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On the number of solutions to
the generalized Fermat equation

ANDREW GRANVILLE

ABSTRACT. We discuss the maximum number of distinct non-trivial solu-
tions that a generalized Fermat equation Az™ + By™ = Cz™ might possibly
have. The abc-conjecture implies that it can never have more than two so-
lutions once n > np (independent of A, B,C); and that it has no solutions
for fixed A, B,C once n > ny4 p,c. On the other hand for any set of pair-
wise coprime integers p1, p2, - . . , Pk, N0 matter how large, we will construct
non-zero integers A, B, C such that there are distinct non-trivial solutions
to Az + Byt = C2l¥ fori = 1,2,...,k. Wealso show that no > 4. In the
final section we review some recent relevant results, consider generalizing
these questions to all curves, and also briefly discuss the challenge of modi-
fying the Frey—Ribet application of the Taniyama-Shimura-Weil Conjecture
to Fermat’s Last Theorem, to attack the generalized Fermat equation.

In about 1637 Fermat made the assertion, popularly known today as Fermat’s
Last Theorem!, that there are no non-trivial integer solutions z,y,z,p > 3 to
the equation z? + yP = zP. In this paper we are interested in the number of non-
trivial coprime integer solutions z,y, z, with p > 4, to the more general Fermat
equation

(1) AzP + By? = C2P,

where A, B, C are given non-zero integers with ged(4, B,C) = 1. We note here
that this is equivalent to counting rational points on the curve

Copp i auf + BvP = 1.
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This equivalence may be seen by ‘de-homogenizing’ (1) with the transformation
a=A/C,f=B/C,u=x/zand v = y/z, and ‘homogenizing’ Cs g, by multi-
plying points on this curve through by an appropriate common denominator.

We missed out the exponents p = 2 and 3 in our formulation of this problem
for the same reason that Fermat missed out p = 2 in his problem. That is
that, for these p, there are usually infinitely many solutions to (1) if there is one.
Indeed if p = 2 then we consider the line of rational slope ¢ that goes through the
given point on the curve Cq g2, and find that for all but tangent lines, this line
intersects the curve at a second rational point. From infinitely many rational ¢
we thus get infinitely many rational points. If p = 3 we take the tangent at the
given point on the curve C, g 3, and find that this line intersects the curve at a
second rational point. We then repeat this process and if it continues indefinitely
without returning to the same point, then we have an infinite sequence of rational
points. Explicit formulae for doubling points on such curves were written down
by Desboves [9]; with these we proved (see section 6a of [6]) that this proposed
algorithm for finding infinitely many rational points fails? only if the initial
point has one co-ordinate 0 or oo, or is (+1,+1). These ideas were all known in
Fermat’s time.

There are choices of A, B, C, p for which there are some solutions in (1). For
example, (3,1,2) is a solution to z° + 13y°® = 8z%. In fact, for any p it is
easy to determine infinitely many triples A, B,C for which there are at least
two solutions to (1): first select any two triples of pairwise coprime integers
(zi,vi,2:), ¢ = 1,2, and then determine A, B and C by solving for these three
variables in the two linear equations which arise when we substitute the z,y and
z values into (1).

So the question arises, can we choose A, B, C,p > 4 for which there are infin-
itely many solutions to (1) ? A brief computer search will quickly persuade you
that it is difficult to find examples that give you more than a handful of solutions
in (1). In fact the answer to the question is ‘no’. It is a consequence of Faltings’
celebrated theorem [10], long known as ‘Mordell’s conjecture’, that there are
only finitely many solutions to (1) for any choice of A, B,C,p > 4. How many,
you might ask, is ‘finitely many’ ? And, indeed, this is a very difficult question.
Faltings’ original proof was completely ‘ineffective’, in that it bounded neither
the size nor quantity of solutions. However the recent, very different, proofs by
Vojta [18] and Bombieri [2] allow one, in principle, to put an upper bound on
the number of solutions. In practice though, major technical complications arise
when one tries to write down a simply stated bound; all that is clear is that this
bound will be a very fast growing function of A, B, C and p.

