Functiones et Approximatio XXXVIII.2 (2008), 125–127

CORRIGENDUM TO "REFINEMENTS OF GOLDBACH'S CONJECTURE, AND THE GENERALIZED RIEMANN HYPOTHESIS"

ANDREW GRANVILLE

Abstract: Karin Halupczok [4] pointed out that we have stated an estimate in [3] that does not follow as easily as claimed. Although we are unable to obtain the claimed estimate, we prove a good enough estimate to (mostly) recover the theorems claimed in [3].

An explicit version of the prime number theorem states that if x is an integer and $1 \le T \le x$ then

$$\sum_{p \le x} \log p = x - \sum_{\substack{\rho \\ |\operatorname{Im}\rho| \le T}} \frac{x^{\rho}}{\rho} + O\left(\frac{x(\log x)^2}{T}\right),\tag{1}$$

where the sum is over zeros ρ of $\zeta(\rho) = 0$ with $\operatorname{Re}(\rho) > 0$. Let $B = \sup\{\operatorname{Re}\rho : \zeta(\rho) = 0\}$ (note that $1 \ge B \ge 1/2$). We claimed [3, (5.1)] that by partial summation with T = x it is not hard to show that

$$\sum_{2N \le x} G(2N) = \sum_{p+q \le x} \log p \log q = \frac{x^2}{2} - 2 \sum_{\substack{\rho \\ |\operatorname{Im}\rho| \le x}} \frac{x^{1+\rho}}{\rho(1+\rho)} + O(x^{2B+o(1)});$$

however we have not been able to repeat the argument and Karen Halupczok [4] pointed out the references [1,2] where this issue has been investigated in some detail for $B = \frac{1}{2}$, and nothing so strong has been proved. Here we sketch a simple argument to prove that

$$\sum_{2N \le x} G(2N) = \sum_{p+q \le x} \log p \log q = \frac{x^2}{2} - 2 \sum_{\substack{\rho \\ |\mathrm{Im}\rho| \le x}} \frac{x^{1+\rho}}{\rho(1+\rho)} + O(x^{\frac{2+4B}{3}} (\log x)^2).$$
(2)

Thanks are due to Karin Halupczok for finding the mistake and for discussing this correction.

126 Andrew Granville

Note that $2B < \frac{2+4B}{3} < 1+B$ as B < 1, so our error term is not quite as good as was claimed in [3], but it is comfortably strong enough to recover Theorem 1A of [3]. Using a zero-density estimate one can improve the error term to $\ll x^{2B}(\log x)^{O(1)}$, as claimed, when $B \geq \frac{3}{4}$, and to an exponent between 2B and $\frac{2+4B}{3}$ when $\frac{1}{2} \leq B \leq \frac{3}{4}$. This mistake is repeated in all four parts of Theorem 1 in [3], so corrections

This mistake is repeated in all four parts of Theorem 1 in [3], so corrections are needed throughout: Replacing 2B by $\frac{2+4B}{3}$ on the fourth line of page 171 allows us to recover Theorem 1B. Similarly replacing 2B by $\frac{2+4B}{3}$ in (1.3) allows us to recover Theorem 1D. There is a mistake in the proof of Theorem 1C, two lines above (5.5), where complex variables ρ and σ are treated as if they are real variables. If a similar correction is made there we do not quite recover Theorem 1C. Instead we can prove that if (1.2) holds then the Riemann Hypothesis for Dirichlet *L*-functions mod *q* holds; and if the Riemann Hypothesis for Dirichlet *L*-functions mod *q* holds then we obtain (1.2) with error term $O(x^{\frac{4}{3}}(\log x)^2)$.

Sketch of proof of (2). What does follow from (1) by partial summation (and noting that $\sum_{T < |\text{Im}\rho| < x} |x^{1+\rho}/\rho(1+\rho)| \ll x^2 \log T/T$), is

$$\sum_{p+q \le x} \log p \log q = \frac{x^2}{2} - 2 \sum_{\substack{\rho \\ |\operatorname{Im}\rho| \le x}} \frac{x^{1+\rho}}{\rho(1+\rho)} + \sum_{\substack{\rho,\rho' \\ |\operatorname{Im}\rho|, |\operatorname{Im}\rho'| \le T}} \frac{\Gamma(\rho)\Gamma(\rho')}{\Gamma(\rho+\rho')} \cdot \frac{x^{\rho+\rho'}}{\rho+\rho'} + O\left(\frac{x^2(\log x)^2}{T}\right)$$

Stirling's formula implies that $|e^{\rho}\Gamma(\rho)| \simeq |\rho^{\rho-1/2}| = |\rho|^{\operatorname{Re}(\rho)-\frac{1}{2}}e^{-\arg(\rho)\operatorname{Im}(\rho)}$ so that if $\rho = \beta + i\gamma$ with $\beta \in (0, 1)$ and $|\gamma| \gg 1$ then $|e^{\rho}\Gamma(\rho)| \simeq |\gamma|^{\beta-\frac{1}{2}}e^{-\frac{\pi}{2}|\gamma|}$, since $\arg(\rho) = \pm(\frac{\pi}{2} + O(\frac{1}{|\gamma|}))$ when $\operatorname{Im}(\rho) = \pm|\gamma|$. Let $\rho' = \beta' + i\gamma'$ with $|\gamma| \ge |\gamma'|$. Therefore if γ and γ' have the same sign then

$$\Gamma(\rho)\Gamma(\rho')/(\rho+\rho')\Gamma(\rho+\rho') \asymp |\gamma|^{\beta-\frac{1}{2}}|\gamma'|^{\beta'-\frac{1}{2}}/|\gamma+\gamma'|^{\beta+\beta'+\frac{1}{2}} \asymp |\gamma'|^{\beta'-\frac{1}{2}}/|\gamma|^{\beta'+1}.$$

