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1. Introduction

Let K be a real quadratic field with discriminant d, and for a (fractional) ideal a of K,
let Na be the norm of a. For a given fractional ideal I of K, and Dirichlet character χ of
conductor q, we define

ζI(s, χ) = ζCl(I)(s, χ) :=
∑

a

χ(Na)
(Na)s

where the sum is over all integral ideals of K which are equivalent to I. Our goal is to
give a short (finite) formula to evaluate ζI(0, χ).

Our starting point is the well known formula that, for the Dirichlet L-function L(s, χ),
we have

(1) L(0, χ) = −
∑

1≤a≤q−1

χ(a)
a

q
whenever χ(−1) = −1,

which we wish to generalize to our new situation. We think of (1) as the one-dimensional
case. To find the natural two-dimensional formula one must first realize that the set of
rational integers which arise from considering K is not the set of all integers, but rather
the set of norms of integral ideals of K. These can be expressed as the set of values taken
by certain binary quadratic forms f of discriminant d, and this leads us to define

(2) G(f, χ) :=
∑

1≤m,n≤q−1

χ(f(m,n))
m

q

n

q
,

as a generalization of (1).
In order to relate G(f, χ) to ζI(0, χ), we need to review the classical theory of cycles of

reduced forms corresponding to a given ideal: For β ∈ K, write β � 0, and say that β is
totally positive, if β > 0 and β > 0, where β denotes the algebraic conjugate of β. Any
ideal I of K has a Z-basis (v1, v2) of I for which v1 � 0 and such that if α = v2/v1 then
0 < α < 1 and the regular continued fraction expansion of α is purely periodic, that is

α = [0, a1, . . . , a�]
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for some positive integers � and a1, . . . , a�, see Remark 1 below. Note that aj+� = aj for
all j ≥ 1. For n ≥ 1 we denote pn/qn := [0, a1, a2, . . . , an] and we write αn := pn − qnα
with α−1 = 1 and α0 = −α. Finally define

fj(x, y) = (v1αj−1x + v1αjy)(v1αj−1x + v1αjy)/NI for j = 1, 2, . . . ,

and
fj(x, y) = (−1)jQj(x, y).

Note that every Qj has integer coefficients, and the discriminant of Qj is(
v1v1

NI

)2

(αj−1αj − αj−1αj)2 =
(

v1v1

NI

)2

(α−1α0 − α−1α0)2 =
(

v1v1(α − α)
NI

)2

= d.

It is easy to show that ζI(0, χ) = 0 if χ(−1) = 1, so we again restrict ourselves to the
case χ(−1) = −1.

Theorem 1. Suppose that χ is a primitive character mod q > 1 where (q, 2d) = 1 and
χ(−1) = −1. With the notations as above, we have

ζI(0, χ)/2 =
�∑

j=1

G(fj , χ) +
1
2
χ(d)

(
d

q

)
βχ

�∑
j=1

ajχ(fj(1, 0)),

where βχ := χ(−1)τ(χ)2L(2, χ2)/π2.

Here the Gauss sum τ(ψ) :=
∑

a (mod q) χ(a)e2iπa/q. The expression for βχ involves an
infinite product as well as a π2, so is neither obviously algebraic nor computationally useful.
However, using the functional equation for Dirichlet L-functions this can be rewritten as
a simple finite expression: For χ primitive then there is a unique way to write χ = χ+χ−
where χ+, χ− are primitive characters of coprime conductors q+, q− respectively such that
χ− has order 2, and χ2

+ is also primitive. We then have βχ = q
6

∏
p|q(1 − p−2) if χ has

order 2, and

βχ = χ+(−1)Jχ+γχ µ(q−)
∏
p|q−

(
p2χ2

+(p) − 1
pχ2

+(p) − 1

)
where γχ :=

q−1∑
n=0

χ2(n)
n2

q2
,

if χ has order > 2, where the Jacobi sum Jχ :=
∑

a,b (mod q): a+b=1 χ(a)χ(b).
This formula in Theorem 1 is typically shorter, and arguably easier to compute, than

those proposed by Shintani [5], Zagier [9], and Stark-Hayes [3]. This is not too surprising
since we borrow ideas from all of these papers.

Remark 1. For a given ideal I, we can always choose a basis (v1, v2) with the stated
properties. Indeed, starting from any basis, using the transformations

(v1, v2) → (v1,−v2), (v1, v2) → (v2, v1), (v1, v2) → (v1, v2 − nv1)

(where n is any rational integer) we can achieve that v1 > 0 and α = v2/v1 has a purely
periodic continued fraction. If v1 > 0, we are done. If v1 < 0, then v2 � 0, because α < 0
(by the Galois-Legendre theorem), in which case the basis (v2, v1 − a1v2) has the required
properties.



PARTIAL ZETA FUNCTIONS AT s = 0 3

1b. Other special values of ζI(s, χ). In order to generalize (1) and Theorem 1 to
ζI(1 − k, χ) for k ≥ 1, it will pay to slightly reformulate the above results, simply by
replacing a/q in (1) by a/q − 1/2, and similarly m/q and n/q in (2). This new polynomial
t− 1/2 is the first Bernoulli polynomial. The Bernoulli polynomials can be defined by the
generating function

(3)
TeTx

eT − 1
=

∑
n≥0

Bn(x)
Tn

n!
;

note that Bn(1 − x) = (−1)nBn(x) by definition. The Bernoulli numbers are given by
Bn = Bn(0) and then Bn(x) =

∑
0≤i≤n

(
n
i

)
Bix

n−i. It is well-known that for any primitive
χ (mod q) with q > 1, we have

(4) L(1 − k, χ) = −qk−1

k

∑
1≤a≤q−1

χ(a)Bk(a/q).

(Note that γχ = −2L(−1, χ2)/q if χ has order > 2.) We prove an analogous result for
ζI(1 − k, χ). First define the functions pr,s(x, y) where r, s are positive integers with
r + s = 2k, and x, y ∈ K,

pr,s(x, y) :=
1
r!

1
s!

∑
h,i∈Z

h+i=k−1

(
r − 1

h

)(
s − 1

i

)
xhxr−1−hyiys−1−i,

(where
(−1

i

)
= 1

2 (−1)i if i ≥ 0, and
(−1

i

)
= −1

2 (−1)i if i < 0); and, in analogy to (2),

Gr,s(f, χ) :=
∑

0≤m,n≤q−1

χ(f(m,n))Br

(
m

q

)
Bs

(
n

q

)
.

It can be shown that if χ(−1) = (−1)k−1 then ζI(1− k, χ) = 0, so we restrict ourselves
to the case χ(−1) = (−1)k.

Theorem 2. For any k ≥ 1 and for any primitive χ (mod q) with q > 1 where (q, d) = 1
and χ(−1) = (−1)k, we have

ζI(1 − k, χ) = 2
(

q2v1v1

NI

)k−1

(k − 1)!2
�∑

j=1

(−1)j
∑

r,s≥0
r+s=2k

pr,s(αj−1, αj)Gr,s(Qj , χ).
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1c. Speculative generalization. The results in Theorems 1 and 2 beg to be generalized,
to further extensions of Q: Now let K be a number field (perhaps one should assume that
K/Q is an abelian extension) of degree D, and let I be an integral ideal of K. We
define ζI(s, χ) as above. We may associate to I a finite set of norm forms f1, f2, . . . , f� ∈
Z[X1, . . . , XD] each of degree ≤ D: typically these are the norms for K/Q of algebraic
integers of the form X1ω1 + X2ω2 + · · · + XDωD, where {ω1, ω2, . . . , ωD} forms a Z-basis
for I. Here � = �(I) and the set of forms depend only on the ideal class of I. Now to each
fj we may associate a finite set of integers Sj as well as particular integers aj , bj . We guess
that if χ(−1) = −1 then ζI(0, χ) equals

�∑
j=1

∑
1≤m1,...,mD≤q−1

χ(fj(m1, . . . , mD))gD

(
m1

q
, . . . ,

mD

q

)
+ βχ,D

�∑
j=1

aj

∑
nj∈Sj

χ(nj)

for some homogenous form gD(X1, . . . , XD) of degree D which is independent of K, and
certain easily described algebraic integers βχ,D, also independent of K.