Still nagging questions remain:

e Is it true that there will be no solutions to (1) once p is sufficiently large,
no matter what the choice of A, B,C ?

If so, then what about the number of solutions for smaller p:

2That is, we have hit upon a ‘torsion point’ of Co 8,3 -
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e Is it true that there is an absolute bound on the number of solutions to (1)
no matter what the values of fixed A,B,C,p>47

Even more

e Is it true that there is an absolute bound on the number of solutions to (1)
no matter what the values of A, B,C, as p varies 7

- In recent years, mathematicians have turned to the abc-conjecture to help
understand a dizzying array of Diophantine problems, including Fermat-type
problems: ‘

THE abc-CONJECTURE. For any € > 0 there exists a constant k. > 0 such
that if

atb=c
where a, b, c are coprime positive integers, then
1+e
a,b,c < Kk, H p

plabce

One can give simple heuristic counting arguments that support this conjecture.
Also, it is easy to prove the following analogue in C[t] (due to R. C. Mason):

If a+ b = c in C[t], where polynomials a,b, ¢ have no common roots, then the
degrees of a,b and c are less than the total number of distinct roots of abc.

We can apply the abc-conjecture to solutions of (1). First we must divide
through by any common factors of Az?, ByP,C2P. Since z,y,z are pairwise
coprime, any common prime power factor must divide at least two of A, B and
C. Thus our common factor is £ (ABC)/2. Therefore, by the abc-conjecture,

Az?, By?,C2? £ (ABC)Y%k(ABCzyz)'*®

and so, multiplying all three inequalities together gives, after some re-arranging,

|ABC| > |zyz| 7 <.
Taking € = 1/7 this implies that, for p > 4,

plog |zyz| < log |ABC|,
where the implied constant is absolute. Evidently this cannot hold once p >
log |ABC|, if |zyz| > 1. Thus we we are able to answer the first of our questions
above: For any choice of A, B,C we expect that, like Fermat’s Last Theorem,
there are no solutions to (1) once p is sufficiently large (except what we now

classify as further ‘trivial’ solutions, those with |zyz| = 1). Based on this justi-
fication we state
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CONJECTURE 1. For any given non-zero integers A, B,C there are no non-
trivial solutions to (1) once p is sufficiently large (that is, if p > pa B,c, where
Pa,B,C 5 a constant that depends on A, B,C).

To study our second question we follow a remarkable technique initiated by
Desboves, subsequently re-discovered by Chowla and many others. In 1879 Des-
boves (8] observed that if, for any given integers A, B,C we have three dis-
tinct® solutions (%i,vi,2), © = 1,2,3, in pairwise coprime, non-zero integers to
the generalized Fermat equation (1), then this gives rise to an integer solution
(r,s,t,u,v,w) of the system of Diophantine conditions

TP + P +tP = uP + vP + wP
rst = uvw # 0
(2)

with ged(r, s, t,u,v,w) =1,
where {r?, s?,t?} N {uP,vP,wP} = {).
Moreover each such solution to (2) gives rise to such a triplet of solutions to

(1). The main idea in the proof of the first assertion is to note that the three
solutions to (1) give rise to a solution to the matrix equation

T A 0
zh yh 2% Bl=]0];
T S 4 C 0

and so the determinant of this matrix is zero. Thus

3

3
(3) Z (TiYit12i42)” = z (zyj+22i41)°

i=1 ij=1

(where the indices are taken mod 3) which is a solution to the two equations in
(2); though it is not yet guaranteed that either of the last two conditions in (2)
hold. Indeed to force ged(r, s, t, u, v, w) = 1 we shall need a little sleight-of-hand:

Suppose that all the terms in (3) have a common prime factor ¢, and that
q divides z;. If ¢ does not divide z, then, since q divides zoy;23 and zoy32;,
we have ¢ divides y; 23 and z;y3. However z; is coprime to y; and z; so that ¢
divides both y3 and 23 which contradicts the fact that they are coprime. Thus q
must divide z2 and similarly 3. But then one can change A to AgP and divide
each z; through by q. Proceeding in this way (and with the y;’s and zx’s) we
force the terms in (3) to be coprime.

