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Recently,* D. H. Lehmer posed the following problem:

If ¢, is the coefficient of z” in (1 + z + 22)", then show that
2™ is the determinant of the matrix

CoCy --- Cpn
M, = |$162 -+ ?n+1
Cn P Czn

He noted that the generating function for the ec,'s is
(1 -2z -322)"Y2 =1 + z + 322 + 723 + 19z% + ...

One might equally ask about the value of the same determinant where the
¢,'s are the coefficients of z” in (g + bx + cx?)" [note that these ¢,'s have
generating function (1 - 2bzx + dx2) Y2, where d = b2 - 4ac ]; or perhaps where
the ¢,'s are the coefficients of x"*” in (a + bx + cx2)” for some fixed integer
r. : .

As 'an example, consider the case where the e,'s ‘are  the coefficients of
™ dn (1 + 2z + x2)" = (1 + 2)2", that is, : ‘ - ‘

o = 2n
n n+.r|’

There does not seem to be an immediate combinatorial argument for finding the

determinant even in this case. »

In this paper we will answer all of these questions in a very simple way,
by easy manipulations of the defining polynomials of the ¢,'s. We make the
following definitions:

Let S be the set of sequences of polynomials F = [F,(x)]y»q such that each
F,(x) has degree less than or equal to 21, and such that F,(x)/x™ is . symmetric
(about z0). [Clearly F,(x) = (1 + x + z2)" and F,(x) = (1 + )27 are examples
of such sequences.] We define the "elementary sequence" of S to be

I= [I,()],, 0

where Ij(x) = 1 and I,(x) = 22" + 1 for each n =z 1.
Suppose F, G € S and r is a fixed integer. For each integer n > 0, let
A (F, G) be the (n + 1) by (n + 1) matrix with (%, j)th entry

Fy(x)/x®+ G;(x)/x? (for 0 <4, § <n).

For any matrix 4 with entries in Z[x], we define ¢,.{(4) to be the matrix
formed from A by replacing each entry with the coefficient of z”. We let D, (4)

be the determinant of ¢,(4).

*At the Western Number Theory Conference in Asilomar, December, 1985.
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Finally, we let B,(F) be the (n + 1) by (n + 1) matrix with (Z, j)'" entry

b (0 £ 2, §J £n), where

i
. i . .
Fo(x)/z* = b, +j§%bhj(xJ+-x-m.

We will see that the value D,{A,(F, G)] is easily computed in terms of the de-
terminants of B, (F), Bn(G), and D, [A,(I, I)].

Lemma 1: Suppose that 4, U, and V are n x n matrices, where 4 has entries from
C{z]) and U and V from €. Then, for any integer r,

e, (VAV) = Uec,(4)V.

The proof of this lemma follows immediately from the observation that, if

a(x), b(z) € C[z] and o, B € €, then a times the coefficient of z¥ in a(x) plus

B times the coefficient of x” in b(x) equals the coefficient of 27 in aa(z) +
Bb(x) .

We also make the following trivial observation

Lemma 2: 1f F, G € S, then for any positive integer =,
A (Fy G) = By(F)An(I, I)B,(G)T.

Combining Lemmas 1 and 2, we observe

Corollary 1: I1If F, G € § and r is a given integer, then

Dp[4,(Fs ©)] = Dp[A,(I, I)] - Det[Bu(F)] » Det[B,(&)].
Observing that, by definition, B,(F) is a lower triangular matrix with diagonal
entries F,(0), 0 < m £ n, we have

n
Lemma 3: 1f F € S, then Det{B,(F)] = [I F,(0).
m=0

We now compute the values of D,[4,(I, I)].
Lemma 4: For integers r and n with n = 0, we have
' 2n if r=0
D [A,(I, D)1 =<(-1) [n*1)/2)  if p » 0 and 2r divides n + 1 or n + r,

0 otherwise.

Proof: er[An(I, I)] has (i, j)' entry equal to the coefficient of z” in (x® +

:m"i) (zd + x79) for 7, § 2 1. Thus,

e, [A, (I, I)] = cn[4,(T, I)],
so we will assume henceforth that r 2 0. Now, if r = 0,

1 i =g-=0,
legUn(Z, TN ;=<2 =450,
0 otherwise,

and so it is clear that Dg[4,(I, I)] = 2".
Let X = ¢, (4,(I, 1D} and D, = D, [4,(I, I)]. For r 2 0,
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1 Tk g o=
;=L -4l =

Q otherwise.

