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Abstract. We find bounds for the coefficients of a divisor g(X) of a given polynomial
F0.

1. Introduction

Algorithms that factor a given polynomial f(X)e Z [XT] in polyno-
mial time use bounds for the coefficients of any possible divisor g
of f (see [1]). Currently the most practical such bounds are both due
to MIGNOTTE: In [3] he proved that if g is irreducible then

lgll < eY(d + 25/d + 2+ g+ (1)

where d is the degree of g and, for any arbitrary polynomial, P(X) =
12
= > p, X', we define | P|| : = (Z Ipilz) . In [2] MIGNOTTE proved that

i20 iz0

for any divisor g of f,

gl <240 111 )

(See Section 2 of [3] for lots of other related inequalities.)

As the smallest factor of a polynomial f is irreducible and has
degree < n/2 (where n = degree of f) we see that the factoring
algorithm described in [1] can be implemented under the assumption
that there exists a factor g of f with
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1+ a2
gl < mm{z"ﬂufu e (g ilft!(n+\/§?+4)) }

MIGNOTTE has also shown that for a given integer polynomial g,
there exists an integer polynomial f, of degree around d* logd, such
that the 27 in (2) cannot be replaced by (2 — ¢)°. However a careful
examination of (2) leads one to realize that the inequality is probably
not sharp if the degree of g is greater than, say, two-thirds of the degree
of . For, if f = g h then one should expect a bound on the coefficients
of g of roughly the same order of magnitude as the bound on the
coefficients of A. This indeed follows from our main result:

Theorem. If f(X) and g (X) are polynomials with complex coefficients,
of degree n and d respectively, such that (i) g (X) divides f(X), and (ii)
|£(0)] = |g (0) # O, then

gl < (zﬂ(jﬂ 111 3)

Remark. That £(0) # 0 in (ii) simply means that we have removed
any powers of X dividing f(X) — clearly this does not affect the result.
That | £(0)| = |g(0)| in (ii) prohibits one from artificially multiplying g
by a large constant.

As a consequence of the theorem we have

Corollary. If f(X) and g (X) are polynomials with integer coefficients
such that g divides | then

gl < (‘F * ‘) 171, @)

where n is the degree of f.

For an arbitrary divisor g of f, (4) improves on (2). It is thus of
interest to determine the smallest B such that the estimate

lgh < BT fl, n=degf
holds uniformly as n — oo, for all g dividing /. By (2), # < 2 and (4)

improves this to < (1 +2\/§> ~ 1.61803.... We use the following

lemma to find a non-trivial lower bound on f:
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Lemma. If f(X) and g (X) are polynomials satisfying (i) and (ii) of the
Theorem, and the coefficients of g are all non-negative, then

B= (g fDiee, &)

where, for an arbitrary polynomial P(X) = Y p, X', we define |P|: =
= Z |pil- 20

i>0

Ifwechooseg(X) =1+ cX +c? X+ ...+ "X Tand f(X) =
=1 — ¢?X? for some positive real number ¢ and integer d > 1, then
B=((1 =)~ +c?)" by the Lemma. The choice d =35,
¢ = (0.8846 leads to > 1.208....
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2. The Proof of the Theorem

Define a map ®: C[X]— C[X] by

ax-—1
(/) =0 [1 a( )
Ty -
where the product counts each of any multiple roots. In [2], MIGNOTTE
observed that

I@X — D PX)| = (X — a) P(X)]

for any polynomial P(X) and complex number a, and so

lel/Nril =< l—lg lal> le @1/, ®)

(f/'ga)‘(i)
for any polynomials f'and g satisfying (i) and (ii). Clearly (3) will follow
from this equation if (3) holds with f replaced by ® (/) and g replaced
by @ (g). Thus we may henceforth assume
(iii) All roots of f(X) lie on or outside the unit circle.
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So suppose that fand g satisfy (i), (ii) and (iii) above. The coeflicient
of X¢~/in g(X) is given by the leading coefficient of g times the sum,
over all j-subsets of the d roots of g(X), of the product of those j
roots. Now, as each root of g (X) lies on or outside the unit circle, this

has magnitude less than or equal to <;i) times the leading coefficient
of g times the absolute value of the product of all the roots of g (X),
which equals (j) lg (0)|. Therefore, by (ii),

g(X) is majorized by [f(0)(1 + X)~ ¥))
(The power series Y u; X" is said to be majorized by ) v, X" if ju| <v
iz0 iz0

for each i.)