Note that theorem 1 is a special case of this taking g2(X,Y ) = 2XY, Sj = {fj(1, 0)}
and βχ,2 = 2βχ.

These speculations complement, in some sense, the much deeper conjectures made by
Stark [7]. In Stark’s conjecture the value of the L-function is given in term of a unit and
is thus “basis-independent”, something which our speculations are not. A more geometric
formulation is to think of G(f, χ) as the discrete analogue of the integral of a continuous
function of f , on the unit square. In other words if H is a function of one variable then
one can consider the integrals

∫ 1

t=0

H(t)t dt and
∫ 1

t=0

∫ 1

u=0

H(f(t, u))tu du dt

where f is homogenous. The q-analogue of these are where we take H(x) = χ(qdx), t =
m/q, u = n/q (with d = 1, 2 respectively), and replace the integrals by the sum over those
points (t, u) for which qt, qu ∈ Z, obtaining the functions in (1) and (2)!

Can we check this conjecture in Q(ζ5)?

1d. Small class numbers and fundamental unit. In [1,2] Biró determined the com-
plete list of d of the forms n2 + 4 and 4n2 + 1 such that Q(

√
d) has class number one,

so resolving the Yokoi and Chowla conjectures, respectively. Notice that the fundamental
unit εd = (ud + vd

√
d)/2 with ud, vd > 0 satisfies |εd − vd

√
d| ≤ 3/vd

√
d, so that εd is very

close to an integer multiple of
√

d. Therefore the smallest εd can be as a function of d, is
close to 1 ×√

d, that is vd = 1, in which case d = u2 ± 4, and one can evidently only have
class number one if d is prime, whence d must be of the form n2+4. If vd = 2 and d is prime
then u = 4n for some integer n and thus d must be of the form 4n2 + 1. Now, Dirichlet’s
class number formula tells us that h(d) log εd = π

√
dL(1, (./d)), so if h(d) = 1 and εd is

no bigger than some fixed multiple of
√

d then we deduce that L(1, (./d)) � log d/
√

d.
This only happens for finitely many d, by the ineffective Siegel’s theorem. A variant of
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Siegel’s theorem, due to Tatuzawa, allows one to easily determine all d with h(d) = 1 and
εd � √

d, with at most one possible exception: one does not expect that there are any
exceptions but the proof does not permit one to check this. Even the much celebrated
lower bounds of Goldfeld, Gross and Zagier, do not help with this problem, so the results
of [1,2] overcame what had been longstanding open problems.

Our Theorem 1 extends the formulae of [1,2], allowing us to check those results and to
extend them somewhat.

2. Notation

Let IF (K) be the set of nonzero fractional ideals of K, and let PF (K) be the set of
nonzero principal fractional ideals of K.

If I1, I2 ∈ IF (K), we say that they are relatively prime and write (I1, I2) = 1, if
expressing the fractional ideals as quotients of relatively prime integral ideals: I1 = a1b

−1
1 ,

I2 = a2b
−1
2 , the integral ideals a1b1 and a2b2 are relatively prime.

For β ∈ K let Tr(β) = β +β. If q is a positive rational integer and β1, β2 ∈ K, we write
β1 ≡ β2 (mod q) if there exists a rational integer n with (n, q) = 1 such that n(β1 − β2)/q
is an algebraic integer.

Let 0 < ε+ < 1 be a fundamental totally positive unit, let m be the smallest positive
integer such that εm

+ ≡ 1 (mod q).
Let I ∈ IF (K), and assume that (v1, v2) is a Z-basis of I for which v1 � 0 and such

that α = v2/v1 where 0 < α < 1 and the regular continued fraction expansion of α is
purely periodic. We have ε+αr =αL+r for r ≥ −1, in particular ε+ =αL−1, εm

+ =αLm−1.
It is clear that (v1αj−1, v1αj) is a basis of I for any j ≥ 0.

Let (N)q denote the least nonnegative residue of N modulo q. Let 	t
 denote the least
integer not smaller than t.

Now, if v ∈ I, then Cj , Dj are selected to be those unique rational integers that satisfy

Cjv1αj−1 + Djv1αj = v for all j ≥ 0;

and then we denote cj = (Cj)q/q and dj = (Dj)q/q. It is clear that cj+Lm = cj , dj+Lm =
dj . If we want to denote the dependence on v, we write Cj(v), Dj(v), cj(v), dj(v). Note
that since ε+αj = αj+L we deduce from the definition that Cj+L(vε+) = Cj(v) and
Dj+L(vε+) = Dj(v).

It is a simple matter to establish, using the recursion formula αj−2 + ajαj−1 = αj for
each j ≥ 1, to show that

(2.3) Dj+1 = Cj and Cj+1 = Dj − aj+1Cj for all j ≥ 0.

Therefore aj+1cj − dj + cj+1 is an integer and 0 ≤ cj+1 < 1, so that

(2.4) 	aj+1cj − dj
 = aj+1cj − dj + cj+1 = aj+1cj − cj−1 + cj+1.
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3. Evaluating a sectorial zeta function

Let I ∈ IF (K), v ∈ I, let q be a positive rational integer such that (v, q) = (I, q) = 1
(where we write v and q for the principal fractional ideals generated by these elements),
and define

ζI,v,q(s) =
∑

a∈PI,v,q

(Na)−s,

where PI,v,q = {a ∈ PF (K) : a = (β) for some β ∈ I, β ≡ v (mod q), β � 0}.
Theorem 3.1. If (v, q) = (I, q) = 1 then

ζI,v,q(0) =
Lm−1∑
j=0

(−1)j
(aj

2
B2(dj) + cjdj

)

Our proof of this theorem is based, first of all, on Shintani’s method, but to get this
simple form, we use ideas from [3] and [1]. The most important idea used here from
[3] (which, as Hayes writes, goes back to [9]) is (in the language of [3]) subdividing the
fundamental domain into sectors before applying Shintani’s method. (In our language this
means that we write the set Q

(v1,v1εm
+ )

I,v,q below as a disjoint union of smaller sets.) However,
we subdivide the set into fewer parts (using the regular continued fraction expansion
instead of the type II continued fractions) than it is done in [3]. Inside a given part, we
can give a simple formula (see Corollary 4.2 below) for the value at 0 by generalizing the
proof of Lemma 1 of [1]. In the case of the special fields and principal I considered in [1],
essentially one application of our present Corollary 4.2 led to the final result, here we have
to apply this corollary several times. It is likely that our formula could be also derived
from the CF -formula of [3] by summing over collinear vertices of the convexity polygon;
this summation step would then correspond to our Corollary 4.2.

If q is fixed and we vary the field K, our formula consists of fewer terms than the CF -
formula of [3]: the CF -formula in this case has around a1 + a2 + . . . + aL terms, while our
formula has O(L) terms. So, if q and L are fixed, our formula has a bounded number of
terms, which fact was very important in the proofs in [1,2].

4. Shintani’s theorem

For a matrix
(

a b
c d

)
with positive entries and x > 0, y ≥ 0, define

ζ

(
s,

(
a b
c d

)
, (x, y)

)
:=

∞∑
n1,n2=0

(a(n1 + x) + b(n2 + y))−s (c(n1 + x) + d(n2 + y))−s
.

The Corollary to Proposition 1 of [5] implies the following:
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Proposition 4.1. (Shintani). For any a, b, c, d, x > 0 and y ≥ 0 the function

ζ

(
s,

(
a b
c d

)
, (x, y)

)
,

is absolutely convergent for �s > 1, extends meromorphically in s to the whole complex
plane, and

ζ

(
0,

(
a b
c d

)
, (x, y)

)
= B1(x)B1(y) +

1
4

(
B2(x)

( c

d
+

a

b

)
+ B2(y)

(
d

c
+

b

a

))
.

The Bernoulli polynomials B�(t) have the remarkable property that

(4.1)
k−1∑
j=0

B�

(
t +

j

k

)
= k−(�−1)B�(kt).

