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The aim of this paper is to establish a result on a family of congruences arising from
the Fermat quotient: this result has an interesting application to the Fermat problem.
For over 150 years the Fermat problem has been divided into two cases; the First Case
being the assertion that for each odd prime p,

P +yP+2P =0 (pfzyz), (1)

has no solution in non-zero integers z,y,z. Kummer’s work on ideal numbers led, in
1847, to the complete solution of the Fermat problem for regular primes. His studies
also furnished improved criteria for the validity of the First Case, but these criteria
still involved the Bernoulli numbers. These were eliminated by Mirmanoff in 1905 by
the introduction of the polynomials
T+21T%4 ...+ (p—1y TPt (0<j<p-—1);
he thereby reduced Kummer’s criteria to a family of elementary congruences. Building
on Mirmanoff ’s ideas, Wieferich in 1909 established the elegant result that whenever (1)
has solutions,
27-1 = 1 (mod p?).

Mirmanoff, Frobenius and a series of authors over the next twenty years generalized
this to ¢°~! = 1 (mod p?) )
for each prime ¢ < 31*. The integer (¢°~1—1)/p is known as the ‘Fermat Quotient’.

Recent investigations on Wieferich’s criterion, by computational methods, due to
Lehmer, have shown that (1) has no solutions for p < 6-10°[4]. Adleman and Heath-
Brown[1] and Fouvry [2] have used Sophie Germain’s Theorem to show that (1) has no
solutions for some unspecified sequence of primes. We shall prove that if (1) does have
solutions for all sufficiently large primes p, then the criteria (2) may be improved to

g*1=1 (modp3
for an infinite sequence of primes p. Our method is developed from that of Puccioni[5]:

he demonstrated the case ¢ £ + 1 (mod 8) although his argument appears incomplete.
The actual result that we establish is as follows.

TaEOREM 1. Suppose that q is a prime such that for all sufficiently large primes p, with
p = 1 (mod 4), we have qP~! = 1 (mod p?). Then there is an infinite sequence of primes p
such that g1 = 1 (mod p3).

In fact we prove a more general theorem: it is to be noted that here we no longer
require that every prime p satisfies ¢! = 1 (mod p?), but only a particular infinite
sequence.

* Morishima’s proof for ¢ = 37, 41 and 43 has been disputed by Gunderson.
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THEOREM 2. Let m and n be fixed integers, m, n > 1. Suppose that q is a prime such that
Jor all primes p with p = 1 (mod 2") we have g°~! = 1 (mod p™). Then there is an infinite
sequence of primes p such that g¢—! = 1 (mod p™*1).

Theorem 1 is an immediate deduction from Theorem 2. The elementary theory of
congruences, together with Dirichlet’s Theorem, form the ingredients for the proof of
Theorem 2. First though, we require a technical lemma.

LEemMA. Suppose that r is a prime and M is an even integer divisible by r. T'hen, for each
prime q, there exists a prime factor s of ¢+ 1 with s = 1 (modr).

Proof. We first note that ¢ + 1 is not a power of 2, and thus it has at least one odd
prime factor. The lemma is trivial when r = 2. We shall suppose that the lemma is
false, so that r is odd and for each odd prime factor s of ¢ + 1 we have s = 1 (modr).
We now write M = ar® with r{a, so that a and b are both positive integers by the
hypothesis. For each prime factor s of ¢ + 1 we have s|g*+ 1 since s = 1 (mod ) and,
moreover, if s + r then s occurs to the same power in ¢+ 1 and ¢*+1. Hence
g™ +1 = r°(g2+ 1) for some ¢ > 0; in fact ¢ > 0 as M > a. The proof is completed by
establishing that ¢ = b, for the equation ¢+ 1 = r¥(¢g%+ 1) is insoluble in positive
integers a,b, q,r, with a,q,r > 2. However r divides ¢ + 1 and thus divides ¢+ 1 as
above, so we may write ¢g®+ 1 = dr¢ for some r{d, e > 1. In that case ¢¥ +1 = dr¢*®and
g = (g% = — 1+ dre*® (mod r¢+9+1) and so ¢ = b as required. |

Proof of Theorem 2. We wish to construct an infinite sequence of primes p such that
g?~! = 1 (mod p™*1). The primes that we choose are factors of integers of the form
¢*¥ + 1, where M henceforth denotes the lowest common multiple of m and 271, and ¢
is any prime lying in a certain congruence class of integers, to be specified.

First we consider a prime factor of m, r say. By the Lemma there exists a prime factor,
8, of g™ + 1 such that s = 1 (modr). By Dirichlet’s Theorem there is an infinite set of
primes which are not 7th powers modulo s: discarding those which divide g™ + 1 leaves
a set of primes £, j > 1, say.

We define 4; = g™ + 1, for j > 0, where we write ¢, = 1 so that 4, = ¢+ 1. The
crucial step is to establish that for each j > 1 there is a prime p; such that p}*t* divides
4;. First we shall show that for all odd primes p dividing 4,, j > 0, p™ divides 4;. We
first note that ¢; does not divide 4, since 4; = 4, (modt;), and t;{4,, by the con-
struction above. Thus we may take p|4; to be an odd prime different from ;.

We wish to prove initially that p = 1 (mod 2"). For let a denote the highest power of
2 dividing p — 1 and suppose instead that a < n. We write M¢; = 2% with c odd, and so
b > n—1. Since p|4,, ¢¥¢ = —1( mod p) and ¢ has even order modulo p. We shall
write the order of ¢, modulo p, as 2% with e odd, d > 1, that is 0,(g) = 2%. Since
0,(q)|p—1, we have d < a; further, since ¢** ¢ = — 1 (mod p), e divides cand b = d—1.
However b > n—1 and d < @ < n so that b > d. Hence a > n so 2" divides p—1 as
required.