Remark. (2) follows immediately from (7), as |f(0)l < [ f| and

£0)-(7)=2

We now use a different method to majorize g(X): Define

n—d
h(X) =f(X)g(X)=c[] (X —a)

i=1

Thus
1/h(X) = 1/(11(0) n (1 - Xaf‘)).

Now, as each ;! lies on or inside the unit circle (by (iii)), thus the
power series 1/(1 — X ") is majorized by 1/(1 — X). Therefore, as
R (0) = 1 (by (ii)), we see that 1/h(X) is majorized by 1/(1 — Xy
Now, by definition, g (X) = (1/A(X))f(X) and so

g(X) is majorized by <i £ X’)/(l - Xy (8)

where f(X): = ) f;X’. By expanding this product we deduce that

i=0

gl < zlfx(’" jn—d- 1) ©)

m—j

d
for each m =0, 1, ..., d where g(X): = Y g, X"

m=0
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Now, from (7), as |f(0)] < || ],

d 5 s d d 2 B 5 n—d—1 d 2
m=2¢iz-—n+iigMI < ”fH <m:2¢;n+]<m))~ “fH ( jgo <j>>

using the change of variable j = d — m. So in order to prove (3) we
need only show

Y Il < llfl!2<n 4 d). (10)

For convenience write u=2d—n and v =n—d— 1. For each
0 <14, j < u define
Sro\r+o+j—i
E()
r=0

d.

(W

and

e =

1

KVM:

/=
Note that d, ; < d, ; for each i and j and so ¢, < ¢,. Therefore, by (9),
u u m . 2
—i+
Lisl< T (L") -
m=0

m=0 \i=0

= ‘Zodi,flfilz +2 ) d il <

0Ki<j<u

< Y elff <elif)?
i=0
as 21f114] <A + |/ But then (10) follows as
e v+ r\'E v+
w3 (TIEl)

=0
u 2 2
< v+u+1 Z vtry_(v+u+l - d '
v+1 J &\ v v+ 1 —d
3. Upper and Lower Bounds for S

Proof of the Lemma: For an arbitary polynomial P, we note the
inequalities
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[Pl <[Pl < (1+degP)|P]

which are given in [3]; also that [P¥| < | Pf, with equality whenever the
coefficients of P are all non-negative.

So suppose that f and g satisfy (i) and (ii) above, and that the
coefficients of g are all non-negative. Then, for any positive integer &,

LI/ = g M+ deg(g) = (gl/LAD (1 + k deg(g)).

and so

1 o 1
logﬂZkIglgo P log (llg“li/1l.f H)Zdeg

log (1IN /D-
7 oglg

Sketch of the proof of the Corollary: After dividing f and g by any
powers of X that divide them, and multiplying g through by f(0)/g (0),
the resulting polynomials, f and g, satisfy (i) and (ii) of the Theorem.
The result thus follows from proving the inequality

R

o \J 2

for all positive n > d > 1.
To prove (11) we make repeated use of Stirling’s formula in the form

1 <nl@an) 2 (nfe)y " < e'™™
If d<2n/3 then the left-hand side of (11) is bounded above by
,io (Jd)z = (%j) , and (11) follows from an easy application of Stirl-
ing’s formula. If 2n/3 < d < n then the left-hand side of (11) is boun-
ded above by (n —d + 1)<n i d>2, and this expression is maximized

when dz(lj-l—/—-—\/g>n+ O (1); (11) then follows from Stirling’s
formula. 2
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