We deduce the following:

Corollary 4.2. Let (e, f) be a basis of I, t a positive integer, e∗ = e + tf , and assume
that e, e∗ � 0. Furthermore, let w = Ce + Df with some rational integers 0 ≤ C,D < q,

and write c = C
q , d = D

q , δ = (D−tC)q

q . Let

Z(s) =
∑

β ∈H

(ββ)−s

with H = {β ∈ I : β ≡ w (mod q), β = Xe + Y e∗ with (X,Y ) ∈ Q2, X > 0, Y ≥ 0}.
Then

Z(0) = A(1 − c) +
t

2

(
c2 − c − 1

6

)
+

d − δ

2
+ Tr

(−f

4e∗

)
B2(δ) + Tr

(
f

4e

)
B2(d),

where A = 	tc − d
.
Proof. Note that A = 	 tC−D

q 
 = tC−D+qδ
q = tc − d + δ and therefore 0 ≤ A ≤ t. Let

β = Xe + Y e∗ for some rationals X > 0, Y ≥ 0. Write X = qx + qn1 and Y = qy + qn2

for some nonnegative integers n1 and n2 and rational numbers 0 < x ≤ 1, 0 ≤ y < 1 which
can be done in a unique way. Then, on the one hand,

ββ = q2 (e(n1 + x) + e∗(n2 + y))
(
e(n1 + x) + e∗(n2 + y)

)
;

on the other hand we have that β ∈ I and β ≡ w (mod q) hold if and only if xe + ye∗ −
(ce + df) ∈ I. Therefore

Z(s) =
1

q2s

∑
(x,y)∈R(C,D)

ζ

(
s,

(
e e∗

e e∗

)
, (x, y)

)
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where R(C,D) :=
{
(x, y) ∈ Q2 : 0 < x ≤ 1, 0 ≤ y < 1, xe + ye∗ − (ce + df) ∈ I

}
. There-

fore by Proposition 4.1 we get

Z(0) =
∑

(x,y)∈R(C,D)

(
B1(x)B1(y) + Tr

( e

4e∗
)

B2(x) + Tr
(

e∗

4e

)
B2(y)

)
.

We observe that for any m,n we have

mf + ne

q
=

(n − m
t )e + m

t e∗

q
,

and so it is easy to see that the possibilities for (m,n) having (x, y) ∈ R(C,D) with

(x, y) =
(

1
q

(
n − m

t

)
,
1
q

m

t

)

are

mj = D + jq, nj = C + q

[
1 +

j

t
− (tC − D)/q

t

]
with any integer 0 ≤ j ≤ t − 1. This is so because the possible values of m are obviously
these t values, and once m is fixed, n is unique. Now

0 < 1 +
j

t
− (tC − D)/q

t
< 2, so nj =

{
C if 0 ≤ j < A

C + q if A ≤ j < t
,

and therefore

Z(0) =
t−1∑
j=0

(
B1(xj)B1(yj) + Tr

( e

4e∗
)

B2(xj) + Tr
(

e∗

4e

)
B2(yj)

)

where yj =
d + j

t
for 0 ≤ j < t, and xj =

{
c − yj if 0 ≤ j < A;
c + 1 − yj if A ≤ j < t.

Now, by (4.1) we have

t−1∑
j=0

B2(yj) =
t−1∑
j=0

B2

(
d + j

t

)
=

1
t
B2(d);

and

t−1∑
j=0

B2(xj) =
A−1∑
j=0

B2

(
A − j − δ

t

)
+

t−1∑
j=A

B2

(
t + A − j − δ

t

)

=
t∑

k=1

B2

(
k − δ

t

)
=

t−1∑
l=0

B2

(
δ + l

t

)
=

1
t
B2(δ).
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Now since B2(x) + B2(y) + 2B1(x)B1(y) = (x + y − 1)2 − 1
6 we easily deduce that

t−1∑
j=0

(B2(xj) + B2(yj) + 2B1(xj)B1(yj)) = A(c − 1)2 + (t − A)c2 − t

6
.

The result then follows from the last four displayed equations, and the facts that

Tr
( e

4te∗
)
− 1

2t
= Tr

(−f

4e∗

)
and Tr

(
e∗

4te

)
− 1

2t
= Tr

(
f

4e

)
.

5. Special value of the sectorial zeta function

Proof of Theorem 3.1. If a ∈ PI,v,q and a = (β) for some β ∈ I, β ≡ v (mod q), β � 0
then, since (v, q) = (I, q) = 1, the generators of a with these properties are precisely the
numbers β(εm

+ )j for any integer j. Therefore,

ζI,v,q(s) = ζ
(v1,v1εm

+ )

I,v,q (s) where ζ
(β1,β2)
I,v,q (s) :=

∑
β

(ββ)−s,

the sum over β ∈ Q
(β1,β2)
I,v,q =

{
β ∈ I : β ≡ v (mod q), β � 0, β2/β2 < β/β ≤ β1/β1

}
, for

any given β1, β2 ∈ K, β1, β2 � 0.
Since α < 0 and v1 � 0 we deduce that v1α−1 > v1α1 > v1α3 > . . . > 0, and 0 <

v1α−1 < v1α1 < v1α3 < . . . , so that v1α−1/v1α−1 > v1α1/v1α1 > v1α3/v1α3 > . . . > 0.

Recalling that εm
+ = α2lm−1, we deduce that Q

(v1,v1εm
+ )

I,v,q is the disjoint union of the sets

Q
(v1α2r−1,v1α2r+1)
I,v,q for 0 ≤ r < lm

so that

ζI,v,q(s) =
lm−1∑
r=0

ζ
(v1α2r−1,v1α2r+1)
I,v,q (s).

Now Q
(v1α2r−1,v1α2r+1)
I,v,q is precisely the set

{β ∈ I : β ≡ v (mod q), β = Xv1α2r−1 + Y v1α2r+1 with (X,Y ) ∈ Q2, X > 0, Y ≥ 0},
and since (I, q) = 1, we can replace here v by

w = (C2r)qv1α2r−1 + (D2r)qv1α2r.

We now apply Corollary 4.2 with e = v1α2r−1, f = v1α2r, e∗ = v1α2r+1, t = a2r+1, C =
(C2r)q = qc2r, D = (D2r)q = qc2r−1, so that δ = c2r+1 and A = (a2r+1c2r − c2r−1 + c2r+1)
by (2.3) and (2.4). Therefore ζI,v,q(0) equals

lm−1∑
r=0

(
(a2r+1c2r − c2r−1 + c2r+1)(1 − c2r) +

a2r+1

2

(
c2
2r − c2r − 1

6

)
+

d2r − d2r+2

2

)

+
lm−1∑
r=0

(
Tr

(
α2r

4α2r−1

)
B2(c2r−1) + Tr

( −α2r

4α2r+1

)
B2(c2r+1)

)
.
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Now,
− α2r

4α2r+1
=

a2r+2

4
− α2(r+1)

4α2(r+1)−1
,

and so, since aj+L = aj , cj+Lm = cj , dj+Lm = dj we deduce that

ζI,v,q(0) =
Lm−1∑
j=0

(−1)j
(aj

2
B2(dj) + cjdj

)

6. Two-dimensional “Gauss sums”

Throughout this section, we assume (q, 2d) = 1.
Let χ be a character (mod q), with q > 1, and h(t) ∈ Z[t]. Define

g(χ, h) :=
∑

0≤n≤q−1

χ(n)h(n/q).

It is well-known that L(0, χ) = −g(χ, t). Furthermore, if χ(−1) = −1 then g(χ, t2) =
g(χ, t) since

g(χ, t2) =
∑

1≤n≤q−1

χ(n)(n/q)2 =
∑

1≤n≤q−1

χ(q−n)(1−n/q)2 = −g(χ, 1)+2g(χ, t)−g(χ, t2).

For f(x, y) = ax2 + bxy + cy2 with (q, 2d) = 1 where d = b2 − 4ac, we define

g(χ, f, h) :=
∑

0≤m,n≤q−1

χ(f(m,n))h(n/q).

For � odd we have χ(f(m,n))B�(n/q) = −χ(f(q−m, q−n))B�((q−n)/q) by the property of
Bernoulli polynomials mentioned below formula (3), and so g(χ, f,B�) = B�(0)

∑
0≤m≤q−1 χ(f(m, 0))

B�χ(a)
∑

0≤m≤q−1 χ2(m) which equals 0 unless � = 1 and χ has order dividing 2 in which
case we get −χ(a)φ(q)/2.