If γ and γ' have opposite signs then

$$\begin{split} \Gamma(\rho)\Gamma(\rho')/(\rho+\rho')\Gamma(\rho+\rho') &\asymp |\gamma|^{\beta-\frac{1}{2}}|\gamma'|^{\beta'-\frac{1}{2}}e^{-\pi|\gamma'|}/(1+|\gamma+\gamma'|)^{\beta+\beta'+\frac{1}{2}}\\ &\ll |\gamma'|^{\beta'-\frac{1}{2}}/|\gamma|^{\beta'+1}, \end{split}$$

since $|\gamma|^{\beta+\beta'+\frac{1}{2}}e^{-\pi|\gamma'|} \ll (1+|\gamma+\gamma'|)^{\beta+\beta'+\frac{1}{2}}$. We have $(|\gamma'|/|\gamma|)^{\beta'} \leq 1$ which implies that $|\gamma'|^{\beta'-\frac{1}{2}}/|\gamma|^{\beta'+1} \leq 1/|\gamma'|^{\frac{1}{2}}|\gamma|$. Hence the final sum in the last displayed equation is $\ll x^{2B}\sum_{|\gamma'|\leq |\gamma|\leq T}1/|\gamma'|^{\frac{1}{2}}|\gamma| \ll x^{2B}\sum_{|\gamma|\leq T}(\log|\gamma|)/|\gamma|^{\frac{1}{2}} \ll x^{2B}T^{1/2}(\log T)^2$; and (2) follows by selecting $T = x^{\frac{4}{3}(1-B)}$.

Improvement using a zero-density estimate. In the bound above the contribution is majorized by those terms with $\beta, \beta' \geq \frac{1}{2}$ and $\gamma, \gamma' \geq 0$ (using the

symmetries of the zeros). By using Carlson's zero-density estimate $\#\{\rho: \zeta(\rho) = 0 \text{ and } \beta \geq \sigma, |\gamma| \leq T\} \ll T^{4\sigma(1-\sigma)}(\log T)^{O(1)}$, we can improve our bound (we will select $T \leq x^{1/(8B-4)}$ below, which simplifies several steps, since then $B \leq \frac{1}{2} + \frac{\log x}{8\log \gamma}$): throughout we sum over the zeros arranged by height, in dyadic intervals, and obtain that the final sum in the displayed equation is

$$\ll \sum_{1 \le \gamma' \le \gamma \le T} \frac{(\gamma')^{\beta'-\frac{1}{2}}}{\gamma^{\beta'+1}} \cdot x^{\beta+\beta'} \ll \mathcal{L} \sum_{\gamma \le T} \max_{1 \le t \le \gamma} \int_{\sigma=1/2}^{B} \frac{t^{\sigma-\frac{1}{2}}}{\gamma^{\sigma+1}} \cdot x^{\beta+\sigma} t^{4\sigma(1-\sigma)} d\sigma$$
$$\ll \mathcal{L} \sum_{\gamma \le T} \max_{1/2 \le \sigma \le B} x^{\beta+\sigma} \gamma^{4\sigma(1-\sigma)-\frac{3}{2}} \ll \mathcal{L} \sum_{\gamma \le T} x^{\beta+B} \gamma^{4B(1-B)-\frac{3}{2}}$$
$$\ll \mathcal{L} \max_{u \le T} \max_{1/2 \le \tau \le B} x^{\tau+B} u^{4B(1-B)+4\tau(1-\tau)-\frac{3}{2}} \ll \mathcal{L} \max_{u \le T} x^{2B} u^{8B(1-B)-\frac{3}{2}}$$
$$\ll x^{2B} (1+T^{8B(1-B)-\frac{3}{2}}) (\log x)^{O(1)}$$

where $\mathcal{L} = (\log x)^{O(1)}$. If $B \geq \frac{3}{4}$ then this is $\ll \mathcal{L}x^{2B}$; selecting $T = x^{1/(8B-4)}$ we get an error term $\ll x^{2B}(\log x)^{O(1)}$, which is as good as can be hoped for. If $B \leq \frac{3}{4}$ then the above error term is $\ll \mathcal{L}x^{2B}T^{8B(1-B)-\frac{3}{2}}$; to minimize we select $T = x^{4(1-B)/(16B(1-B)-1)}$, which leads to an error term of $x^{\frac{2+4B}{3}-\theta_B}(\log x)^{O(1)}$ where $\theta_B = \frac{16(1-B)(1-2B)^2}{3(16B(1-B)-1)}$.

Bibliography

- Gautami Bhowmik and Jan-Christoph Schlage-Puchta, Distribution of Goldbach numbers (to appear).
- [2] A. Fujii, An additive problem of prime numbers, II Proc. Japan Acad 67A (1991), 248–252
- [3] Andrew Granville, Refinements of Goldbach's conjecture, and the Generalized Riemann Hypothesis Functiones et Approximatio 37 (2007), 159–173
- [4] Karin Halupczok, Email communication

Address: Département de Mathématiques et statistique, Université de Montréal, CP 6128 succ. Centre-Ville, Montréal QC H3C 3J7, Canada

E-mail: andrew@dms.umontreal.ca Received: