ON A CLASS OF DETERMINANTS

Andrew Granville

Queen's University, Kingston, Ontario, Canada, K7L 3N6 (Submitted June 1987)

Recently,* D. H. Lehmer posed the following problem:

If c_n is the coefficient of x^n in $(1+x+x^2)^n$, then show that 2^n is the determinant of the matrix

$$M_n = \begin{bmatrix} c_0 c_1 & \dots & c_n \\ c_1 c_2 & \dots & c_{n+1} \\ \vdots & & & & \vdots \\ c_n & \dots & c_{2n} \end{bmatrix}.$$

He noted that the generating function for the c_n 's is

$$(1 - 2x - 3x^2)^{-1/2} = 1 + x + 3x^2 + 7x^3 + 19x^4 + \cdots$$

One might equally ask about the value of the same determinant where the c_n 's are the coefficients of x^n in $(a+bx+cx^2)^n$ [note that these c_n 's have generating function $(1-2bx+dx^2)^{-1/2}$, where $d=b^2-4ac$]; or perhaps where the c_n 's are the coefficients of x^{n+r} in $(a+bx+cx^2)^n$ for some fixed integer r.

As an example, consider the case where the c_n 's are the coefficients of x^{n+r} in $(1+2x+x^2)^n=(1+x)^{2n}$, that is,

$$c_n = \begin{bmatrix} 2n \\ n+r \end{bmatrix}.$$

There does not seem to be an immediate combinatorial argument for finding the determinant even in this case.

In this paper we will answer all of these questions in a very simple way, by easy manipulations of the defining polynomials of the c_n 's. We make the following definitions:

Let S be the set of sequences of polynomials $F=[F_n(x)]_{n\geq 0}$ such that each $F_n(x)$ has degree less than or equal to 2n, and such that $F_n(x)/x^n$ is symmetric (about x^0). [Clearly $F_n(x)=(1+x+x^2)^n$ and $F_n(x)=(1+x)^{2n}$ are examples of such sequences.] We define the "elementary sequence" of S to be

$$I = \left[I_n(x)\right]_{n \ge 0},$$

where $I_0(x) = 1$ and $I_n(x) = x^{2n} + 1$ for each $n \ge 1$.

Suppose F, $G \in S$ and r is a fixed integer. For each integer $n \ge 0$, let $A_n(F,G)$ be the (n+1) by (n+1) matrix with $(i,j)^{\text{th}}$ entry

$$F_i(x)/x^i \cdot G_j(x)/x^j$$
 (for $0 \le i$, $j \le n$).

For any matrix A with entries in $\mathbb{Z}[x]$, we define $c_r(A)$ to be the matrix formed from A by replacing each entry with the coefficient of x^r . We let $\mathcal{D}_r(A)$ be the determinant of $c_r(A)$.

^{*}At the Western Number Theory Conference in Asilomar, December, 1985.

Finally, we let $B_n(F)$ be the (n+1) by (n+1) matrix with $(i,j)^{\text{th}}$ entry $b_{i,j}$ $(0 \le i, j \le n)$, where

$$F_{i}(x)/x^{i} = b_{i,0} + \sum_{j=1}^{i} b_{i,j}(x^{j} + x^{-j}).$$

We will see that the value $D_r[A_n(F,G)]$ is easily computed in terms of the determinants of $B_n(F)$, $B_n(G)$, and $D_r[A_n(I,I)]$.

Lemma 1: Suppose that A, U, and V are $n \times n$ matrices, where A has entries from $\mathbb{C}[x]$ and U and V from \mathbb{C} . Then, for any integer r,

$$c_r(UAV) = Uc_r(A)V.$$

The proof of this lemma follows immediately from the observation that, if $\alpha(x)$, $b(x) \in \mathbb{C}[x]$ and α , $\beta \in \mathbb{C}$, then α times the coefficient of x^r in $\alpha(x)$ plus β times the coefficient of x^r in b(x) equals the coefficient of x^r in $\alpha(x) + \beta b(x)$.

We also make the following trivial observation

Lemma 2: If F, $G \in S$, then for any positive integer n,

$$A_n(F, G) = B_n(F)A_n(I, I)B_n(G)^{\top}.$$

Combining Lemmas 1 and 2, we observe

Corollary 1: If F, $G \in S$ and r is a given integer, then

$$D_r[A_n(F, G)] = D_r[A_n(I, I)] \cdot \text{Det}[B_n(F)] \cdot \text{Det}[B_n(G)].$$

Observing that, by definition, $B_n(F)$ is a lower triangular matrix with diagonal entries $F_m(0)$, $0 \le m \le n$, we have

Lemma 3: If $F \in S$, then $Det[B_n(F)] = \prod_{m=0}^{n} F_m(0)$.

We now compute the values of $D_r[A_n(I, I)]$.

Lemma 4: For integers r and n with $n \ge 0$, we have

$$D_r\left[A_n(I,\ I)\right] = \begin{cases} 2^n & \text{if } r=0\\ (-1)^{\left\lceil (n+1)/2\right\rceil} & \text{if } r\neq 0 \text{ and } 2r \text{ divides } n+1 \text{ or } n+r,\\ 0 & \text{otherwise.} \end{cases}$$

Proof: $c_r[A_n(I,\ I)]$ has $(i,\ j)^{\text{th}}$ entry equal to the coefficient of x^r in (x^i+x^{-i}) (x^j+x^{-j}) for $i,\ j\geq 1$. Thus,

$$c_r[A_n(I, I)] = c_{-r}[A_n(I, I)],$$

so we will assume henceforth that $r \ge 0$. Now, if r = 0,

$$[c_0(A_n(I, I))]_{i,j} = \begin{cases} 1 & i = j = 0, \\ 2 & i = j > 0, \\ 0 & \text{otherwise,} \end{cases}$$

and so it is clear that $D_0[A_n(I,\ I)]=2^n$. Let $X=c_r[A_n(I,\ I)]$ and $D_n=D_r[A_n(I,\ I)]$. For $r\geq 0$,

$$(X)_{i,j} = \begin{cases} 1 & i+j=2, \\ 1 & |i-j|=2, \\ 0 & \text{otherwise.} \end{cases}$$

We will prove the result for fixed r by induction on n.

Now if $0 \le n \le p-1$, then all entries of the top row of X are zero, and so $D_n=0$. If n=r, then X has ones on the reverse diagonal and zeros everywhere else, so that

$$D_n = (-1)^{(n+1)/2}$$

For $r+1 \le n \le 2r-2$, observe that the $r-1^{\rm st}$ and $r+1^{\rm st}$ rows of X are both $(0,\ 1,\ 0,\ \ldots,\ 0)$ so that D_n = 0.

Now let K_r be the 2r by 2r matrix with $r \times r$ block structure

$$\begin{bmatrix} O_r & I_r \\ \hline I_r & O_r \end{bmatrix}$$

so that Det $K_r = (-1)^r$.

If n=2r-1, then the i^{th} row of x has all zero entries except for ones in columns r-i and r+i if $i \le r-1$, and in column i-r if $i \ge r$. We subtract row r+i from row r-i for $i=1,\ 2,\ \ldots,\ r-1$, which are all determinant-preserving operations and get the matrix K_r . Thus,

$$D_n = \text{Det } K_r = (-1)^{(n+1)/2}.$$

Now suppose $n \geq 2r$. If $i \geq n-r+1$, then row i has just one nonzero entry (in column j=i-r) and so we can subtract this row from all other rows with entries in the $(i-r)^{\text{th}}$ column. (This is clearly a determinant-preserving operation.) We perform the same action for each column j, with $j \geq n-r+1$ and we are left with the matrix

$$\begin{bmatrix} \underline{Y} & 0 \\ 0 & K_r \end{bmatrix}, \text{ where } \underline{Y} = c_r [A_{n-2r}(\underline{I}, \underline{I})].$$

Thus,

$$D_n = D_{n-2r}$$
 Det $K_r = (-1)^{\lfloor (n-2r+1)/2 \rfloor} (-1)^r = (-1)^{\lfloor (n+1)/2 \rfloor}$

by the induction hypothesis.