For h = 1 (� = 0 above) we note that there exists g (mod q) such that χ(g) �= 0, 1,
and that one can show there exist integers r, s for which r2 − ds2 ≡ g (mod q). But then
replacing the integers m,n by M,N in the sum where (aM + bN) +

√
dN = ((am + bn) +√

dm)(r +
√

ds) we find that the sum equals itself times χ(g) and thus g(χ, f, 1) = 0.
Factoring q =

∏
i pei

i we can write χ =
∏

i χi where χi is a primitive character mod pei
i

for each i. Then χ− is the product of the χi of order two (and thus χ−(.) = (./q−)), and
χ+ is the product of the χi of order ≥ 3.

By the Chinese Remainder Theorem, for any polynomial F (x, y) ∈ Z[x, y], we have

(6.1)
q−1∑
m=0

χ(F (m,n)) =
∏

i

p
ei
i −1∑

mi=0

χi(F (mi, n)).

If χ (mod p) has order > 2 then |Jχ| =
√

p; if χ has order 2 then Jχ = −
(

−1
p

)
.

Moreover one has that Jχ =
∏

i Jχi .
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Proposition 6.1. Let χ be a primitive character mod q > 1, and � an even positive
integer. Let c� := B�/ζ(�) = 2(−1)�/2+1l!/(2π)�. Then

g(χ, f,B�) = c�χ(a)χ(d)
(

d

q

)
χ(−1)τ(χ)2L(�, χ2)

Note that this also holds if χ = 1 in which case L(�, χ2) = ζ(�), so that the above reads
Bl = c�ζ(�).

The expression on the right hand side here involves an infinite product. However we
can rewrite this as

g(χ, f,B�) = χ(a)χ(d)
(

d

q

)
βχ,�

where

βχ,� := χ+(−1)Jχ+g(χ2, B�)µ(q−)
∏
p|q−

(
p�χ2

+(p) − 1
p�−1χ2

+(p) − 1

)
,

something that can evidently be determined in a finite number of steps. Note that if χ has
order 2 then βχ,� = qB�µ

2(q)
∏

p|q(1 − p−�). We also have βχ,2 = βχ.

Lemma 6.2. Let ψ be a character (mod Q) which induces χ (mod q). Then

g(χ,B�) =
g(ψ,B�)
(q/Q)�−1

∏
p|q,p �|Q

(1 − p�−1ψ(p)).

Proof. By writing N = n + jQ we find, by (4.1), that

(6.3)
kQ−1∑
N=0

ψ(N)B�(N/kQ) =
Q−1∑
n=0

ψ(n)
k−1∑
j=0

B�(n/kQ + j/k) = k−(�−1)g(ψ,B�).

Let m =
∏

p|q,p �|Q p. Then, writing n = Nd, we have that g(χ,B�) equals

q−1∑
n=0

(n,m)=1

ψ(n)B�(n/q) =
∑
d|m

µ(d)
q/d−1∑
N=0

ψ(dN)B�(N/(q/d)) =
∑
d|m

µ(d)ψ(d)
g(ψ,B�)

(q/dQ)�−1
,

by (6.3), and the result follows.

Lemma 6.3. Let χ be a primitive character (mod q), where q is power of prime p. Then

q−1∑
r=0

χ(dr2 − pf ) =
(

d

q

)
·

⎧⎪⎨
⎪⎩

χ(−4)Jχ if f = 0
(p − 1) if f ≥ 1 and χ(.) = (./p)
0 if f ≥ 1 otherwise.
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Proof. If q ≥ p2 and f ≥ 1 then we see that if p � |r0 then {dr2 −pf : 0 ≤ r ≤ q−1, r ≡ r0

(mod p)} = {(dr2
0 − pf )(1 + ps) : 0 ≤ s ≤ q/p − 1} and so we see that the sum over these

r is 0.
If q = p and f ≥ 1 then our sum is χ(d)

∑
0≤r≤p−1 χ2(r).

If f = 0 write q = pe where e = 2k ≥ 2 or 2k − 1 ≥ 3 for some k ≥ 1. The terms for
which pk|r contribute χ(−1)pe−k to the sum, in total. The other terms are partitioned
according to the power of p dividing r. So, writing r = pjR with p � |R, we obtain the sum

(6.4)
k−1∑
j=0

pe−j∑
R=1
p �|R

χ(dp2jR2 − 1).

Note that for j ≤ k − 1, {dp2jR2 − 1 : 1 ≤ R ≤ pe−j , R ≡ R0 (mod p)} = {(dp2jR2
0 −

1)(1 + p2j+1s) : 1 ≤ s ≤ pe−j−1} if p � |R0(dp2jR2
0 − 1), and thus this subsum equals 0

unless j = k− 1 and e = 2k− 1. Thus if e = 2k is even, the sum in (6.4) is 0 and our total
is χ(−1)pk. If e = 2k − 1 ≥ 1 is odd our total is

χ(−1)pk−1 +
pk∑

R=1
p �|R

χ(dR2q/p − 1) = pk−1χ(−1)
p−1∑
j=0

(
1 +

(
dj

p

))
χ(1 − jq/p),

which equals pk−1χ(−1)
(

d
p

)∑p−1
j=0

(
j
p

)
χ(1 − jq/p). Notice that this is (d/p) times the

same sum with d = 1. However if d = 1 we see, by taking r = 1+2m, that our sum equals
χ(−4)Jχ, and thus the result.

If q = p and f = 0 note that if (ν/p) = −1 then the union of the two sets {νr2 − 1 : 0 ≤
r ≤ p − 1} and {r2 − 1 : 0 ≤ r ≤ p − 1} gives us two copies of {r : 0 ≤ r ≤ p − 1}, and so
our sum equals (d/p) times the sum with d = 1. But then writing r = 2m + 1 we obtain
χ(−4)(d/p)Jχ.

Corollary 6.4. Let χ be a primitive character (mod q). Then
q−1∑
m=0

χ(m2 − dn2) = χ+(−4dn2)
(

d

q+

)
Jχ+µ(q−/(n, q−))φ((n, q−)).

Proof. By (6.1) we have

q−1∑
m=0

χ(m2 − dn2) =
∏

i

p
ei
i −1∑

mi=0

χi(m2
i − dn2).

By Lemma 6.3 the ith term is zero if pi|(n, q+), and thus the whole product. Therefore
we now assume that (n, q+) = 1. If pi|q+ then, by replacing mi by dnr, our sum becomes

χi(dn2)
∑p

ei
i −1

r=0 χi(dr2 − 1); and so the total contribution of q+ is, by Lemma 6.3,

χ+(−4dn2)
(

d

q+

)
Jχ+ .
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Let g = (n, q−). If p|(q−/g) then, similarly we have

p−1∑
m=0

(
m2 − dn2

p

)
=

(
d

p

) p−1∑
r=0

(
dr2 − 1

p

)
=

(
d

p

)2 (−1
p

)2

(−1) = −1

since J(./p) = −(−1/p); and if p|g then our sum is simply p − 1. Therefore the total
contribution of q− is µ(q−/g)φ(g).

Proof of Proposition 6.1. For now assume, that (a, q) > 1. If p|(a, q) then the result will
follow from (6.1), and from the result for q = pe, which we now prove: Since p|a we know
that p � |b (as p � |d). We may assume p � |n else the sum is 0. But then p � |2am + bn, and
so, by Hensel’s lemma, for each m0 (mod p) with p � |f(m0, n) we have {f(m,n) (mod q) :
m ≡ m0 (mod p), 0 ≤ m ≤ q − 1} = {f(m0, n)(1 + rp) (mod q) : 0 ≤ r ≤ q/p − 1}; and
thus the sum over such m is 0, unless q = p. In that case we write χ(f(m,n)) = χ(r)χ(n)
where r = bm + cn varies over the elements (mod p) as m does, and thus our sum is 0.

