
ON THE EQUATION ax ≡ x (mod b)

Jam Germain

Abstract. Recently Jimenez and Yebra [3] constructed, for any given a and b, solutions x
to the title equation. Moreover they showed how these can be lifted to higher powers of b to
obtain a b-adic solution for certain integers b. In this paper we find all solutions x to the title
equation, proving that, for given a and b, there are X/b + Ob(1) solutions x ≤ X. We also
show how solutions may be lifted in more generality. Moreover we show that the construction
of [3] (and obvious modifications) cannot always find all solutions to ax ≡ x (mod b).

Introduction

Jimenez and Yebra begin [3] with: “The fact that 7343 ends in 343 could just be a
curiosity. However, when this can be uniquely extended to

77659630680637333853643331265511565172343 = . . . 7659630680637333853643331265511565172343,

and more, it begins to be interesting.” They go on to show that one can construct such
an x satisfying ax ≡ x (mod 10n) for any a ≥ 1 with (a, 10) = 1 and any n ≥ 1.

To find solutions to ax ≡ x (mod b) Jimenez and Yebra proceed as follows: From a
solution y to ay ≡ y (mod φ(b)) one takes x = ay and then ax ≡ x (mod b) by Euler’s
theorem. Since φ(b) < b for all b ≥ 2, one can recursively construct solutions, simply and
elegantly. The only drawback here is that the method does not obviously give all solu-
tions. In this paper we proceed in a more pedestrian manner (via the Chinese Remainder
Theorem) to find all solutions, beginning with all solutions modulo a prime power:

For any prime p and each n, 0 ≤ n ≤ p− 2 define a sequence {xk(p, n)}k≥0 of residues
(mod pk(p− 1)), by x0 = n and then

(1) xk+1 ≡ pxk − (p− 1)axk (mod pk+1(p− 1))

for each k ≥ 0 (where xk = xk(p, n) for simplicity of notation).

Remark. If p = 2 and a is odd then we have the simpler definition x0 = 0 and then
xk+1 ≡ axk (mod 2k+1) for each k ≥ 0, as 2(xk − axk) ≡ 0 (mod 2

k+1
).

Thanks are due to Professor Jorge Jimemez-Urroz for introducing me to this problem, and to Professor
Granville for his encouragement and for outlining the proof of (2).
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Theorem 1. Suppose that prime p and integer a are given. If p|a then ax ≡ x (mod pk)
if and only if x ≡ 0 (mod pk). If (p, a) = 1 then

ax ≡ x (mod pk) if and only if x ≡ xk(p, n) (mod pk(p− 1)) for some 0 ≤ n ≤ p− 2.

Actually one can “simplify” this a little bit:

Corollary 1. Suppose that prime p and integer a are given. If p|a then ax ≡ x (mod pk)
if and only if x ≡ 0 (mod pk). If (p, a) = 1 then define, for n, 0 ≤ n ≤ ordp(a) − 1, a
sequence {x′k(p, n)}k≥0 of residues (mod pkordp(a)) with x′0 = n and then

x′k+1 ≡ px′k − (p− 1)ax′k (mod pk+1ordp(a))

for each k ≥ 0. Then

ax ≡ x (mod pk) if and only if x ≡ x′k(p, n) (mod pkordp(a)) for some 0 ≤ n ≤ ordp(a)−1.

To construct p-adic solutions we need the following result:

Lemma 1. Suppose that prime p and integers n and a are given. Then

xk+1(p, n) ≡ xk(p, n) (mod pk(p− 1)).

for each k ≥ 0.

Hence,
x∞(p, n) := lim

k→∞
xk(p, n)

exists in Zp × Z/(p− 1)Z (where Zp := limk←∞ Z/pkZ are the p-adic numbers) and

ax∞ = x∞ in Zp × Z/(p− 1)Z.

Note that there are p− 1 distinct solutions if (a, p) = 1.

Theorem 2. Given integers a and b, let L(b, a) := LCM[b; p− 1, p|b, p - a]. The integers
x such that ax ≡ x (mod b) are those integers that belong to exactly L(b, a)/b residue
classes mod L(b, a). That is, 1/b of the integers satisfy this congruence.

Note that L(b, a) divides LCM[b, φ(b)] for all a.