So by combining Corollary 1 with Lemmas 3 and 4, we may state the main

Theorem: If F, $G \in S$ and A is the (n+1) by (n+1) matrix whose $(i, j)^{\text{th}}$ entry is the coefficient of x^{i+j+r} in $F_i(x) \cdot G_j(x)$, then the determinant of A equals

$$\begin{bmatrix} \prod_{n=0}^{n} F_m(0) G_m(0) \end{bmatrix}. \begin{cases} 2^n & \text{if } r = 0, \\ (-1)^{\lceil (n+1)/2 \rceil} & \text{if } r \neq 0 \text{ and } 2 \text{ divides } n+1 \\ 0 & \text{otherwise.} \end{cases}$$

Some consequences are

Corollary 2: The determinant of M_n with c_n equal to the coefficient of x^n in $(1+x+x^2)^n$ is 2^n .

Proof: Take $F_m(x) = G_m(x) = (1 + x + x^2)^m$ in the Theorem.

Corollary 3: The determinant of M_n with $c_n = \begin{bmatrix} 2n \\ n+r \end{bmatrix}$ is:

$$\begin{cases} 2^n & \text{if } r = 0, \\ (-1)^{\left((n+1)/2\right)} & \text{if } r \neq 0 \text{ and } 2r \text{ divides } n+1 \text{ or } n+r, \\ 0 & \text{otherwise.} \end{cases}$$

Proof: Take $F_m(x) = G_m(x) = (1 + x)^{2m}$ in the Theorem.

We make an interesting combinatorial observation in

Corollary 4: If c_n is the coefficient of x^n in $(1+tx+x^2)^n$, then the value of the determinant of M_n is independent of t.

Proof: Take $F_m(x) = G_m(x) = (1 + tx + x^2)^m$ in the Theorem and observe that each $F_m(0)$ is independent of t.

Corollary 5: The determinant of M_n with c_n equal to the coefficient of x^{n+r} in $(a+bx+cx^2)^n$ (with a, b, $c \neq 0$) is:

$$(\alpha^{n-r}c^{n+r})^{(n+1)/2} = \begin{cases} 2^n & \text{if } r = 0, \\ (-1)^{\{(n+1)/2\}} & \text{if } r \neq 0 \text{ and } 2^n \text{ divides } n+1 \text{ or } n+r, \\ 0 & \text{otherwise.} \end{cases}$$

Proof: Let $\theta = (\alpha c)^{1/2}$, $x = \theta y/c$, so that c_n is the coefficient of

$$\frac{\theta^{n+r}y^{n+r}}{c^{n+r}}$$

in $a^n[1+(b/\theta)y+y^2]^n$. Let d_n be the coefficient of y^{n+r} in $[1+(b/\theta)y+y^2]^n$ so that $c_n=(a^{n-r}c^{n+r})^{1/2}d_n$. Then

$$\begin{bmatrix} c_0c_1 & \dots & c_n \\ c_1c_2 & \dots & c_{n+1} \\ \vdots & & & \\ c_n & \dots & c_{2n} \end{bmatrix} = (c/a)^{r/2} \begin{bmatrix} 1 & & & & \\ & \theta & & 0 \\ & & \theta^2 & \ddots & \\ & 0 & & & \theta^n \end{bmatrix} \begin{bmatrix} d_0d_1 & \dots & d_n \\ d_1d_2 & \dots & d_{n+1} \\ \vdots & & & \\ d_n & \dots & d_{2n} \end{bmatrix} \begin{bmatrix} 1 & & & & \\ & \theta & & 0 \\ & & & \theta^2 & \ddots & \\ & & & & & \theta^n \end{bmatrix},$$

and so the result follows immediately from Corollaries 3 and 4.

Corollary 6: The Legendre polynomials $[P_n(t)]_{n\geq 0}$ are defined by

$$(1 - 2tx + x^2)^{-1/2} = \sum_{n \ge 0} P_n(t)x^n.$$

By taking $c_n = P_n(t)$, the determinant of M_n is $2^n \left(\frac{t^2-1}{4}\right)^{\binom{n+1}{2}}.$

Proof: Use Corollary 5 with b = t and $b^2 - 4ac = 1$.

Clearly, this technique of computing this class of determinants may be generalized to a number of different questions. The real keys to the method are that $(1, x + x^{-1}, x^2 + x^{-2}, \ldots)$ form an additive basis for $\mathbb{Z}[x + x^{-1}]$ over \mathbb{Z} ; and that the action of taking the coefficients of x^r of the entries of a matrix of polynomials, commutes with multiplication by matrices with entries in \mathbb{C} (i.e., Lemma 1).