So now assume that (a, q) = 1, and therefore χ(f(m,n)) = χ(4a)χ(r2 − dn2) where
r = 2am + bn, and so r varies over the elements (mod q) as m does. We now substitute
in Corollary 6.4 to obtain that our sum equals χ(a)χ(d)

(
d
q

)
χ+(−1)Jχ+ times

∑
0≤n≤q−1

χ2
+(n)B�(n/q)µ(q−/(n, q−))φ((n, q−)) =

∑
g|q−

∑
0≤n≤q−1
(n,q−)=g

χ2
+(n)B�(n/q)µ(q−/g)φ(g)

=
∑
g|q−

µ(q−/g)φ(g)χ2
+(g)

∑
0≤N≤q/g−1
(N,q−/g)=1

χ2
+(N)B�(N/(q/g))

writing n = Ng. In this last sum we can replace χ2
+ by χ++ (mod q/g), the character

induced by χ2
+, so that the sum equals g(χ++, B�). By Lemma 6.2 this equals g(χ2

+, B�)
times

∑
g|q−

µ(q−/g)φ(g)χ2
+(g)

1
(q−/g)�−1

∏
p|(q−/g)

(1 − p�−1χ2
+(p))

=
1

q�−1
−

∏
p|q−

(
p�−1(p − 1)χ2

+(p) − (1 − p�−1χ2
+(p))

)
,

and thus g(χ, f,B�) = χ(a)χ(d)
(

d
q

)
βχ,� after another application of Lemma 6.2.

The functional equation yields, for a primitive character ψ (mod q) where q > 1 and
ψ(−1) = 1 (see, e.g. Chapter 4 of [8]), that L(1 − �, ψ) = 0 if � is odd, and

L(1 − �, ψ) = 2(−1)�/2Γ(�)
( q

2π

)� τ(ψ)
q

L(�, ψ)
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if � is even. Now, in (4), we saw that L(1 − �, ψ) = −q�−1g(ψ,B�)/�, and so, if � is even
then

(6.5) g(ψ,B�) = c�τ(ψ)L(�, ψ).

Now, in the proof above we have that χ2
+ is primitive (mod q+) and that

βχ,� = χ+(−1)Jχ+

1
q�−1
−

∏
p|q−

(p�χ2
+(p) − 1)g(χ2

+, B�),

which, when combined with (6.5) taking ψ = χ2
+, equals

c�χ+(−1)Jχ+τ(χ2
+)q−χ2

+(q−)L(�, χ2)

since
∏

p|q−(p�χ2
+(p) − 1)L(�, χ2

+) = q�
−χ2

+(q−)L(�, χ2).
Suppose that ψj is a character mod qj for j = 1, 2 where (q1, q2) = 1. Writing

each c (mod q1q2) as bq1 + aq2 (mod q1q2) we obtain, from definition, that τ(ψ1ψ2) =∑
c (mod q1q2)

(ψ1ψ2)(c)e2iπc/q1q2 =
∑

a (mod q1)

∑
b (mod q2)

ψ1(aq2)ψ2(bq1)e2iπa/q1e2iπb/q2 =
ψ1(q2)ψ2(q1)τ(ψ1)τ(ψ2). We also note that since χ− has order 2 thus τ(χ−)2 = χ−(−1)q−;
and also, since χ+ is primitive thus τ(χ2

+)Jχ+ = τ(χ+)2 (we present a proof of this identity
below. Combining all of this information with ψ1 = χ2

+, ψ2 = χ− yields

χ(−1)τ(χ)2 = χ+(−1)χ−(−1)(χ+(q−)χ−(q+)τ(χ+)τ(χ−))2

= χ+(−1)χ−(−1)χ2
+(q−)τ(χ2

+)Jχ+χ−(−1)q− = χ+(−1)Jχ+τ(χ2
+)q−χ2

+(q−).

We therefore deduce the result.
We end this section by proving the identity τ(χ2

+)Jχ+ = τ(χ+)2 used above.
Note that if χj (mod qj) are primitive characters with (q1, q2) = 1 then Jχ1χ2 = Jχ1Jχ2

is immediate from definition.
Now, by the definition of χ+, we can write χ+ = χ1χ2 . . . χk where χj (mod qj) are

primitive of order > 2 and the qj are powers of distinct primes. We will prove our identity
for each prime power and then we can deduce the result since

τ((χ1χ2)2)Jχ1χ2 = χ2
1(q2)χ2

2(q1)τ(χ2
1)τ(χ2

2)Jχ1Jχ2 = (χ1(q2)χ2(q1)τ(χ1)τ(χ2))2 = τ(χ1χ2)2.

So suppose χ is a primitive character of order > 2, modulo q, a power of prime p > 2.
The sums below are over all of the residues mod q. Fix pm where 1 ≤ m ≤ q/p. We
will show that if q > p then

∑
a+b≡pm (mod q), a≡a0 (mod q/p) χ(a)χ(b) = 0 for any a0,

so that
∑

a+b≡pm (mod q) χ(a)χ(b) = 0: If p|a0 then each χ(a) = 0 and we are done.
Otherwise, writing a = a0 + k(q/p) = a0(1 + k(q/p)/a0) so that b ≡ pm − a0 − k(q/p) =
(pm−a0)(1+k(q/p)/a0) (mod q), our sum becomes χ(a0)χ(pm−a0) times

∑
1≤k≤p χ(1+

k(q/p)/a0)2 =
∑

1≤k≤p χ(1 + 2(q/p)/a0)k = 0, since χ has order > 2 and p �= 2. Now if
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q = p then
∑

a+b≡0 (mod p) χ(a)χ(b) = χ(−1)
∑

a χ2(a) = 0 since χ has order > 2. Thus
we have proved

∑
a+b≡n (mod q) χ(a)χ(b) = 0 whenever p|n.

For (n, p) = 1, by writing a ≡ nA, b ≡ nB (mod q), we obtain
∑

a+b≡n (mod q) χ(a)χ(b) =
χ2(n)

∑
A+B≡1 (mod q) χ(A)χ(B) = χ2(n)Jχ. Thus we have

τ(χ2)Jχ =
∑

(n,p)=1

χ2(n)Jχe(n/q) =
∑

n

∑
a+b≡n (mod q)

χ(a)χ(b)e(n/q) = τ(χ)2.

7. Simplifying the formulae

Let χ be a character of conductor q. One knows that if χ(−1) = 1 then ζI(0, χ) = 0 so
we will assume henceforth that χ(−1) = −1. We assume that (q, d) = 1.

Let L = [2, �] denote the least even period of the expansion, and l = L/2.
Let

ζ+
I (s, χ) = ζ+

Cl(I)(s, χ) :=
∑

a

χ(Na)
(Na)s

,

where the sum is over all integral ideals of K which are equivalent to I in the sense that
a = (β)I with β � 0.

We first evaluate this function at 0 in the following theorem, and then we deduce
Theorem 1.

Theorem 1∗. Suppose that χ is a primitive character mod q > 1 where (q, 2d) = 1 and
χ(−1) = −1. We have

ζI(0, χ)/(L/�) =
�∑

j=1

G(fj , χ) +
1
2
χ(d)

(
d

q

)
βχ

�∑
j=1

ajχ(fj(1, 0)).

Note that PI,v,q = PI,ε+v,q, since we may replace β by βε+ in the definition of the set
P . As noted at the end of section 2 we have Cj+L(vε+) = Cj(v) and Dj+L(vε+) = Dj(v).
Inserting these observations into Theorem 3.1 gives that ζI,v,q(0) =

∑
w∈V ZI,w,q where

V = {vεi
+ : 0 ≤ i ≤ m − 1} and

(7.1) ZI,w,q :=
L∑

j=1

(−1)j

(
cj(w)dj(w) +

1
2

ajB2(dj(w))
)

.

Note that ζ+
Cl(I)(s, χ) = ζ+

Cl(I−1)(s, χ) by definition. Moreover
ζ+
Cl(I−1)(s, χ) = (NI−1)−s

∑
b∈PI

χ(Nb/NI)(Nb)−s where PI = {b ∈ PF (K) : b =
(β) for some β ∈ I, β � 0} by definition, so that ζ+

I (0, χ) =
∑

v∈R χ((vv)/NI)ζI,v,q(0).
Here R is a complete system of representatives of the equivalence classes of the set
{v ∈ I : (v, q) = 1} by the following equivalence relation: v is equivalent to v∗ if and
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only if v∗ ≡ vεj
+ (mod q) for some j ∈ Z. Inserting (7.1) we obtain, for the set W := {w

(mod q) : w ∈ I and (w, q) = 1},

ζ+
I (0, χ) =

∑
v∈R

χ

(
vv

NI

)
ζI,v,q(0) =

∑
w∈W

χ

(
ww

NI

)
ZI,w,q

=
L∑

j=1

(−1)j
∑

w∈W

χ

(
ww

NI

)(
cj(w)dj(w) +

1
2

ajB2(dj(w))
)

.