Example. If b = 10 and 5 - a then L(10, a) = [10, 4, 1] = 20 so exactly 2 out of the 20 residue
classes mod 20 satisfy each given congruence. If b = 10 and 5|a then L(10, a) = [10, 1] = 10
so exactly 1 out of the 10 residue classes mod 10 satisfy each given congruence.
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a x

0 10 mod 10
1 1, 11 mod 20
2 14, 16 mod 20
3 7, 13 mod 20
4 6, 16 mod 20
5 5 mod 10
6 6, 16 mod 20
7 3, 17 mod 20
8 14, 16 mod 20
9 9, 19 mod 20

All integers x ≥ 1 such that ax ≡ x (mod 10)

Note that, in general a1−p ≡ 1− p (mod p) whenever p - a, and so ax ≡ x (mod p) for
x ≡ 1− p ≡ (p− 1)2 (mod p(p− 1)).

Theorem 2 can be improved in the spirit of Corollary 1:

Corollary 2. Given integers a and b, let L′(b, a) := LCM[b; ordp(a), p|b, p - a]. The
integers x such that ax ≡ x (mod b) are those integers that belong to exactly L′(b, a)/b
residue classes mod L′(b, a). That is, 1/b of the integers satisfy this congruence.

Let vp(r) denote the largest power of p dividing r. Theorem 2 yields the following result
about lifting solutions:

Corollary 3. Let b =
∏

p pbp and then m be the smallest integer ≥ vp(q − 1)/bp for all
primes p, q|b with p, q - a. The solutions of ax ≡ x (mod bm) lift, in a unique way, to the
solutions of ax ≡ x (mod bn), for all n ≥ m.

Proof. Since L(bn, a) := LCM[bn; p−1, p|b, p - a] for all n ≥ 1, we note that L(bn, a)/bn =
L(bm, a)/bm for all n ≥ m. Hence, by Theorem 2, there are the same number of residue
classes of solutions mod bn as mod bm so each must lift uniquely.

Using Corollary 2 in place of Theorem 2, one can let m be the smallest integer ≥
vp(ordq(a))/bp for all primes p, q|b with p, q - a.

Proposition 3 (in section 5) explicitly gives the lift of Corollary 3, in terms of a recurrence
relation based on (1).

It is certainly aesthetically pleasing if, as in the solutions to 7x ≡ x (mod 10n) discussed
at the start of the introduction, one can lift solutions x mod bn (rather than x mod L(bn, a)
as in Corollary 3) and thus obtain a b-adic limit. From Theorem 2 and Corollary 3 this
occurs if L(bm, a) = bm (and, from Corollaries 2 and 3, if L′(bm, a) = bm). Moreover
L′(bm, a) = bm if and only if all of the prime factors of ordq(a) with q|b, q - a, divide b.
Note that if this happens then there is a unique solution x mod bm (by Theorem 2).

This condition becomes most stringent if we select a to be a primitive root modulo each
prime dividing b, in which case it holds if and only if prime q divides b whenever q divides
p − 1 for some p dividing b (or, alternatively, prime q divides b whenever q divides φ(b)).
In that case L(bm, a) = bm for all integers a ≥ 1.
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Jimenez and Yebra [3] called such an integer b a valid basis. Note that b is a valid
basis if and only if the squarefree part of b (that is,

∏
p|b p) is a valid basis. Hence 10 is a

valid basis, and 10n for all n ≥ 1, as well as 2 and its powers. Also 6, 42 and 2Fn for any
Fermat prime Fn = 22n

+ 1, as well as
∏

p≤y p, . . . We also note that b is a valid basis if
and only if every prime p dividing every non-zero iterate of Euler’s totient function acting
on b (that is, φ(φ(. . . φ(b) . . . )) ≥ 1) also divides b. We note what we have discussed as the
next result:

Proposition 1. Let b be a squarefree, valid basis, and select m to be the largest power of
a prime dividing LCM[q− 1, q|b]. If n ≥ m then there is a unique solution xn (mod bn) to
axn ≡ xn (mod bn), and these solutions have a b-adic limit, i.e. x∞ := limn→∞ xn which
satisfies ax∞ = x∞ in Zb.

To be a valid basis seems to be quite a special property, so one might ask how many
there are: Let V (x) = #{b ≤ x : b is a valid basis}. In section 6 we obtain the following
upper and lower bounds:

Theorem 3. We have

(2) x19/27 ¿ V (x) ¿ x

e{1+o(1)}√log x log log log x
.

We certainly believe that V (x) = x1+o(1), and give a heuristic which suggests that

V (x) À x1−{1+o(1)} log log log x
log log x .