The final condition in (2) is contravened precisely for triplets of solutions to
(1) in which two of those solutions are not distinct. For example, if 77 = uP
then (z1y223)? = (x2y123)P; and since (r1,%1) = (Z2,¥2) = 1 we must have
zf = +af, y§ = £y} and so 27 = £z (where all of these ‘+’ are the same).

3(x1,y1,21) is not to be considered distinct from (z2,yz, 22) if («7,9%,27) = £(5, 45, 25).
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To go from a solution of (2) to three solutions of (1) with an appropriate
choice of A, B, C we select, in order,

z1 = (ru), y3=(r/z1,v), 22 =r1/T1y3, T2 =(5,v/y3), ¥ = (s/x2,w/22),
z3 = S[Tay1, Y2 = u/T123, 21 =v/T2y3, T3 = w/y1 22,
A= (1122)° — (1221)P, B = (z172)? — (2221)P, C = (zay1)? — (z192)7 -

Note that each of A, B,C are non-zero else the final condition in (2) is not
satisfied.

Desboves’ idea is best viewed in a geometric context. What we have shown
is that triples of points on C, g, no matter what the values o and 3, are
parametrized by points on the P®-variety

{WP+uwP+aP —y? -2F =1, vw = zYz}.

Note that this variety is independent of @ and 3 (or, equivalently, of A, B and
C). Thus, to study our second question above, we need to ask about rational
points on this variety; or equivalently solutions to the system of equations (2).
For this question we have no counterpart of Faltings’ Theorem, no significant
results at all. On the other hand, it does make sense to generalize the abc-
conjecture to multi-term equations. In fact Brownawell and Masser [4], and
Voloch [19] gave such a result for solutions to z; + x2 + - -+ + z, = 0 with each
z; in C[t]; and various heuristic arguments imply that the following should hold:

THE GENERALIZED abc-CONJECTURE. For any integer n > 3, there exist con-
stants ¢, > 0 and E,, such that if '

£E1+(E2+"'+xn=0 with ng(ﬁl,x%--'amn):l’

and no proper subsum vanishes, then
En

21l lzal Sen | JT

plTy...Tn

We wish to use this to consider the system of equations in (2). Mueller [14]
used the Brownawell-Masser/Voloch result to show that, in C[t], (2) has no
solutions once p > 31, whence (1) can never have three distinct solutions in C[t],
where A, B,C € C[t].

Suppose that we have an integer solution to (2). Note that |rst| = [uvw| > 1,
else we would have a contradiction to either the second or fourth condition in
(2). Now, if no proper subsum of r? + s? 4 t? — uP — vP — wP vanishes, then we
may apply the generalized abc-conjecture directly to (2) with n = 6, to get that

Eg

|,,.lp’ |s|p’ |t|pv |ulp’ |,U|p, |w|p <¢e H q g cﬁ|r3t|E6‘

q prime
g|rst
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Multiplying the first three inequalities together we obtain |rst|P < cg|rst|>Ee
which cannot hold if p is sufficiently large, since |rst| > 2. Now if some proper
subsum of 77 + s 4+ tP — u? — vP — wP indeed vanishes then, given the last
condition of (2), we easily determine a solution, in coprime integers, to either
zP + yP = 2P or to tP + 2P + y? = zP with no vanishing subsums. We then
apply the generalized abc-conjecture with n = 3 or 4, respectively, and deduce a
contradiction for sufficiently large p (it is easy to show that at least one of the
integers involved has absolute value > 1). Therefore if p is sufficiently large then
(1) cannot have more than two solutions, no matter what the values of A4, B, C.
We thus make the following

CONJECTURE 2. If p is sufficiently large then there are at most two solutions
to (1) for any non-zero integers A, B, C (that is, if p > po, where pg is an absolute
constant, independent of A, B,C).