In fact W = {ν (mod q) : (ν, q) = 1}. To see this note that W contains an element from
every congruence class modulo q which is coprime to q, since if ν is any algebraic integer
of the field which is prime to q, then νNIφ(q) is in I, and it is congruent to ν modulo q
(remember that (q, I) = 1). Therefore

ζ+
I (0, χ) =

L∑
j=1

(−1)j
∑

0≤C,D≤q−1

χ(Qj(C,D))
(

C

q
· D

q
+

aj

2
B2

(
D

q

))

=
L∑

j=1

(−1)j
(
G(Qj , χ) +

aj

2
g(χ,Qj , B2)

)
.

Note that if � is odd then l = � and Qj+l = −Qj for all j ≥ 0, as well as aj+l = aj , so
that G(Qj+l, χ) = −G(Qj , χ). Note also that fj = (−1)jQj ; and that g(χ, fj , B2(t)) =

χ(fj(1, 0))χ(d)
(

d
q

)
βχ,2 by Proposition 6.1. Therefore the above can be rewritten as

ζ+
I (0, χ)/(L/�) =

�∑
j=1

G(fj , χ) +
1
2
χ(d)

(
d

q

)
βχ,2

�∑
j=1

ajχ(fj(1, 0)),

which is Theorem 1∗.
Now, we can compute very easily ζI(0, χ), using Theorem 1∗. Indeed, if � is odd, then

there is a unit of norm −1 in K, so ζI(s, χ) = ζ+
I (s, χ). Hence we may assume that � is

even. Then
ζI(s, χ) = ζ+

I (s, χ) + ζ+
(α)I(s, χ),

since α > 0 and α < 0. We prove that ζ+
I (0, χ) =ζ+

(α)I(0, χ), and then we will know that

ζI(0, χ)/2 = ζ+
I (0, χ)/(L/�)

in every case.
So we prove that ζ+

I (0, χ) =ζ+
(α)I(0, χ), if � is even. A basis of (α)I with the required

properties is
(v∗

1 , v∗2) := (v2α, (v1 − a1v2)α).
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Indeed, it is easy to see that (v2, v1 − a1v2) is a basis of I, v2α = v1α
2 � 0, and

α∗ :=
v∗
2

v∗
1

=
1
α
− a1 = [0, a2, a3 . . . , a�, a�+1] =: [0, a∗

1, . . . , a∗
� ].

Define the numbers α∗
n for n ≥ −1 analogously with respect to α∗, as αn are defined with

respect to α, and let

f∗
j (x, y) = (−1)j(v∗

1α∗
j−1x + v∗

1α∗
jy)(v∗

1α∗
j−1x + v∗

1α∗
jy)/N((α)I) for j = 1, 2, . . .

Then α∗
−1 = 1 and α∗

0 = −α∗ = a1− 1
α , so we can easily prove (using the recursion formulas

and a∗
j = aj+1) that

α∗
j =

αj+1

−α

for every j ≥ −1. This implies also f∗
j = fj+1, so, using Theorem 1∗, we are done, i.e.

Theorem 1 is proved..

8. Further special values: Theorem 2

Shintani in [5], Theorem 1 showed that ζ(1 − k,A, (x.y)) equals (k − 1)!2 times the
coefficient of U2(k−1)Zk−1 in (we write x∗ = 1 − x and y∗ = 1 − y)

(8.1)
1
2

{
eU(Z(ax∗+by∗)+(cx∗+dy∗))

(eU(aZ+c) − 1)(eU(bZ+d) − 1)
+

eU((ax∗+by∗)+Z(cx∗+dy∗))

(eU(a+cZ) − 1)(eU(b+dZ) − 1)

}
,

which is a polynomial in x∗ and y∗. It is convenient to make a change of variables, replacing
UZ by z, and U by u, so that the first of these two terms equals

(8.2)
e(az+cu)x∗

eaz+cu − 1
· e(bz+du)y∗

ebz+du − 1

and the second is the same but with u and z interchanged. We may expand this using (3),
and it is then tempting to state that we seek the coefficient of (uz)k−1; however this is
only really valid for polynomial terms, for some care must be taken with the “expansion”
of 1/(az + cu), since we do not know, with this choice of variables, whether to expand
around z = 0 or u = 0. Tracing this back to the variables U and Z, we see that we
should in fact expand around z = 0. As we mentioned above, if we interchange u and z
then the two functions in (8.1) appear to be identical, but in fact we must expand around
u = 0 in the second term. Thus we can combine the two expressions so long as, for the
non-polynomial terms, we take the mean value of the two polynomials that appear from
the two possible expansions (and this is the meaning we use henceforth). Therefore, using
Bn(1 − x) = (−1)nBn(x), we see that ζ(1 − k,A, (x, y)) equals (k − 1)!2 times

(8.3)
∑

r,s≥0
r+s=2k

Br(x)
r!

Bs(y)
s!

∑
h,i∈Z

h+i=k−1

(
r − 1

h

)(
s − 1

i

)
ahbicr−1−hds−1−i.
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We now develop the generalization of Corollary 4.2, taking our matrix to be as in
Corollary 4.2, and now writing e = α, e∗ = β = e + tγ, f = γ. (that is, we take
a = α, b = β, c = α, d = β above). We wish to sum over the values (xj , yj) where
yj = (d + j)/t for 0 ≤ j ≤ t − 1, while xj = c − yj if 0 ≤ j < A, and xj = c + 1 − yj if
A ≤ j < t. Now if x = C − y then the exponent in the numerator of (8.2) is CL + tNy
where, for convenience, we temporarily write

(8.4a) L = zα + uα, M = zβ + uβ, N = zγ + uγ,

with M = L + tN . Thus the sum of the numerators in our range is

ecL+Nd

⎛
⎝(1 − eL)

A−1∑
j=0

eNj + eL
t−1∑
j=0

eNj

⎞
⎠ =

ecL+Nd

1 − eN

(
(1 − eL)(1 − eNA) + eL(1 − eNt)

)
,

=
ecM+δN (eL − 1) − ecL+dN (eM − 1)

1 − eN
,

where δ = d+A− tc. Therefore Z(1−k) is (k−1)!2q2(k−1) times the coefficient of (uz)k−1

in

(8.4b)
ecL

eL − 1
· edN

eN − 1
− ecM

eM − 1
· eδN

eN − 1
.

Next we make the substitutions of section 5 (writing βj = v1αj for convenience). When
we take the sum over r (as there) we obtain that

ζI,v,q(1 − k) = (k − 1)!2q2(k−1)
Lm−1∑
j=0

(−1)jTj(v)

where, using the same expansion as in (8.3),

Tj(v) : = coeff of (uz)k−1 in
ecj(zβj−1+uβj−1)

ezβj−1+uβj−1 − 1
· ecj−1(zβj+uβj)

ezβj+uβj − 1

=
∑

r,s≥0
r+s=2k

Br(cj)Bs(dj)pr,s(βj−1, βj)

since cj−1 = dj . Noting that pr,s(ηx, ηy) = (Nη)k−1pr,s(x, y) for any 0 � η ∈ K, by def-
inition, we see that each pr,s(βj−1, βj) = (Nv1)k−1pr,s(αj−1, αj). Moreover since αj+L =
ε+αj , cj+L(vε+) = cj(v) and dj+L(vε+) = dj(v), we thus deduce that Tj+L(vε+) = Tj(v).
Hence we can obtain the analogy to (7.1), and from these we deduce Theorem 2, as in
section 7.
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Remark. When we specialize Theorem 2 to the case k = 1 (that is, Theorem 1), we obtain

ζI(0, χ) = 2
�∑

j=1

∑
0≤m,n≤q−1

χ(fj(m,n))×

{
1
4

(
αj

αj−1
+

αj

αj−1

)
B2

(
n

q

)
+ B1

(
m

q

)
B1

(
n

q

)
+

1
4

(
αj−1

αj
+

αj−1

αj

)
B2

(
m

q

)}
and there is no obvious cancellation here. However if we look at the Tj(v), then the two
outer terms here correspond there to

1
4

Lm−1∑
j=0

(−1)j

{(
αj

αj−1
+

αj

αj−1

)
B2 (cj−1) +

(
αj−1

αj
+

αj−1

αj

)
B2 (cj)

}

which surprisingly equals 1
2

∑Lm−1
j=0 (−1)jajB2(cj−1), since αj/αj−1 = aj + αj−2/αj−1.

