Annals of Mathematics, 129 (1989), 363—382

Limitations to the equi-distribution ot
primes I

By Joun FriepLANDER' and ANDREW GRANVILLE'

Abstract

For any fixed N > 0 we show that there exist arbitrarily large values of a
and x for which

Y |¥(x;q,a) —x/9(q)| >y x.

g <x/log" x
(g,a)=1

This disproves conjectures of Elliott and Halberstam, and of Montgomery. We
also establish a number of related results.

1. Introduction

In 1837, Dirichlet proved that if a and g are co-prime integers then there
are infinitely many primes = a (mod g). His ideas combined with those of
Hadamard and de la Vallée Poussin yielded the asymptotic formula

X

1.1 J(x;q,a) = 1+ o(1

(1.1) ( ) ¢(q){ )}

as x — oo where Y¥(x;q,a) = Z A(n), A is Von Mangoldt’s function,
n=a (_mod q)

and ¢ is Euler’s totient function.
In 1936 Walfisz [20] used a theorem of Siegel [17] to show that for any fixed

N > 0, the estimate (1.1) holds uniformly throughout the range
(1.2) g<loghx and (a,q)=1.

This is the largest range for which an estimate of the form (1.1) is known to
hold uniformly; however under the assumption of the Generalized Riemann
Hypothesis (GRH) one can prove that the estimate

(1.3) Y(x;q,a) = ¢(xq) + O(x?log®x)

'Research of both authors partially supported by NSERC.
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holds uniformly for all

(1.4) g<x and (a,q) =1,

(see [7], p. 125). Evidently this implies that (1.1) would hold in the range
g <x/*/log***x and (a,q) =1

for any fixed ¢ > 0. Although an unconditional proof of these estimates is out of
reach at present, it is possible to obtain such results in an average sense. In 1965
Bombieri [1] and Vinogradov [19] established such a result which in the slightly
stronger form of Bombieri, states that for any fixed A > 0, there exists a value of
B = B(A) > 0 such that

(1.5) ¥ Jnax 1lsf/(:'c:. g,a) —x/9(q)| <, x/log” x
gy VIS

where

(1.6) Q = x'2/log” x.

Much important progress in number theory could be made if the range of

the estimate (1.1) or even if the value of Q in (1.6) could be made larger. To this
end Montgomery [13], [14] has conjectured that for any & > 0,

X

(17) '4/(17;(),(1) NE ¢’(Q) <<E(I/Q)

holds uniformly in the range (1.4), which would imply that (1.1) holds uniformly
for all

(1.8) g <x/log®*x and (a,q) =1.

Elliott and Halberstam [9] have made a considerably weaker conjecture in
connection with (1.5). They considered the related estimate
2

ix \° X
<
qb(q)}  log# x

and conjectured that for any given A > 1, (1.9) holds for any Q < x/log®*! x,
“or something only slightly weaker™.

We will use a technique of Maier [12] to show that Montgomery’s conjec-
ture is false, as is the Elliott and Halberstam conjecture (1.9) when one takes
Q = x/log” x for any fixed B > 0.

Henceforth define R to be the set of integers g that are free of prime factors
< log g. We prove:

1/2+¢

log x

(1.9) 5~ 3o} me {-n(x; -

qﬂQ (CI,Q)=].

ProposiTiON 1. Fix B > 1. There exist arbitrarily large values of Q such
that for any subset S of R, where each q € S is in the range

(1.10) 0/10g/8Q < q < Q
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there exist values of a and x with

(1.11) Qlog? Q <x<3Qlog?Q
for which

- X X
1.12 : 45 o B .
1,14 (E)S_ll"b(x 0] o(q)| E‘s ¢(q)

Remark 1. Under the assumption of GRH (in fact rather weaker assump-
tions suffice) we may change “There exist arbitrarily large Q' to “For all
sufficiently large O in the above.

Remark 2. The implied constant in (1.12) is given explicitly by the proof.

Remark 3. The expected analogous statement holds where { is replaced
by .

