{S, 9, 13, 17, 29, 33} ]={n:n=5,
n=1 (mod4)}. But {5, 9, 13, 17, 29} is a set of prime powers, and a
Hering configuration of type 4 and order 33 is exhibited in Table I. There-
fore S,={n:n=5,n=1 (mod 4)}.

For k =5, an exhaustive search shows that there is no Hering configura-
tion of type 5 and order 6. However such configurations exist for n=11
and 16 by Theorem 2.1. Examples of Hering configurations of type 5 and
orders 21 and 26 are exhibited in Table II. However, with present methods
a complete determination of H(5) appears to be well beyond reach.

The case of Hering configurations of type 6 is much more complete
because of the fact that so many early members of S; are primes and prime
powers. Let N(6)={n:n>7, n=1 (mod 6)}, and C(6)=B[Q(6)]. It is
shown in [8] and [10] that C(6) 2 N(6)\ E where E = {55, 115, 145, 205,
235, 253, 265, 295, 319, 355, 391, 415, 445, 451, 493, 649, 655, 667, 685,
697, 745, 781, 799, 805, 1243, 1255, 1315, 1585, 1795, 1819, 1921}.

This result was improved by Greig [3] who showed that {295, 655,
1243, 1255, 1795, 1819, 1921} < C(6). Therefore there exists a Hering

TABLE I
A Hering Configuration of Type 4 and Order 33

{(0)(1,2,4,3)(5,8,12,19) (6, 28, 20, 16) (7, 31, 15, 25)
(9,22, 10, 30) (11, 27, 24, 17) (13, 21, 26, 32) (14, 23, 18, 29)} (mod 33)
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TABLE 11

A Hering configuration of type 5 and order 21

{(0)(1,2,4,7,12) (3,18, 13,19, 16) (5, 17, 10, 14, 6)
(8,15,11,9,20)} (mod 21)

A Hering configuration of type 5 and order 26

{((0,0)), ((1,0),(2,0) (3,0), (0, 1)), ((5, 0), (8, 0) (6, 0), (10, 0), (1, 1)),
((7,0),(2,1),(11,0), (12, 1), (7, 1)), ((9, 0), (8, 1) (4, 1), (9, 1) (11, 1)),
((12,0), (6, 1) (5,1}, (3, 1) (10, 1))}

{((0,1)),((0,0)(5,0) (12,0)(7,0) (7, 1)), (11, 0), (4, 0), (1, 0), (10, 0), (3, 1)),
((6,0),(4,1),(3,0),(8,1),(9,1)), ((8,0), (10, 1) (2, 0), (11, 1), (1, 1)),
(6,1 ‘

((9,0),(12,1),(5,1), (2, 1), ’6, ))} (mod 13, —).

configuration of type 6 for all ne N(6) with the possible exception of
ne {55, 115, 145, 205, 235, 253, 265, 319, 355, 391, 415, 445, 451, 493, 649,
667, 685, 697, 745, 781, 799, 805, 1315, 1585, 1795}.

10.
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