We now wish to prove that p™ divides 4;. By our hypothesis p™|¢P~1—1; that is
0,m(q)|p — 1. Let a now-denote the highest power of p dividing 4;, and suppose instead .
that a < m. Since p?|q?Mt—1, 0,4(q)|2Mt;. Furthermore, since a < m, 0pa+1(q)|0ym(q)
and 80 0,6+1(g) < p. However 0,4+1(q)/04a(q) = 10T p,800,0+1(q)|2M¢; and pa+t|g*My—1.
But pis odd, so a is the highest power of p dividing 4,(4,— 2) = ¢*M% — 1, which contra-
dicts the assumption that @ < m: hence we have shown that p™ divides 4; as required.




Refining the conditions on the Fermat quotient 7

We now wish to show that foreachj > 1 there is a prime p; such that pj*** divides 4,.
Let us first consider ¢ = 2 so that 4, is odd. If no such prime p; exists then, by the
previous paragraph, 4; = aJ" for some a; and so 2M% = a7 — 1. But M isa multiple of m,
from its definition, and so this is not possible. We can now consider ¢ to be an odd
prime so that 4, is even but not divisible by 4. Thus if no such prime exists then
A; = 247 for some a;. We note also that 4, = 2ag’ for some a,: for otherwise 4, is
divisible by pgt! for some odd prime p,, which is impossible as 4| 4;. We recall that
t;(j > 1) is not an mth power residue modulo s, where s is a specific prime factor of
g™+ 1. Let us write ¢M + 1 = as® with s{a and b > 1. Then

A;/4,= (1+(as®—1)¥/as® =¢; (mods)
so that 4,/4, cannot be an mth power. But 4;/4, = (a, /ao,)™ which establishes a
contradiction: hence, for each j > 1, there exists a prime p; such that pj*+* divides 4;.

We can now show that p,, p,, ... may be taken to be distinct. In fact we assert that for
eachj > 1 there is a prime p, such that p7+* divides 4, but pj*** does not divide 4, for
any k + j. We first note that the highest common factor of 4, and 4, is 4,. So if our
assertion is false, then for each prime p with p™+1 dividing 4, p™+1| 4, also. Now 4,/ 4,
is odd, so for each prime p dividing 4,/A4,, p is odd, and so p™|4;, by an earlier result.
We recall that ¢;{ 4, so that 4, and 4,/4, are coprime. Hence p™ must divide 4;/4,.
But p™+1{(4,/A4,), for otherwise p™*! divides 4, and so by the above p™t1|4,, which is
impossible as 4, and A4,/4, are coprime.

tj—1
[th(Ao, 4,/4,) = hef (qM +1, ’Z qiM(~ l)t,-_1_¢)
i=0
t—1
= hcf(qM+ 1, > (+ 1))
i=0

Hence 4,/ A4, can only be an mth power, but we have seen that that is not possible, in
the previous paragraph. Hence we have established our assertion, and so we may
choose p;, s, ..., to be distinct primes such that p}**|4, for each j > 1.

We can now show that if p,{2M then pJ*** divides g%~ — 1. For we know that pr+t
divides 4,|¢?M% — 1 and hence opf;_.+1(q) divides both 2M¢t; and pf'(p; — 1). We recall that

t, does not divide 4; and so cannot be p;; thus is P2M then op?ﬂ(q) |p;—1.

So if we now discard those primes that divide 2}, we are left with an infinite
sequence of primes p such that ¢°~! = 1 (mod p™+1). |

It has not as yet been established whether or not there exists a positive integer n such
L Ly " = O (pfayz) 3)

has no solutions in integers z,y,z for an infinite number of different primes p with
p = 1(mod 4). However, in 1972, Hellegouarch [3] showed that if (3) does have solutions

in integers z, y, 2z then
2r-1=3r-1=1 (modp?"). (4)

Thus we can easily deduce the following theorem from Theorem 2.

THEOREM 3. Given a positive integer n, and a primeq = 2 or 3, such that for all sufficiently
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large primes with p = 1 (mod 4) we have solutions to (3). Then we can find an infinite
sequence of primes p, such that
g l=1 (modp?"+l).

By using Theorem 2, we can obtain the following property stemming from the
Fermat numbers.
THEOREM 4. Suppose that we can find an infinite sequence of Fermat numbers

F, = 22" 1 1, such that each of these Fermat numbers has no divisor that is a cube of a
prime. Then to each of these Fermat numbers we can associate a prime p,,, with

P, =1mod 2*+2 (n > 3)

such that (1) has no solution for p,,.

Proof. Firstly we show that p = 1 (mod 2"+2) for all primes p that divide F,, (n > 2).

Now 2% = — 1 modp, so 0,(2) = 27+1. Thus 2"+1|p — 1. Now suppose 2"*2 does not
divide p — 1. Then 20-D12 = (22")@-D2"*! = _{ (mod p), i.e. 2 is not a quadratic residue
modulo p: but this is impossible as we have already ascertained that p = 1 (mod 8).

Thus 27+2 divides p— 1.

Now, by the statement of the Theorem, we know that for all primes p dividing

F,, p*{F,.
But F, = 22" + 1 is not a square and so there exists a prime p,, dividing F,, such that
D/ By
Thus 22" = — 1 + ap,, mod p2 for some integer a, coprime with p,,.
Then 9Pn—1 — (22n)(pn—1)/2n = (_ 1 +apn)(pn_1)/2”
-1
= 1+apn.p"2n £1 modpl.

Thus by (2), it is clear that (1) has no solutions for p,,. |

Finally, I would like to thank Dr R. C. Mason for his efforts and help in preparing
this paper for publication.
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