Remarks similar to the above are applicable to all of the following theorems.
From Proposition 1 we easily deduce:

TueoreMm 1. Fix B > 1. There exist arbitrarily large values of a and x for

which

(1.13) (i) Y |¢(x;q.0) - — ’
. i X:q,a) — >
IT'<q<4T ¢(Q) ? loglog X
(g,a)=1
where T = x/4log” x.
X

(1.14) (ii) Y |Y¥(x;q,a) — > X

qf-‘(:r/logﬂx (]')(Q)

(g,a)=1

We deduce from Theorem 1, Remark 3, and Cauchy’s inequality:

CoroLLARY 1. Fix A, B and let Q = x/log” x. If A > 0 the estimate (1.5)
fails while if A > 2 the estimate (1.9) fails.

Thus the Elliott-Halberstam conjecture is false. However the oft-quoted [10
et al.] weaker version of the conjecture that (1.5) holds with Q = x' ¢ is still
open.

It we take S = { g} where q is a prime, in Proposition 1, then we have:

CoroLLARY 2. For any fixed B > 0 the estimate (1.1) cannot hold uni-
formly for the range

(1.15) g <zx/log°x and (a,q) = 1.
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Thus Montgomery’s conjectured estimate (1.7) is incorrect. Moreover, even
if we replace the right hand side of (1.7) by something of the form (x/q)" ¢log" x
(for some &, N > (), this estimate is still incorrect.

In Theorem 3 we shall see, assuming GRH, that the estimate (1.1) actually
fails frequently in the range (1.15).

By sacrificing the fixed value of a in Theorem 1, we can considerably
improve our lower bounds:

TueoREM 2. Fix B > 1. There exist arbitrarily large values of y such that
for any value of Q in the range

(1.16) y/log”y < Q < y/log y loglog y
there exists x (= x(Q)) in the range
(1.17) y <x <3y
such that
X X
S VI - ML o | I S

Remark. Under the assumption of the Generalized Riemann Hypothesis we
can get a slightly better explicit constant in (1.18).

These results leave a “hole” in the conjectured results about primes in
arithmetic progressions. Of course, it has long been known (the Brun-Titchmarsh
Theorem) that the estimate

X

¢(q)log(x/q)
holds uniformly in the range (1.4). It seems likely that one has the stronger

7(x;q,a) <

Conjecture 1. Fix &€ > 0. (a) The estimate {(x; q,a) <, x/¢(q) holds in
the range (1.8). -

(b) The estimate y(x; g, a) = x/¢(q) + O((x/q)"/*x*) holds in the range
(1.4).

We also make a weaker conjecture to replace the Elliott-Halberstam conjec-
ture for very large moduli (we believe that (1.5) does hold for Q = x'~¢).

Conjecture 2. Fix € > 0. The estimate

>, max Y(x;q9,a) <, ) x/¢(q)

Q<g<2p (@)=l Q<q<20Q

holds for Q < x/log®** x.
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Conjecture 2 implies that Theorem 2 is essentially the strongest possible
result, up to the implicit constant in (1.18). The analogous conjecture with a
fixed will be studied in our next paper.

Finally we have:

THEOREM 3. Assume that the Generalized Riemann Hypothesis holds. For
any positive-valued g(x) tending to 0 as x > oo let Q, be the set of integers q
with more than exp(g(q)log, q) distinct prime factors. ( Henceforth log, x is the
k-fold iterated logarithm.) Fix € > 0 and N > 1. Then, for all sufficiently large

q & Q,, and for any value of y in the range

(1.19) glogg <y < qloqu,
we have
(1.20) (x: g, 0) = —=|> :
: X,qd,d £
. o(q) |~ V=€ ¢(q)

for at least q/exp((log q)°) distinct values of a (mod q), with (a,q) =1, for
some x = x(a) in the range
(1.21) § <x<2y.

Remark. Pomerance [15] has shown that if g(x) = 1/log;x and q & Q,
then there exists a, with (a, g) = 1, for which the least prime in the arithmetic
progression a (mod q) is

> (e” + 0(1))¢(q)log g log, q log, q/(log; q)*.

Although our two methods are very different, neither is applicable to moduli that
are the product of the first k primes. It would be interesting if one could sacrifice
some of the strength of Theorem 3, or of Pomerance’s result, in order to get
similar results for such moduli.