As we remarked above, using elementary linear algebra it is easy to construct,
for any given p, infinitely many examples of A, B,C for which there are two
solutions to (1). Thus Conjecture 2 may be thought of as “best possible”.

It seems plausible that rather more than Conjectures 1 and 2 might hold
true. Indeed that there might exist a constant pg, such that there are at most
two solutions (z,y, z,p) to (1) with p > po and z, y, z pairwise coprime, for any
non-zero integers A, B,C. Plausible, yes, but correct, no! Indeed, the main
purpose of this note is to show that this is quite untrue:

THEOREM 1. For any set of pairwise coprime integers p1,pa,...,Dx, there
ezist non-zero integers a,b,c such that there are solutions in pairwise coprime
non-zero integers (x;,y;, z;) to

ax? + by =c2l*  fori=1,2,...,k,

where the triples £(z¥*,y}*, 2}*) are all distinct.

PROOF. By induction on k. For k = 2 we can select (more-or-less) any such
(Ti,9i,2:), 1 = 1,2, and find a,b and c through elementary linear algebra. Indeed
abc will be non-zero unless (z7*,y7", 2*) = (252,452, 25%). (Note that we don’t
actually need to require p; and p; to be coprime, as in the hypothesis.)

So suppose that the result is true for k. It is an exercise in elementary number

theory to show that there must exist non-zero integers Ay, ..., \; such that if
k k k
X=) Nal', Y= daf, 2= NP,
i=1 i=1 i=1

then Xx;,Yy;, Zz; are pairwise coprime for each j. Evidently

aX +bY = cZ.
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By the Chinese remainder theorem we may select a positive integer n satisfying

0 (mod lem(py, . . ., pk))
-1 (mod po).

n
n

and

We multiply all equations az?* + byP* = czl*, as well as aX + bY = cZ, through
by X"Y"Z" and let
A=aY"Z", B=bX"2Z", C=cX"Y"
Then
AX™H 4 BY™H = 0z,

which is the same as
AXg° + BYOP" = C’Zg0

where
Xo=XMtD/po  yy —y(rtl/po  and Z, = Zm+1)/po
Similarly
AXP + BYP =CZF, fori=1,2,...,k,
where

X; =z, XVP, Y, =yYVP and Z; =227

This gives k + 1 solutions AX?* + BY* = CZ?*, and the theorem is proved. O

It is important to observe that A, B and C are not pairwise coprime in our
construction; this may be the cause of the downfall of our hitherto plausible
assertion?. On the other hand, from the geometric perspective discussed above,
one would not have expected any special difficulties to arise when A, B and C
are not pairwise coprime.

It is of some interest to make a plausible guess as to the value of py in Conjec-
ture 2. We certainly believe, in analogy with what happens in C[t], that po < 30.
We will show that po > 4 in Z[t], and thus in Z:

THEOREM 2. There are infinitely many distinct triples of pairwise coprime
non-zero integers A, B, C such that (1) has three solutions with p = 4.

PROOF. Stephane Vandemergel (see [13, D1]) observed that if #7437 = kP +£P
then we get a solution {r, s, t,u,v,w} = {ik, jk, £2,4¢, j¢, k?} to the first condition
in (2). This leads to solutions (z,y,2) = (i,4,k), (j,k,£€),(1,1,1) in (1) with
A=1{P —kP,B=jP— (P and C = jP — kP. _

Unfortunately it is widely believed that there are no non-trivial solutions to
iP + jP = kP + £P once p > 5 (see [16] for the latest on that subject); and since
our remarks in the first couple of paragraphs apply when p < 3, we need only
consider the case p = 4: In 1772 Euler was the first person to find a non-trivial
solution, namely 2219449* + 5556174 = 1584749 + 2061283*. Six years later he

4However, do note that insisting that A, B and C are pairwise coprime is not the same
trivial restriction when we vary over different values of p as when we fix our value of p
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found the smallest solution, 1584+59* = 133%+134%. There are many parametric
solutions to i* + j4 = k* + ¢4: we will work with

i=t"+t°—23 432 +t, j=t0—35 —2tt +¢2 41,
E=t"+t5 2332 +¢t, ¢=t0435 -2 +£2+1.

The resulting polynomials A, B, C (as above) all have common factor t2+1 which
we divide through by. The values of these polynomials are pairwise coprime®
when t = 510n for any positive integer n; and this then gives the triples needed
to prove the theorem. ‘ » N

With Theorem 1 we answered the third question asked above: No, there is
no absolute bound on the number of solutions to (1), independent of A, B, C.
However we can modify Desboves’ idea to study when we have solutions to (1)
with different exponents, but with A, B, C fixed. So suppose the exponents are
P, q and 7, and proceed as before to show that the matrix

P ,P P

T B A

g .4 .4

(4) Ty Yo 25
T T T

I3 Y3 23

has determinant 0. From a null vector (a, b, —c)T of the transpose of this matrix
we have three distinct solutions of the generalized Fermat equation

(5) au? + bv? = cw”

Theorem 2 of [3] asserts that, in C[t], if p,q,7 > 61 then u and v must have a
common root in at least one of these three solutions to (5). Thus if we have
solutions to (1) with A, B, C fixed, but for exponents p, q, > 61, then either z,
and z2 have a common root, or y; and y2 do, or z; and z; do. Tracing carefully
through the proof in [3], we expect that they will have a ‘large’ number of
common roots. From analogous arguments using the generalized abc-conjecture,
one can deduce that there exists a constant E such that

IT  scd@?, wi) ged(w?, wh) ged(wd, w) > [ (w8 Pw§ Fw;=F)
we{z,y,z} we{z,y,z}

in any three such solutions to (1) with A, B, C fixed, and each ged(z;, v;, 2;) = 1.

In general we expect that (5) should have no more than two solutions in
coprime integers u, v, w when 1/p+ 1/q+ 1/r is sufficiently small (as is the case
over C[t]). In [6] we showed that (5) has only finitely many such solutions if
1/p+1/g+1/r< 1.

5To see this, find A and B using Maple, then use the ‘gedex’ routine to find polyno-
mials a,b € Zt] such that aA + bB € Z. This integer only has prime divisors 2, 3, 5,
17 so that gcd(A(m), B(m)) can only have prime factors from amongst these. But then
ged(A(m), B(m)) = 1 when 2-3-5- 17 divides m, since A(0) = 1. Finally since C = A+ B
thus A(m), B(m),C(m) are pairwise coprime.
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We now prove that there are at least three such solutions to (5) for infinitely
many different choices of a,b and ¢ when r = 2 or 3, and p and q are chosen arbi-
trarily: To prove this we change both p and ¢ to n = pgr (only making the prob-
lem harder), and then select six pairwise coprime integers u;, uz, u3, v, v2, v3, all
> 1. Let (A, B,—C) be a null vector of the matrix

uy uy ug
G

with ABC # 0 (such null vectors exist since -uy,uz,us,v1,v2,v3 are pairwise-
coprime). Since we have at least two solutions to Aw] + Bwj = Cw}j (namely
W™ w2 u?") and (77,037, v3'7)), we know that there are infinitely many
solutions (as discussed near the beginning of this article). Select any such triple

of coprime integers (w;, wz, ws); then

n n
Uy Uy Ug
n Y3
vy Uy U3
Y T
w; Wy Wy

has determinant 0, and thus any null vector (a,b,—c)”, with abc # 0, of its
transpose leads to a desired set of three solutions to (5) (as before, we are
guaranteed that such vectors exist because ui,us2,u3,v1,v2,v3 were chosen to
be pairwise coprime).