Carrying this simplification back through the argument gives us that

ζI(0, χ) = 2
�∑

j=1

∑
0≤m,n≤q−1

χ(fj(m,n))
{

B1

(
m

q

)
B1

(
n

q

)
+

aj

2
B2

(
n

q

)}

as in Theorem 1. We do not know how to generalize this cancellation for larger k.

9. Examples

We start with a definition. If f(x, y) = ax2 + bxy− cy2 is a quadratic form with integer
coefficients, let f(x, y) = cx2 + bxy − ay2. Note that if χ(−1) = −1, then

G(f, χ) = G(f, χ) − g(f, χ, t),

this can be seen from the change of variables m → n and n → q −m. Then, if χ has order
> 2, we have G(f, χ) = G(f, χ), since we saw near the start of section 6 that g(f, χ, t) = 0
in this case.

In each case here we explore the principal ideal class, and we assume that χ has order
> 2.
Yokoi’s discriminants: Let d = p2 + 4 where p is an odd integer. Let α = (

√
d− p)/2 =

[0, p] so that � = 1, with v1 = 1, v2 = α. Then f1(x, y) = x2 + pxy − y2 so that

ζI(0, χ)/2 =
∑

1≤m,n≤q−1

χ(m2 + pmn − n2)
m

q

n

q
+

p

2
χ(d)

(
d

q

)
βχ.

Chowla’s discriminants: Let d = 4p2 + 1 and α = (
√

d + 1 − 2p)/2 = [0, 1, 1, 2p − 1]
so that � = 3, with v1 = 1, v2 = α. Then f1(x, y) = px2 + xy − py2 with f2(x, y) =
px2 + (2p − 1)xy − y2 and f3(x, y) = x2 + (2p − 1)xy − py2 = f2 so that

ζI(0, χ)/2 = G(f1, χ) + 2G(f2, χ) +
(

p − 1
2

+ χ(p)
)

χ(d)
(

d

q

)
βχ.
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Mollin’s discriminants: Let d = p2+4p where p is an odd integer, and α = (
√

d−p)/2 =
[0, 1, p] so that � = 2, with v1 = 1, v2 = α. Then f1(x, y) = px2+pxy−y2 with f2(x, y) = f1

so that

ζI(0, χ)/2 = 2G(f1, χ) +
1
2
(p + χ(p)) χ(d)

(
d

q

)
βχ.

Note that if h(d) = 1 then p must be prime else if p = ab then the ideal (a, (
√

d− p)/2)
gives rise to the different continued fraction (

√
d − p)/2a = [0, a, b].

10. Class number one

Let ζK(s, χ) =
∑

a χ(Na)/(Na)s where the sum is over all integral ideals of K. Evi-
dently if h(d) = 1 then this is identical to ζI(s, χ), where I is a principal ideal. On the
other hand we know that

ζK(s, χ) = L(s, χ)L(s, χχd)

where χd = (./d). Moreover for d ≡ 1 (mod 4) and χ(−1) = −1 we can use (1), to deduce
that ζK(0, χ) = g(χ, t)g(χχd, t). Let mχ := qg(χ, t) and note that g(χχd, t) is an algebraic
integer in Z[χ], see p. 88. of [B1]. Let Aχ(p) := qζI(0, χ)/2. Now if h(d) = 1 we have
qζI(0, χ) = mχg(χχd, t); and so mχ|2Aχ(p). Let Bχ = qβχ and Cχ(p) := q

∑�
j=1 G(fj , χ).

Suppose that P is a prime ideal which divides mχ and thus 2Aχ(p), and assume that
(P, 2Bχ) = 1.

If p ≡ p′ (mod q) then
• For d = p2 + 4, we have Aχ(p) = Aχ(p′) + 1

2 (p − p′)χ(d)
(

d
q

)
Bχ, and so

(10.1) p ≡ p′ − χ(d)
(

d

q

)
2Aχ(p′)

Bχ
= −χ(d)

(
d

q

)
2Cχ(p′)

Bχ
(mod P);

• Similarly for d = 4p2 + 1 we deduce that

p ≡ −χ(d)
(

d

q

)
Cχ(p′)

Bχ
− χ(p′) +

1
2

(mod P)

• and for d = p2 + 4p that

p ≡ −χ(d)
(

d

q

)
2Cχ(p′)

Bχ
− χ(p′) (mod P)

Now if q′ is the rational prime dividing the norm of P then this forces a congruence
for p (mod q′). In other words, we have a strange phenomena that the value of p (mod q)
forces the value of p (mod q′), and from this we strive for a contradiction.

We work with some of the same characters from section 4 of [B1]: Characters χ1 (mod 7·
52) and χ2 (mod 61), are given on primitive roots as

χ1,52(2) ≡ 8 (mod P1), χ1,7(3) ≡ 47 (mod P1), for a certain prime ideal P1|61;

χ1,52(2) ≡ 380 (mod P2), χ1,7(3) ≡ 1406 (mod P2), for a certain prime ideal P2|1861;

χ2(2) ≡ −28 (mod P3), for a certain prime ideal P3|1861.
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Now in each case here we have Bχ = −Jχ

∑q−1
n=0 χ2(n)n2/q. Using Maple we find that

Bχ1 ≡ 51 (mod 61), Bχ2 ≡ 121 (mod 1861), Bχ3 ≡ 945 (mod 1861).
We use these formulae as follows: Suppose that h(d) = 1 for a given p where

(
d
5

)
=

(
d
7

)
=

−1; and suppose that p ≡ p0 (mod 175). Using χ1 we deduce that p ≡ p1 (mod 61), and
from this, using χ2 we deduce that p ≡ p3 (mod 1861). On the other hand, using χ1 we
deduce, from p ≡ p0 (mod 175), that p ≡ p2 (mod 1861). Typically p2 �≡ p3 (mod 1861)
(using Maple).

For d = p2+4 the exceptions are when p ≡ ±3,±8,±13 or ±17 (mod 175). We discover
that, in each of these cases, p ≡ ±3,±8,±13 or ±17 (mod 175× 61× 1861). But the only
ones of these cases for which

(
d
61

)
=

(
d

1861

)
= −1 are when p ≡ ±13 (mod 175). This is as

was found in [B2]; the final case was ruled out by using a character χ3 (mod 61) to show
that p belongs to a certain residue class (mod 41) implying that

(
d
41

)
= 1.

For d = 4p2 + 1 the exceptions are when p ≡ ±2 or ±13 (mod 175). We discover that,
in each of these cases, p ≡ ±2 or ±13 (mod 175 × 61 × 1861). But the only ones of these
cases for which

(
d
61

)
=

(
d

1861

)
= −1 are when p ≡ ±13 (mod 175). This is as was found in

[B2]; the final case was ruled out by using a character χ3 (mod 61) to show that p belongs
to a certain residue class (mod 41) implying that

(
d
41

)
= 1.

For d = p2 + 4p the exceptions are when p ≡ 2, 9, 19,−23,−13 or −6 (mod 175). We
discover that, in each of these cases, p ≡ 2, 9, 19,−23,−13 or −6 (mod 175 × 61 × 1861).
But none of these cases satisfy

(
d
61

)
=

(
d

1861

)
= −1.

A nice Corollary of the three theorems (Yokoi, Chowla and Mollin) is the following:

Theorem. Suppose that d ≥ 25 with d ≡ 1 (mod 4). Then −n2 + n + (d − 1)/4 is prime
for 1 < n < (

√
d − 1)/2 if and only if d = 29, 37, 53, 77, 101, 173, 197, 293, 437 or 677.

Remark. These are exactly the set of class number one fields in this range, from our three
cases!