The method that we use in all of our proofs derives from an idea ot Maier
[12]: He saw that certain significant deviations from what is expected in the
number of uncancelled integers in the sieve of Eratosthenes-Legendre could be
used to show that for any fixed N > 0, the estimate

Y(x + logVx) — Y(x) ~ loghx
cannot hold as x — 0.
In a second paper we shall extend our results by putting “good” bounds on

Z ‘ab(x; q, a) o ¢(Q)

g0
(g,a)=1

for arbitrarily large values of a and x, where Q is a certain function of x, smaller
asymptotically than x divided by any fixed power of log x.
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(Note added Oct. 1988: In a paper [21] to appear, A. Hildebrand and H.
Maier have made interesting progress on the corresponding problem of primes in
short intervals. By using their Proposition 2 and very slightly modifying our
proofs it is possible to make unconditional those results in this paper that assume

the Generalized Riemann Hypothesis.
We have also learned (private communication) that Hildebrand and Maier

have been led to the circle of ideas which are exposed in this paper, but had not
found time to develop these before receiving our preprint. In view of this and in
view of the fact that the ideas in [21] will play a crucial role, it is now intended
that the sequel paper referred to in the text will be a four person effort.)

2. Notation and lemmas

The positive constants ¢ and & may take different values from one line to

the next.

The functions ¥(x, y) and ®(x, y) count the number of integers < x, free
of prime factors > y, < y respectively. Dickman’s function p(u) and Buchstab’s
function w(u) are defined to be the continuous solutions of the differential

difference equations
(2.1) (uw(u)) = w(u — 1) (u>2),
up'(u) =—p(u—1) (u>1)
with starting values
(2.2) wiu)=1/u (1 <u<?2),
p(u) =1 0<u<l).

In 1930 Dickman [8] showed that for any fixed u > 0,

¥(x,y) ~xp(u) (x=y" x> ),
and, in 1937, Buchstab [5] showed that for any fixed u > 1,

X

log y

O(x,y) ~ o(u) (x=y" x> )

In the early 1950’s, de Bruijn ([2], [4]) gave more precise estimates for these
functions, from which the following are easily deduced:

LEmMMA 1 (a). The estimate

log(u + 1)
logy

(2.3) sk xp<u){1 40
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holds uniformly for the range
(2.4) x > y > exp(log?®x) whereu = log x/log y.

=L~

(2.6) x>y >2 whereu = logx/logy
and, henceforth,

(b) The estimate

(2.5) O(x,y) = xV(y){eTw(u) + O

log y
holds uniformly for the range

Viy) =11 (1 - %)

P<Y

We shall have need of a number of facts about p and w: De Bruijn [3]
showed that

(2.7a) o(u) = exp(— u(log u + loglog u + O(1))),
and in [2] that
(2.7b) w(u) > e asu— oo.

We define W(u) = w(u) —e ¥ (u>1), so that W(u) - 0 as u - oo.
More precisely, it follows immediately from (5.13) of Jurkat and Richert [11] that

(2.8) IW(u)| < p(u—1)/u forall u > 1.

Define W*(u) = max,__ |W(v)| and let u* be the smallest value > u at
which that maximum is attained. We conjecture that (2.8) is essentially the best

possible (i.e. W*(u) = p(u)'*°D) though this seems to be difficult to prove.!
Cheer and Goldston [6] have very recently proved that

(2.9) u<u*<u+2 forallu>1,

and that in every interval of unit length there are either one or two zeros of
W(u), and either one or two extrema. Moreover each extremum is either a
maximum with W(u) > 0 or a minimum with W(u) < 0.

We also have from (2.1), (2.7), (2.8),

(2.10) (W(u)|,

W' (u)| = o(1).

1i(Nt:}tfez added: This does follow from the work [21] of Hildebrand and Maier.)
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We define, foranya > 1, M > 0,

Gula) = ["0(8) | Wiax + 1) dt
and
(2.11) Gi(a) = fMp(t)W*(a + t) dt;

by (2.7), (2.8) these converge as M — 0.
We note a number of corollaries to Lemma 1 that we shall need:

LEMMA 2 (Van Lint and Richert [18]). The estimate

(2.12) 3 o = log yf:p(t) dt + O(1)

n<x n
pjn=p<y

holds uniformly in the range (2.6).

Recall that R is the set of positive integers g containing no prime factor
< log g.

e 't X
LEMMA 3. (a) Yy, 1= + O 2)for0£t£x.
x<qg<x+t log log x (loglog x)
g€R
1 e Tiog2 1

b — = 1+0 .
(b) Hgﬂx g loglogx { log log x)}

gE€ER

Proof. Lemma 3(a) follows immediately from Lemma 1(b), (2.7), and (2.8)
while Lemma 3(b) can be derived from 3(a) by partial summation.