We will prove the result for fixed » by induction on 7.
Now if 0 € m < » ~ 1, then all entries of the top row of X are zero, and so

D, = 0. If n=pr, then ¥’ has ones on the reverse diagonal and zeros every-
where else, so that
D, = (-1) =1/

For  + 1 £ n < 2r - 2, observe that the r - 15% and r + 15% rows of X are both
(0, 1, 0, ..., 0) so that D, = 0.
Now let K, be the 2r by 2r matrix with r x r block structure

Oy | I

Ir‘ 02"
so that Det X, = (-1)7.

1f n = 2r - 1, then the ¢ row of x has all zero entries except for ones

in columns r - 7 and r + 7 if © < » ~ 1, and in column 7 - r if © 2 r. We sub-
tract row r + 7 from row r -~ 1 for + =1, 2, ..., r — 1, which are all determi-
,nant-preserving operations and get the matrix K,. Thus,
D, = Det X, = (-1)(n+1)/2,

Now suppose n 2 2r. If © 2n - r + 1, then row ¢ has just one nonzero entry
(in column j = 7 - r) and so we can subtract this row from all other rows with
entries in the (4 - r)th column. (This is clearly a determinant-preserving
operation.) We perform the same action for each column j, with j 27 - r + 1
and we are left with the matrix

[ L J?;]’ where ¥ = eplAy-3x (1, 1)1

Thus, .
D, = Dy_p. Det K, = (~Dim=2r+1)/2)(21)" = (-1)ln+1)/2)

by the induction hypothesis.
So by combining Corollary 1 with Lemmas 3 and 4, we may state the main

Theorem: 1f F, G € S and 4 is the (n + 1) by (n + 1) matrix whose (%, F)th en-
try is the coefficient of x**7*" in F; (z) + G;(x), then the determinant of 4

|equals 2" ifr=0,
n
[ I Fm(O)Gm(O)]' (- D21 4f p 2 0 and 2 divides n + 1
08l . orn + 7,
0 otherwise.

Some consequences are

Corollary 2: The determinant of M, with ¢, equal to the coefficient of z" in
(1 +z + 22)" is 2. '

Proof: Take F,(x) = Gn(x) = (1L + & + x?)™ in the Theorem.

Corollary 3: The determinant of M, with ¢, = [n Zf T} is:
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2" if r =0,
(- +1/21 5f » = 0 and 2r divides n + 1 or n + r,

0 otherwise.
Proof: Take F,(x) = Gpn(z) = (1 + 2)?" in the Theorem.
We make an interesting combinatorial observation in

Corollary 4: 1f ¢, is the coefficient of x” in (1 + tx + x2)* , then the wvalue
of the determinant of ¥, is independent of ¢.

Proof: Take F,(x) = G,(x) = (1 + tx + x2)™ in the Theorem and observe that each
F_(0) is independent of ¢.

Corollary 5: The determinant of M, with ¢, equal to the coefficient of z”** in
(@ + bx + cx2)* (with a, b, ¢ = 0) is:

2" if » = 0,
(a"‘rc”+’f"+l)/2 = (-l)“n+l)/2] if r = 0 and 2" divides n + 1 or n + r,
0 ) otherwise.

Proof: Let 8§ = (ac)l/z, z = By/c, so that ¢, is the coefficient of
en+1“yn+r

Cn+r‘

in a1 + (b/e)y + y2]". Let d, be the coefficient of y®*7 in [1 + (b /8)y +
y2]™ so that Cy = (a" Te?*tt)1/24,. Then

€pCy -+ Cn 1 dydy .. dy, 1 »

C1Cy ~vr Chinl| o (cla)*!? 8 . 0 41d2-"' dn+l ] . 0 )
. 0 0% AR 0 O gn
c, Cop d, ... dy,

and so the result follows immediately from Corollaries 3 and 4.
Corollary 6: The Legendre polynomials [P, (%¢)],,, are defined by

(1 - 2tz + 22) 712 = 5 P ()z".

n20

By taking ¢, = P,(%), the determinant of M, is
, n+1l
(s 1)( 3

4
Proof: Use Corollary 5 with b = t and b2 - 4ae = 1.

Clearly, this technique of computing this class of determinants may be gen-
eralized to a number of different questions. The real keys to the method are
that (1, = + "1, 22 + 272, ...) form an additive basis for Z[z + z~ ') over Z;
and that the action of taking the coefficients of x” of the entries of a matrix
of polynomials, commutes with multiplication by matrices with entries in €
(i.e., Lemma 1).
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