The arguments above can be shown to work in arbitrary number fields with
an appropriate reformulation of the abc-conjecture (see [17]).
A few further remarks

Wiles [20] has recently proved a substantial part of the Taniyama-Shimura-
Weil conjecture (see [12] for a reader-friendly review), which implies that Fer-
mat’s Last Theorem is true. This note is not the place to seriously discuss this
result nor even this deduction (due to Frey, Serre and Ribet [15]). We note only
that, from a purported counterexample to Fermat’s Last Theorem, they are able
to construct a weight 2 cusp form of level 2 (assuming the Taniyama-Shimura-
Weil conjecture here and until the end); and thus deduce that the counterex-
ample cannot exist since there are no such modular forms. Their argument can
be modified to construct, from any non-trivial example in (1) with A, B and C
fixed, a weight 2 cusp form whose level comes from a finite set of possibilities,
determined by the prime factors of A, B and C. Since the possible cusp forms
come from a finite set of finite dimensional vector spaces (some of which may be
of dimension 0), there is hope of ruling out all of these possibilities, when there
are no solutions to (1). However, a major difficulty arises when there is a non-
trivial solution to (1) for some largish exponent p. It is not hard to create such
an example using elementary linear algebra, but then we know that we genuinely
do have a weight 2 cusp form of suitable level corresponding to a solution of (1).
The important question then becomes: can we prove that such a modular form
corresponds to only finitely many solutions to (1), even as p varies 7 It may be
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that the answer to this question lies very deep, but it may be that it is accessible
to current techniques.

Conjecture 2 provides a uniform upper bound for the number of rational points
on ‘Fermat’ curves Cy g . It is, at first, surprising that such a tight bound should
hold as we run through so many curves. Moreover similar techniques should work
for other classes of plane curves with ‘few’ monomials in the equation describing
them®, the so-called ‘fewnomials’. Thus it seems that we get bounds for the
number of rational points on a curve depending on the degree and the number of
non-zero coefficients in an appropriate ‘model’ of the curve, a view that doesn’t
entirely agree with the geometers’ perspective that the genus should determine
all (though it is not entirely incompatible):

Recently Caporoso, Harris and Mazur [5] proved that if it is true that the set
of rational points on any given variety of general type is not Zariski dense’ then,
for any integer g > 1 there exists a constant Kg such that any curve, defined
over Q, of genus g has no more than k, rational points. This is surprising since
we usually expect that the larger the genus the fewer rational points on the
curve whereas, in the extreme examples, this result implies that the higher the
genus, the more rational points it can have. Abramovich [1] has shown that a
similar bound holds for K-rational points, uniformly over all number fields K of
degree < 3 over Q.8 It is not clear how Kg grows with g: there is no family of
curves known that contradicts the possibility that kg = O(g); and it is simple to
construct examples with at least this many points (by linear algebra).

Finally, we mention a recent, beautiful, unconditional, uniform result of De-
barre and Klassen (applying a result of Faltings [11]): If C is a smooth plane
projective curve, defined over Q, of degree d > 8, then there are only finitely
many points on C, of degree < d—1 over Q, except those that lie on the intersec-
tion of C with a rational line going through a rational point of C. In particular
this applies to all equations (1) with p > 8. Combining this result with Wiles’
Theorem [20] implies that if p > 8 then there are only finitely many points on
zP +yP = 1, with [Q(z,y) : Q] < p, other than when z satisfies some equation
zP~' + ((1+tz)? — 1)/z = 0 with ¢t rational, and y = 1+ tz (or —(1+tz)ifpis
even). Klassen suggests that there may not be any other points on z? + y =1
of degree < p, and even that if [Q(z,y): Q] <p—1 then z +y = 1.°.

ACKNOWLEDGMENTS: Thanks are due to Ken Ono for remarks made on this
paper; and to the referee for a careful reading that uncovered too many careless
minor errors in the first draft.

5Though the details of the proof can get somewhat complicated — see [3]

7 As had been conjectured by Lang (see [17]).

8Presumably this will soon be extended to fields of arbitary degree over Q.

9Note the example where z and y are the two primitive sixth roots of unity, and (p, 6)=1
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