LEMMA 4. The estimates

1| log n
@ Y —|W|N+ = G(N)log y + O(1)
l1<n<x n logy
pln=p<y
and
1 log n
(b) ) —W*N+ = GX*(N)log y + O(1)
l€<n<x n logy
pln=p<y

hold uniformly for N > 1 in the range (2.6).

Proof. The proof of each part of Lemma 4 is straightforward. It requires
forming a Riemann-Stieltjes integral of the left hand side of each using the sum
in equation (2.12), and bounding the error term (after partial summation) by use
of (2.10) and the error term in Lemma 2.
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For a given positive integer q define @ (x, y) to be the number of positive
integers < x all of whose prime factors which are < y also divide g. Let
V(y) =11,.,(1 — 1/p). We shall prove an estimate similar to Lemma 1(b):

ptq

LEMMA 5. Let f(x) be a positive-valued function tending to 0 as x — 0.

Then the estimate
log, y
fly) + — )}

(2.13) ® (x,y) = xV(y){e*w(u) + O

holds uniformly in the range
(2.14) hy28, x2=9*

where q is any positive integer which has less than exp( f(y)log y) distinct prime
factors smaller than y.

Proof. We may assume, without loss of generality, that all the prime factors
of g are < y and that f(y) > 3log, y/log y (if necessary by adding 3log, y/
log y to f(y)). We shall write ¥." for a sum over integers all of whose prime
factors divide gq.
Now, using the identity
O (x,y)= 2 ®(x/n,y)

x/y=>n>1

we get, from Lemma 1(b),

o (x,y)= ) xV(y)i(e"w(u =t

x/y=>n=>1 n lOgy

1
log y

+ O

+o( . )
log y

_ enV(y) (T, + T, — T + o( ! 24)

log y
where
1 1
(2.15) = 3 —(w(u) + O )),
nzln’ logy
1 log n
e - - s :
2 szn"(w(u logy) w(u))
1
>, = )" —w(u), and
n}x/yn
.= ' 1
x/y=>n
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Now |w(u — log n/log y) — w(u)| < log n/log y by (2.10) and so
1 log n 1

1 1
|12, < ; i > logp ) o 3

log Yy n>1 L log Yy plg =1 m>1 L

(by taking n = mp/ for each p’|n)

o (5

by the prime number theorem.
We shall use Rankin’s upper bound moment method [16] to complete the

proof. Let 0 = 1 + log f(y)/f(y)logy. As f(y) > 3log, y/logy we see that,
for y sufficiently large, 1 > 0 > 2/3. Let

1 e |
r = y""'_l n p_ﬂ :
plg 1 — P
If p <exp(2/(1 —0))=Mthen p °—p ' < (1 — o)log p/p, so that
lo
Y (po-p ) <(l-0) L — <1
Plq p<M P
p<M
Also, by partial summation (after some work),
Y. p ° < 1/f(y).
plq
p.‘bM
Thus
1
(2.17) r < exp{ — (1 —o)logy + O )}
_ fly)
log f(y)
. exp{ 1+ om)} < fly)
fly)

Therefore by (2.10), since x/y > y we have,

218) [T < X ll--( O ) (S

=1 N\ X/Y pla

Vq(y)r V.(y)
V(y) V(y)

<
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by (2.17), and
(x/y\" . i
(2.19) 3, < ):1( 4 ) - (/0TI = ™)
x V(y)
o> - r < 2V (y)fly)/(y/logy)
y V(y)

again by (2.17).
Adding (2.15), (2.16), (2.18), and (2.19) we complete the proot.

An elementary argument gives:

LemMa 6. For any fixed n > 0, we have the estimate

n+1
S e ¢lg) =™

g n+1
(rlq)=1

where v(q) is the number of distinct prime factors of q.