It would be interesting to get a more precise estimate, or even guesstimate, for V (x); for
example find c ∈ [ 12 , 1] (if it exists) such that V (x) = x/ exp((log x)c+o(1)).

2. Finding all solutions to ax ≡ x (mod pk)

Proof of Lemma 1. Note that xk+1 = axk +p(xk−axk) ≡ axk (mod pk+1) ≡ xk (mod pk),
and xk+1 ≡ xk (mod p−1). Hence xk+1 ≡ xk (mod pk(p−1)) by the Chinese Remainder
Theorem, as desired.

Proof of Theorem 1. If p|a then x ≡ ax ≡ 0 (mod pmin{k,x}). Evidently k < x else px|x so
px ≤ x which is impossible. Therefore x ≡ 0 (mod pk). But then ax ≡ 0 ≡ x (mod pk).

If p - a and ax ≡ x (mod pk+1) then ax ≡ x (mod pk) and so x ≡ xk(n) (mod pk(p−1))
for some 0 ≤ n ≤ p − 2. Hence we can write x = xk + lpk(p − 1) so that x ≡ xk −
lpk (mod pk+1) and ax = axk(apk(p−1))

l ≡ axk1l = axk (mod pk+1). Hence, ax ≡ x
(mod pk+1) if and only if l ≡ (xk − axk)/pk (mod p). Therefore l is unique mod p, and
x ≡ xk + (p− 1)(xk − axk) ≡ xk+1(n) (mod pk+1(p− 1)) as claimed.

Proof of Corollary 1. This comes by taking x′k(n, p) ≡ xk(n, p) (mod pkordp(a)), which
gives all solutions since xk(m, p) ≡ xk(n, p) (mod pkordp(a)) whenever m ≡ n (mod ordp(a))
(as easily follows by induction).
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3. Finding all solutions to ax ≡ x (mod b)

We proceed using the Chinese Remainder Theorem to break the modulus b up into prime
power factors, and then Theorem 1 for the congruence modulo each such prime power
factor. The key issue then is whether the congruences for x from Theorem 1, for each
prime power, can occur simultaneously. We use the fact that if primes p1 < p2 then x ≡ x1

(mod pk1
1 (p1 − 1)) and x ≡ x2 (mod pk2

2 (p2 − 1)) if and only if x2 ≡ x1 (mod (pk1
1 (p1 −

1), p2 − 1)) as (p2, p1 − 1) = 1. The details are complicated at first sight:
Let b =

∏
p pbp , r =

∏
p|(a,b) pbp and R = b/r =

∏I
i=1 pki

i with p1 < p2 < .. < pI . Define

L := LCM[b; p− 1, p|b, p - a] = LCM[r, pkj

j (pj − 1), 1 ≤ j ≤ I]

We begin by noting that ax ≡ x (mod b) if and only if ax ≡ x (mod pbp) for all p|b, and
hence x ≡ 0 (mod r). Next we construct the necessary conditions so that the congruences
mod p

kj

j (pj − 1) can all occur simultaneously:
Step 1. Select any integer n1, 0 ≤ n1 ≤ p1 − 2 with (r, p1 − 1)|n1. Then determine

xk1(p1, n1) (mod pk1
1 (p1 − 1)).

Step 2. Select any integer n2, 0 ≤ n2 ≤ p2 − 2 with (r, p2 − 1)|n2 and n2 ≡ xk1

(mod (pk1
1 (p1 − 1), p2 − 1)). Then determine xk2(p2, n2) (mod pk2

2 (p2 − 1)).
. . .

Step m ≥ 3. Select any integer nm, 0 ≤ nm ≤ pm − 2 with (r, pm − 1)|nm and
nm ≡ xkj (mod (pkj

j (pj − 1), pm − 1)) for each j < m. Then determine xkm(pm, nm)
(mod pkm

m (pm − 1)).
Finally we can select x (mod L), such that x ≡ 0 (mod r) and

x ≡ xkj (pj , nj) (mod p
kj

j (pj − 1))

for each j. This works since if i < j then

gcd(pki
i (pi − 1), pkj

j (pj − 1)) = gcd(pki
i (pi − 1), pj − 1)

and we have xkj (pj , nj) ≡ nj ≡ xki(pi, ni) (mod (pki
i (pi − 1), pj − 1)), by construction.