Proof. If d ≡ 1 (mod 8) then 2 always divides −n2 + n + (d − 1)/4 so we must have
(
√

d − 1)/2 < 2, that is d < 25, or 2 = −22 + 2 + (d − 1)/4 that is d = 17. Otherwise
assume that d ≡ 5 (mod 8). Note then that every −n2 + n + (d − 1)/4 is odd. We will
also assume that d > 100.

We now show that we may assume that d is squarefree. Suppose p2|d, then p is odd.
Evidently p2 divides our polynomial when n = (p+1)/2. This is in our range unless d = p2;
but in this case d ≡ 1 (mod 8), contradiction.

Suppose that 2 < q <
√

d−1 is prime with
(

d
q

)
= 1 and d �≡ 1 (mod q). Since

(
d
q

)
= 1

there exists an odd integer N, 1 ≤ N ≤ q − 1 such that N2 ≡ d (mod q); and N �≡ 1
(mod q) since d �≡ 1 (mod q). Let n = (N + 1)/2, so there exists n, 1 < n ≤ (q − 1)/2 <

(
√

d − 1)/2 such that (2n − 1)2 ≡ d (mod q), that is q divides −n2 + n + (d − 1)/4 =
(d − (2n − 1)2)/4. By hypothesis −n2 + n + (d − 1)/4 is prime and so must equal q.
Therefore q = −n2 + n + (d − 1)/4 >

√
d − 1 as n < (

√
d − 1)/2, a contradiction.

Suppose that 2 < q < (
√

d − 3)/2 is prime with d ≡ 1 (mod q). Then q divides
−n2+n+(d−1)/4 with n = q+1 < (

√
d−1)/2; but then q = −n2+n+(d−1)/4 >

√
d−1,

a contradiction.
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Suppose that prime q|d with q <
√

d − 2. Then q divides −n2 + n + (d − 1)/4 with
n = (q + 1)/2 < (

√
d− 1)/2; but then q = −n2 + n + (d− 1)/4 >

√
d− 1, a contradiction.

For any quadratic field, every ideal class contains an ideal of norm a <
√

d/2; and
each prime factor q of a must satisfy (d/q) �= −1. But then, by the previous paragraphs
(since each such q is <

√
d/2) the only possible prime factors of a are prime divisors

of (d − 1)/4 which are > (
√

d − 3)/2. There can be at most two such prime divisors,
perhaps repeated; and so either d = 1 + 4p with p prime, or d = 1 + 4p2 with p prime,
or d = 1 + 4p(p + 2k) for k ≥ 1, where p, p + 2k are both prime. In this last case k = 1
else d = 1 + 4p(p + 2k) > 1 + (

√
d − 3)(

√
d + 5) > d, a contradiction. Thus, besides the

principal form (1, 1,−(d− 1)/4), the only other possible reduced forms are (p, 1,−p) when
d = 1 + 4p2 with p prime, or (p, 1,−(p + 2)) when d = 1 + 4p(p + 2) and p, p + 2 are both
prime. However, in the first case one easily sees that (p, 1,−p) is in the same cycle as the
principal form (see “Chowla’s discriminants” above), and in the second case, for the form
to be reduced we need

√
d − 1 < 2p which is untrue. Therefore h(d) = 1.

Next write d = (2m + 1)2 + 4� when 1 ≤ � < 2(m + 1). Taking n = m we find that
q = 2m + � is prime. Let r := 2m + 2 − � so that rq = d − (1 + �)2; thus if prime p|r then
(d/p) = 0 or 1:

• If p|d then 2m + 2 − � = r ≥ p >
√

d − 2 > 2m − 1 (by the above) so � = 1 or 2.
If � = 1 then p|(r, d) = (2m + 1, (2m + 1)2 + 4) = 1 which is impossible; if � = 2 then
p|(r, d) = (2m, (2m + 1)2 + 4) = (m, 5), so p = 5 >

√
d − 2 which is impossible.

• If (d/p) = 1 and d �≡ 1 (mod p) then 2m + 2 − � = r ≥ p >
√

d − 1 > 2m by the
above, so � = 1. Thus p = r = 2m + 1 = q and so d = p2 + 4, a “Yokoi discriminant”.

• If d ≡ 1 (mod p) then p > m−1, by the above. Also p|(r, d−1) = (2m+2− �, (2m+
1)2 +4�− 1) = (2m+2− �, �(�+2)). Therefore either p|� and so p|m+1; or p|�+2 and so
p|m + 2. In the first case we have p = m + 1 whence � = p so that d = 4p2 + 1, a “Chowla
discriminant”. In the second case p = m + 2 whence � = m so that d = 4(p − 1)2 − 3, in
which case (3/d) = 1, a contradiction.

Finally we may have that r = 1 in which case � = 2m + 1 and d = �2 + 4�, a “Mollin
discriminant”.

Thus we have d of the form p2 + 4, 4p2 + 1 or p2 + 4p with h(d) = 1 and our previous
results give the full list of such d.

11. Theorem 2 for the Yokoi discriminants

Let d = p2 + 4 where p is an odd integer, and α = (
√

d − p)/2 = [0, p]. Let I be the
principal ideal class. We have � = 1, α0 = −α and α1 = α2. Therefore, for r + s = 2k we
have

pr,s(α0, α1) =
(−1)r−1

r!
1
s!

∑
h,i∈Z

h+i=k−1

(
r − 1

h

)(
s − 1

i

)
αh+2iαr−1−h+2(s−1−i)

=
1
r!

1
s!

∑
h,i∈Z

h+i=k−1

(
r − 1

h

)(
s − 1

i

)
(−1)hα2i+1−s
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since αα = −1, noting that 2i+1−s = r−2h−1. The term with r−1−h in place of h, and
s−1−i in place of i has summand (−1)r−1−hα2(s−1−i)+1−s = (−1)h(−1)r−1(−1/α)s−1−2i =
(−1)h(α)2i+1−s, the conjugate of of term above, and therefore pr,s(α0, α1) ∈ Q. It is not
hard to evaluate pr,s as a polynomial in p: We have for 1 ≤ r, s ≤ k − 1 that

pr,s(−α, α2) =
1

(k − 1)!rs

∑
0≤j≤m−1

j≡m−1 (mod 2)

(−1)
3r+1−j

2
pj

j!
(

r−1−j
2

)
!
(

s−1−j
2

)
!
;

notice that pr,s(−α, α2) = (−1)r+kps,r(−α, α2). This also holds for r = 2k and

p0,2k(−α, α2) =
1

2(k!)

k∑
i=1

i!p2i−1

(2i)!(k − i)!

We have f(x, y) = x2 + pxy − y2, so that

Gr,s(f, χ) :=
∑

0≤m,n≤q−1

χ(m2 + pmn − n2)Br

(
m

q

)
Bs

(
n

q

)
.

Writing M = q − n, N = m we get that Gr,s(f, χ) equals

=
∑

0≤m≤q−1
0≤n≤q−1

χ(f(m,n))Br

(
m

q

)
Bs

(
n

q

)
=

∑
0≤N≤q−1
1≤M≤q

χ(f(N,−M))Br

(
N

q

)
Bs

(
1 − M

q

)

=
∑

0≤N≤q−1
0≤M≤q−1

χ(−f(M,N))(−1)sBs

(
M

q

)
Br

(
N

q

)
= χ(−1)(−1)sGs,r(f, χ)

since Bm(1 − t) = (−1)mBm(t) and Bm(1) = Bm(0) for m ≥ 1.
Therefore Theorem 2 yields, for or any k ≥ 1,

ζI(1 − k, χ) = 2(k − 1)!2q2(k−1)
∑

r,s∈Z

r+s=2k

pr,s(α0, α1)Gr,s(f, χ).

Since χ(−1) = (−1)k, hence pr,sGr,s = ps,rGs,r, and so

ζI(1−k, χ) = 2(k − 1)!2q2(k−1)

{
2

k−1∑
r=0

pr,2k−r(α0, α1)Gr,2k−r(f, χ) + pk,k(α0, α1)Gk,k(f, χ)

}
.

If k = 1 then p1,1 = 1, p0,2 = p/4 which yields Theorem 1.
If k = 2 then p2,2 = −p, p1,3 = 2, p0,4 = (6p + p3)/48.
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