0(2°@x™),

Lemma 7. For any co-prime positive integers m and n,

% il 1 x -

o2 |V . 0) = Sy |2 S o [V )T )
(log n + v(n)log x)
$(n) |

Proof. If (b, m) = 1 then
Y Y(x;mn,a) =y¢(x;m, b) - Y o A(e).

a=b(mod m) t=b(mod m)
(a,n)=1 (t,n)>1
l<a<mn i <x
Theretore
Vximna) - ——|> — T |¢(x;mn,a) - ——
max |(v\x;mn,a) — > xX; mn,da
(a, mn)=1 d(mn) | &(n) 4=pmodm) ¢(mn)
(a,n)=1
l<a<mn
|, ) - —
= %:Mm.,
¢(n) b(m)
1

o) ., =, M)

But ¥, .,>1A() < Ly log p([log x/log p] + 1) < log n + v(n)log x, and we
have proved the result.
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An easy corollary of Lemmas 1 and 2 of [12] (which however are in turn
based on deep ideas of Linnik and Gallagher) is:

LEMMA 8. There exists a constant ¢ > 0 such that there are arbitrarily large
values of z for which

Y(x + h; P(z),a) — ¥(x; P(2),a) = ¢(P]zz)) {1 b O(l)}

4

in the range
(a,P(z)) =1, x> P(z)” and x> h>=x/2,
where
(2.20) z>D > clog z,
and henceforth

P(z)=[]»p

pP<2z

3. The Maier matrix method

We shall suppose that z is a value given by Lemma 8, and that D lies in the
range (2.20). Choose g € R in the range

(3.1) e < q K P(z)D/z log z,

note that (g, P(z)) = 1, and define N, = log(P"/q) /log z. Let M(= M(z, D, q))
be the “Maier matrix” with (7, s)* entry

A(rP + gs)
(where P = P(z) =I1,_.p) for r and s in the range
(3.2) PPy QPVY
1<s< PY/q.

The sum of elements of the s™ column of M is
Y(2PP + gs; P, gs) — (PP + gs; P, gs)
which equals O(Dz) if (s, P) > 1 and equals PP~ '/V(z){1 + O(1/z)} if
(s, P) = 1 by Lemma 8. As there are ®(P”/q, z) columns s with (s, P) = 1,
we get, from Lemma 1(b), that the sum of the entries of M is

(3.3) poe —P-i{e“’w(Nq) + 0 10; z)}

q




J. FRIEDLANDER AND A. GRANVILLE 375

Now, the sum of the entries in the r™ row of M is
1,b(PD + rP; q,P) — y(rP; q, rP).

Set a, = rP and x, = P” + a, and note that 3P” > x_ > a_ > PP in the range
(3.2). We consider the sum

> '3 { o Yok gt ( G }

= 'q,a, o 10, 4.) — :

: PP l<cy<opD-1 o CI)(Q) "b e '4’(‘7)
(r.q)=1

Now v(q) = O(log P” /log, P”) in the range (3.1), and so

PP - ol e
3.4 2% = O —e*@ | = :
R = e £ 2 b BT

Thus, by Lemma 6, together with (3.4), we have

x,—a, PP 1

(3.5a) ) = PD“’I{I + O )}

pD-1<, copD-1 ¢(Q) q lOg y4

(r,q)=1
and
(3.5b) i e 1{1 | g )}
. —— =4—PP "Y1 +
PP ey PPt ¢(Q) q log 2

as q/¢(q) = 1 + O(1/log, q) for any g € R.
The number of pairs (r, s) for which rP + gs takes a prescribed value is

< 1+ PP71/q, and hence the sum of elements of M from those rows r for
which (7, g) > 1 is

< Ylogp ), (1+ PP l/q) < D%*1+ PP1/q).
e nn::SI;’D

With this preparation we see that

(3.6a) 2 > |sum of the elements of M — Y
pp-1ragpo-1 P(q)

(r,q)=1

x.— @,

— O(D%*1 + PP-1/q))

)

popPd P—D{e*|W(N )|+ O
> - i
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by (3.3) and (3.5a),

e”\W(Nq)\ 1 x, + 8,
{ 1 % O. logz)} 2 (g)

'PD_I‘C:I’£2PD-1 (I-b

(3.6b) >

by (3.5b).

Proof of Proposition 1. In Section 2 we noted that the function W(u) has at
most two zeros in any interval of unit length; consequently there is a subinterval
[=[A— ,A+ 8] of [B+ g, B+ 1] which contains no zeros of W(u).
Therefore |W(u)| > cp, for some fixed cp > 0, for all u in this interval.

Now let A = A/B — 1, so that 0 < A < 1 and we can take D = z" above.
Choose Q so that Q log?® Q = PP and so, by the prime number theorem,

loglog Q = (1 + A)log z + o(1).
Therefore, in the range (1.10), we find that,

1 1 1
A+o <N <A+—++0D0
log z ! 4 log z
and so, for z sufficiently large, N, € I. Thus, for each such g,
(3.7) [W(N,)| = cp.

Let us suppose that Proposition 1 is incorrect so that for all a and x in the
range (1.11) we have

(38) qgs ,\P(x; q:a) iE (}')(Q)

(a,q)=1

Then we have that

3.9) Y3, <20y X

geSsS gES pP-l<y<opP-1 (lb(q) |
On the other hand, by (3.6b) and (3.7) we have

)|z ¥

GES pP-lgegap ¢(Q)

X

P2
e :
5 Bqé-:s ¢’(Q)

X.Tra,

X+ .

which contradicts (3.9) for sufficiently large z.

Remark. If Lemma 8 were true for all sufficiently large z (as for example
would be the case if one assumes the Generalized Riemann Hypothesis) then the
proposition would hold for all sufficiently large Q. For, given such Q and B, we
choose z and D to satisfy O log? Q = exp(z'**) = P” and the above argument
carries through.
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Proof of Theorem 1. We take S to be the set

(i) {q€R:3Q/4 <q<4Q/5}, (i) {g €R: Q/log"®Q < q < 4Q/5)

in Proposition 1. Now, by (1.11), 4Q/5 < 4x/5log”® Q < x/log®? x for x suffi-
ciently large, and 3Q/4 > x/4log” Q > x/4log”® x. Therefore, in (i), if g € S
then T < g < 4T, and, in (ii), if g € S then g < x/log?® x. Also
X X
(i) Y > — ¥ 1 > x/loglog x by Lemma 3(a),
geS ¢(q) Q 30/4<q<4Q/5

g€R

which completes the proof, by (1.12).

X Hﬁlﬂglﬂg‘?] ]_
(u) Z > x Z Z — where x, = 2_*Q,
geES ‘}’)(Q) i=2 @ x;,<q<2x, q
g<€R

> x by Lemma 3(b), which completes the proof, by (1.12).

4. The proof of Theorem 2

We again use the Maier matrix method. Choose z as in Lemma 8, and
D = clog z (as in (2.20)). Set y = P(z)". For a given value of g let g, and g,
be the largest integers dividing q such that g, has all its prime factors < z and
q, € R. By Lemma 7, if ¢ = q,q9, then

X
4.1 max X:q,ad) —
(4.1) (a,q)=1*”b( q,a) 5(3)
: V(x; 43, @) — —— | + Oflog )
> max X:qs,0) — =+ og x ).
$(q;) (a.a)=1 ; ¢(q.)
Then, for any u,
X
(42) S,= )  max (Y(x;q,a)—
Q<qg<20Q (a,q)=1 ¢(Q)
Pl P P g
= max Xi s, Q) —
n<z" $(n) Q 20 (a.q2)=1 ] ¢(q,)
pln=p<z ;c.:qz-::T
g €R
+O(Qlog x).

(Note: Here we take q = q,q9, with n = q,; by (1.16) and (1.17) we have
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(g1, q5) = 1.)
1 : X
> )Y = "B |i%q,b) |+ o(x)
n<z* n Q 20 q,)(q) n
PINREPSRS - N
gE€ER
(b,q)=1
for any fixed b = b(x).
Therefore, with the notation of Section 3,
(4.3) S : 3 (S, +S, )
max > X + a
y{x<3y . 2PD_1 PD_I*CTEZPD 1
] 2
>« Z & Z 1;;._1 + O(y)
n<z* 1V Q o0 2P
pn=p<z —*:q-c:T
g€R

by taking b(x,) = b(a,) = a, in (4.2),

Y 1 1 1
B )y = — {e"’|W(Nq)\ + O l } + o(y)
n<zt TV Q 20 4 0g 2
- pn=p=<z ;c:q-r;-—n—
gE€R
by (3.6a).
Now, by (2.10), | W’| is bounded and so, for Q/n < g < 2Q/n we have
1
(4.4) [W(N,) — W(N, )| < IN, = N, | < T
og 2
Hence, by (4.3), (4.4) and Lemma 3(b) we get,
(4.5) max S,
y<x<3y
log 2 1 log n 1
e 2. —{|W|N,+ 2 | B, + o(y)
2 loglogy —.. n log z log z
pln=p<z
log 2 y
> G, (N,)] + O(1); +
= 2 loglogy{ {Nollog z + O(1)} + oly)

by Lemma 4(a) and Lemma 2. Finally as y > x/3, x > y > e*, the result
follows.
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Remark. If we assume GRH then we may take different values of D and z
(with P(z)"” fixed) in the above, so that, in (4.3), we can replace |W(N,)| by
W*(N,), (i.e. by suitable choices of D and z we can replace N, by N_*). Thus,
in (4.5), we can replace G, (N,) by G¥(N).

5. Moduli g with small prime factors

Proof of Theorem 3. We shall take &, N, y and q & Q, as given by the
hypothesis. Pick M > 2max{1, N/e} so that |W(M)| is maximized and let
z = (y/2q)'”™. Let A be any fixed number satisfying

(5.1) 0 <A< le’lW(M)|.
We shall assume that for at most g /exp((log q)¢) distinct values of a (mod q)
there exists some value of x(= x(a)) in [y, 2y] for which

) 5 X

5.2) ¥z a.2) = 2oy | > A5

and then establish a contradiction.
Let P=P(z)=11,..p so that (g, P) = 1. Note that as log g < y/q <

ptq
log™g by hypothesis, thus
(5.3a) log!/ Mg < 21/Mz < log™NMg
and so
(5.3b) log’My < z < logMMy < log®? y.
As v(q) < exp(g(q)log, q), we see that I ,_.p < 2%? < ¢°?), by (5.3a).
plq
Therefore, by the prime number theorem,
(5.4) log P =z + o(z).

Finally let D = log y/log P.

After this preparation we may set up our Maier matrix in a similar way to
that used in the proof of Theorem 1: The (7, s)™ element of M (= M(e, N, y, q))
is A(rP + gs) where r and s go over the ranges

(5.5) PPt g BPETLag
1 <s<PP/2q.

The sum of the elements in the s* column is

1{/(%PD + ¥ ¥ qs) = 4/(PD +.qgs; ¥, qs)
which equals O(Dz) if (s, P) > 1, and equals
PP~1/2V (z) + O(PP/2 log*(PP))
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if (s, P) = 1, by (L3).
Now the number of s for which (s, P) = 1 is ®(P”/2q, z) = ® (2", 2),
and so, by Lemma 5, the sum of the elements in M is

PDd PD
: . —le'w(M) + o(l)}.
(5.6 5 5 (@) +o(1))
Now, the sum of the elements in row r is
PD
(5.7) V/ o + rP; q,rP| — Y(7P; q, P).

Henceforth let a, = rP and x, = P?/2 + a,, so that, for each r in the range
(5.5), we have y < a, < x, < 2y, and the a,’s are distinct (mod q). We shall
consider the sum

5

z=>:*{ Weia.a) - ol + W@ a.a) - o }

o(q)

where Y* denotes a sum over those values of r in the range (5.5) with
(r, g) = 1. Arguing as in Section 3, we have '

(5.8) Y > |sum of the elements of M — ¥ *

— O(D%*1 + PP~!/q))

PD—I PD

2 — 2 {e"|W(M)| + o(1)}
N 1 W : L +a,
> {GeIWOD| + oD |ze

since, by Lemma 6,

PD | PD—I PD PD
Z* — -+ O 2”(‘?) :
2¢(q) 2 2q ¢(q) )
and
PP + 4P GPD_I P 0
¥ - +0 9@ |,
2¢(q) 2 2q ¢(q)
while v(q) = z°? vyields '
PD D 1 D D-1
21::(‘-?) i P q 2v(q) - P Pﬂ(l) < i

¢(q) q ¢(q) q q logz
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On the other hand, under our assumption in (5.2),
x. T4, X

(5.9) 3 <AY™ ;)(q) +2 ) max |Y(x;q,a)— pra

acA y£x£2y
where A is some set of integers of cardinality < q/exp((log q)°).
Now, trivially we have 0 < Y(x; g,a) < (x/q + 1)log x and so

X
(5.10) 2, max |¢(x;q,a) < |Alyg~'logy
acA YS¥=<2y ¢(q)
P Plo
<« —PpP-! er .
q exp((log y)°)

Now, by (5.3b) and (5.4), we have log P < z < log®*y and so Plogy =

o(exp((log y))).
Thus, comparing (5.8) and (5.9), using (5.10), we get a contradiction for any

fixed A in the range (5.1).

UN1versiTy oF ToroNTO, TORONTO, ONTARIO, CANADA
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