From this we can deduce the

Proof of Theorem 2. The number of choices for n1 above is p1−1
(r,p1−1) = [r,p1−1]

r = L2/p
k1
1

L1

where Lm := LCM[r, pkj

j (pj − 1), 1 ≤ j < m] for each m ≥ 1. Similarly the number of

choices for nm above is pm−1
(Lm,pm−1) = [Lm,pm−1]

Lm
= Lm+1/pkm

m

Lm
. Hence, in total, the number

of choices for the set {n1, n2, . . . , nI}, using our algorithm above, is

I∏
m=1

Lm+1/pkm
m

Lm
=

LI+1/R

L1
=

L

rR
=

L

b
,

as L := LCM[b, pj − 1, 1 ≤ j ≤ I].
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4. The Spanish construction

In the introduction we described how the Spanish mathematicians Jimenez and Yebra
[3] constructed solutions to ax ≡ x (mod b): From a solution y to ay ≡ y (mod φ(b)) one
takes x = ay and then ax ≡ x (mod b) by Euler’s theorem. As I have described it, this
argument is not quite correct since Euler’s theorem is only valid if (a, b) = 1. However this
can be taken into account:

Lemma 2. If ay ≡ y (mod φ(b)) with y ≥ 1 then ax ≡ x (mod b) where x = ay.

Proof. Since ax ≡ x (mod b) if and only if ax ≡ x (mod pk) for every prime power pk‖b,
we focus on the prime power congruences. Now φ(pk)|φ(b) and so ay ≡ y (mod φ(pk)).
If p - a then we deduce that ax ≡ x (mod pk) by Euler’s theorem. If p|a then pk−1|y by
Theorem 1, since ay ≡ y (mod pk−1). Hence ppk−1 | ay = x and ax, so that ax ≡ 0 ≡ x
(mod pk) as pk−1 ≥ k.

Let λ(b) := LCM[φ(pk) : pk|b]. One can improve Lemma 2 to “If ay ≡ y (mod λ(b))
with y ≥ 1 then ax ≡ x (mod b) where x = ay,” by much the same proof. Let

O(b, a) := LCM[pk−1ordp(a), pk|b, p - a]

and
k(b, a) := max[k : There exists prime p such that pk|b, p|a].

Lemma 2’. If ay ≡ y (mod O(b, a)) with y ≥ k(b, a) then ax ≡ x (mod b) where x = ay.

Does the Spanish construction give all solutions to ax ≡ x (mod b)? An example shows
not: For b = 11 and a = 23 we begin with the solutions to 23y ≡ y (mod 10): Then y ≡ ±7
(mod 20) (as we saw in the table in the introduction), leading to the solutions x ≡ 23 or
67 (mod 110). However 23x ≡ x (mod 11) holds if and only if x ≡ 1 (mod 11); so there
are many other solutions x.

There is a variation on the Spanish construction: If (a + kb)y ≡ y (mod φ(b)) for some
given integer k, then

a(a+kb)y ≡ (a + kb)(a+kb)y ≡ (a + kb)y (mod b)

so we can take x ≡ (a + kb)y (mod L). For b = 11 and a = 23 we look for solutions to
(23 + 11k)y ≡ y (mod 10) and then take x = (23 + 11k)y (mod 110). Using the table
in the introduction we obtain the solutions 23, 67; 56; 45; 56; 23, 67; 34, 56; 89; 1; 100; 34, 56
(mod 110) for k = 0, 1, . . . , 9, respectively, missing 12 and 78 (mod 110).

Another variation on the Spanish construction is to use Lemma 2’ in place of Lemma 2,
and with this we could have trivially found all solutions to 23x ≡ x (mod 11). If we now
take the example b = 11 and a = 6 then O(11, 6) = 10 = φ(11) so Lemma 2’ and Lemma
2 are identical. In this case we proceed as above, using the table in the introduction we
obtain the solutions 16; 73, 107; 16, 64; 79; 100; 61; 16, 64; 73, 107; 16; 65 (mod 110) missing
48 and 102 (mod 110).

Note that 12 and 78, and 48 and 102 are all even and quadratic non-residues mod 5. It
can be proved that this is true in general (though we suppress the proof):
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Proposition 2. Suppose that b = p = 1 + 2q where p and q are odd primes, and that a
is a primitive root mod p. The Spanish construction and our variations fail to find the
solution x ≡ n (mod p− 1) to ax ≡ x (mod p) if and only of n is even and (n/q) = −1.

5. b-adic solutions, b squarefree

Let λ := LCM[p − 1 : p|b, p - a] and λ′ =
∏

qe‖λ, q-b qe so that L(bk) = LCM[bk, λ].
This equals λ′bk for k ≥ m. Let Xk = {x (mod L(bk)) : ax ≡ x (mod bk)}.
Proposition 3. Let ν ≡ 1/b (mod λ′) (and ν = 1 if λ′ = 1). If k ≥ m then Xk+1 is the
set of values (mod L(bk+1)) given by

(3) xk+1 ≡ axk + bν(xk − axk) (mod L(bk+1)),

for each xk ∈ Xk.

Proof. We will lift a solution (mod bk) to a solution (mod bk+1) by doing so for each
prime p dividing m (and combining the results using the Chinese Remainder Theorem).
The recurrence relation (1) gives

xk+1 ≡ p(xk − axk) + axk ≡ axk (mod pk+1)

(and this is also true if p|a since then both sides are ≡ 0) for each p|b, and so combining
them, by the Chinese Remainder Theorem, gives

xk+1 ≡ axk (mod bk+1).

The recurrence relation (1) also gives xk+1 ≡ xk (mod p−1) if p|b, p - a, and so xk+1 ≡ xk

(mod λ). Therefore, if k ≥ m then xk+1 ≡ axk (mod bk+1) and xk+1 ≡ xk (mod λ′). One
can verify that combining these two by the Chinese Remainder Theorem gives (3) since
L(bk+1) = λ′bk+1.

6. Counting validity

In this section we use estimates on

Π(x, y) := #{primes q ≤ x : p|q − 1 =⇒ p ≤ y}

and
Φ1(x, y) := #{n ≤ x : p|φ(n) =⇒ p ≤ y}.

These have been long investigated, and it is believed that for x = yu with u fixed, we have

(4) Π(x, y) = π(x)/u{1+o(1)}u

and
Φ1(x, y) = x/(log u){1+o(1)}u.

These are proved under reasonable assumptions by Lamzouri [4, Theorems 1.3 and 1.4].
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6.1. Upper bound on V (x). Banks, Friedlander, Pomerance and Shparlinski [2] showed
that

Φ1(x, y) ≤ x/(log u){1+o(1)}u

provided x ≥ y ≥ (log log x)1+o(1) and u →∞.
Now suppose that n ∈ V (x) and there exists prime p > y which divides φ(n). Then

either p2 divides n, or there exists q ≡ 1 (mod p) such that pq divides n. Hence

V (x) ≤ Φ1(x, y) +
∑
p>y

x

p2
+

∑
p>y

∑

q≡1 (mod p)
pq≤x

x

pq

≤ x

(log u){1+o(1)}u +
∑
p>y

x

p2


1 +

∑

1≤m≤x/p2

1
m


 ¿ x

y1+o(1)

when y = exp(
√

log x log log log x), writing q = 1 + mp and using the prime number
theorem. This implies the upper bound in (2).

6.2. Lower bound on V (x). Fix ε > 0. Let z = (log x)1−ε and m =
∏

p≤z p. Select
some T, z ≤ T ≤ x/m and take u = [log(x/m)/ log T ]. Any integer which is m times the
product of u primes counted by Π(T, z) belongs to V (x), so that

(5) V (x) ≥
(

Π(T, z) + u− 1
u

)
≥ Π(T, z)u

u!
À

(
eΠ(T, z)

u

)u

.

Now suppose that Π(T, z) ≥ T 1−o(1) for T = zB . Then u ∼ log x/ log T = T 1/B+O(ε)

so (5) becomes V (x) ≥ x1−1/B+O(ε)−o(1). Letting ε → 0, we obtain V (x) ≥ x1−1/B−o(1).
Baker and Harman [1] show that one can take B = 3.3772 implying the lower bound in
(2). It is believed that one can take B arbitrarily large in which case one would have
V (x) ≥ x1−o(1), and hence V (x) = x1−o(1) (using the lower bound from the previous
subsection).

Suppose that (4) holds for y = exp(
√

log x) for all sufficiently large x. Let T = zlog z so
that Π(T, z) = T/(log z){1+o(1)} log z by (4), and thus eΠ(T, z)/u = T/(log z){1+o(1)} log z.
Hence (5) implies that

V (x) ≥ x

(log z){1+o(1)} log x
log z

= x1−{1+o(1)} log log z
log z = x1−{1+o(1)} log log log x

log log x

letting ε → 0, as claimed at the end of the introduction.
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