1 Introduction

A k-edge-weighting of a graph G is an assignment of an integer weight, $w(e) \in \{1, \ldots, k\}$ to each edge e. The edge-weighting is vertex-colouring if for every edge (u, v), $\sum_{e \ni u} w(e) \neq \sum_{e \ni v} w(e)$. Let us say that a graph is nice if does not contain an edge component. Note that only nice graphs have vertex-colouring edge-weightings.

In [8], Karoński, Łuczak and Thomason initiated the study of vertex-colouring edge-weightings as defined here. (See also [3,5,6] for alternate notions that combine ideas from vertex and edge colouring.) In particular, [8] conjectures that every nice graph permits a vertex-colouring 3-edge-weighting and proves the conjecture for graphs with $\chi(G) \leq 3$. For general G, the first finite bound was shown in [2], where it is proved that nice graphs always permit a vertex-colouring 30-edge weighting. In this paper, we substantially improve this result to prove the following:

Theorem 1 Every nice graph permits a vertex-colouring 16-edge-weighting.

To get a feeling for our approach, note that if it were possible to find a spanning subgraph H of G such that if $v \sim w$ in G then $d_H(v) \neq d_H(w)$, then giving the edges of H weight 1 and all other edges weight 0 would yield a vertex-colouring edge weighting with weights in $\{0, 1\}$. In general, such a subgraph H may not exist, e.g., for K_3. However using this idea the following statement (which [8] found evidence for experimentally) follows from combining Theorem 5 with the following fact: if $0 < p < 1$ then asymptotically almost surely $\chi(G_{n,p}) << \delta(G_{n,p})$ where $\delta(G)$ is the minimum degree of a vertex in G.

Theorem 2 Let G be a random graph chosen from $G_{n,p}$ for constant $p \in (0,1)$. Then, asymptotically almost surely, there exists a vertex-colouring 2-edge-weighting for G. In fact, there exists a 2-edge-weighting such that the colours of two adjacent vertices are distinct mod $2\chi(G)$.

Preprint submitted to Elsevier Science 13 January 2005
The proof will appear in the complete version of this paper.

When dealing with an arbitrary graph, our approach is to find an intermediate weighting of the edges in which no vertex has many neighbours of the same weight, then find a subgraph H which allows us to distinguish such neighbours without creating new conflicts. Our tool will be Theorem 5, a result on when it is possible to find a subgraph H in which each vertex has degree in some target set D_v. For arbitrary D_v, this problem is known as the \textit{generalized f-factor problem} and has been well studied (see, e.g., [1,2,7,9,10,12]). In [2], we find the following conjecture

\textbf{Conjecture 3 [Louigi’s Conjecture]} Given $G = (V, E)$ and, for each $v \in V$, a list $D_v \subseteq \{0, 1, \ldots, d(v)\}$ satisfying $|D_v| > \lfloor d(v)/2 \rfloor$, there exists a spanning subgraph $H \subseteq G$ so that for all v, $d_H(v) \in D_v$.

A result of Sebő [12] implies that this conjecture holds if we additionally require that $\{0, 1, \ldots, d(v)\} - D_v$ contains no two consecutive integers. Also, if we weaken the conjecture by replacing $d(v)/2$ with $7d(v)/8$, the result follows easily from Theorem 5. This is an improvement over the $11d(v)/12$ version found in [2].

\section{Degree Constrained Subgraphs}

We make use of the following strengthening by Heinrich \textit{et. al} [7] of a lemma of Lovász [9]. This lemma can be viewed as a special case of the f-factor theorem (see e.g. [11,10]).

\textbf{Lemma 4 ([7,9])} Given a graph $G = (V, E)$ and, for all $v \in V$, integers a_v, b_v such that $0 \leq a_v \leq b_v \leq d(v)$, if G is bipartite or $\forall v, a_v \neq b_v$, then there exists a subgraph $H = (V, E')$ of G such that for all $v \in V$, $d_H(v) \in [a_v, b_v]$ if and only if for all disjoint sets of vertices A, B,

$$\sum_{v \in A} (a_v - d_{G-B}(v)) \leq \sum_{v \in B} b_v \quad (1)$$

Using this lemma, we prove the following two theorems, whose proofs are included in the Appendix.

\textbf{Theorem 5} Given a graph $G = (V, E)$ and, for all $v \in V$, integers a_v^-, a_v^+ such that $a_v^- \leq \lfloor d(v)/2 \rfloor \leq a_v^+$, and

$$a_v^+ \leq \min \left(\frac{d(v) + a_v^-}{2} + 1, 2a_v^- + 3\right), \quad (2)$$
there exists a subgraph $H = (V, E')$ of G such that for all $v \in V$, $d_H(v) \in \{a_v^-, a_v^+, a_v^+ + 1\}$.

Theorem 6 Given a bipartite graph $G = (V, E)$ with bipartition $V = X \cup Y$. For $v \in X$ let $a_v^- = \lfloor \frac{d(v)}{2} \rfloor$ and set $a_v^+ = a_v^- + 1$. For $v \in Y$, choose a_v^-, a_v^+ such that $a_v^- \leq \lceil d(v)/2 \rceil \leq a_v^+$ and

$$a_v^+ \leq \min \left(\frac{d(v) + a_v^-}{2} + 1, 2a_v^- + 1 \right), \quad (3)$$

Then there is a subgraph $H = (V, E')$ of G such that for all $v \in V$, $d_H(v) \in \{a_v^-, a_v^+\}$.

In addition, we will need a technical lemma whose proof is an easy modification of the proof of Theorem 1 from [8].

Lemma 7 Given a connected, non-bipartite graph G, a set of target colours t_v for all $v \in V(G)$, and an integer k, where k is odd or $\sum_{v \in V} t_v$ is even, there exists a k-edge-weighting of G such that for all $v \in V(G)$, $\sum_{e \ni v} w(e) \equiv t_v \pmod{k}$.

Proof of Theorem 1 Without loss of generality, assume that G is connected and non-bipartite. (If G is bipartite then by Theorem 1 of [8], there exists a vertex-colouring 3-edge-weighting.)

For any ordering of a set of vertices, let $F(v_i) = \{v_j \mid v_j \in N(v_i) \text{ and } j > i\}$ and call this set the forward neighbours of v_i. Define $B(v_i)$ and the backward neighbours of v_i similarly. Choose an ordering of V that maximizes $k = \max\{j : \forall i \leq j, |F(v_i)| > |B(v_i)|\}$. Place the first k vertices into V_1 and the remainder into a temporary set T. Note that k does not decrease if T is re-ordered. Also observe that for all $v \in T$, $d_T(v) \leq d_{V_i}(v)$. (Otherwise, we could move v to the $(k + 1)'\text{st}$ position of the ordering and thereby create an ordering with a larger value of k.)

Next, place all bipartite components of T into a set L and then apply the prefix finding procedure to $T - L$ to generate V_2, then V_3, then V_4, and let V_5 be the remaining vertices. Note that each vertex in L (which may be empty) only has edges to vertices in L and V_1. Also, observe that each component of $V_2 \cup V_3 \cup V_4 \cup V_5$ must have at least one vertex in V_2 (since singleton components are bipartite) and that we can order the vertices in V_2, V_3, V_4, and V_5 such that each $v \in V_i$ has strictly fewer backward neighbours in V_i than forward neighbours. In addition, for all $v \in V_5$, by three applications of the observation at the end of the previous paragraph, we have that $|N(v) \cap V_1| \geq 8|N(v) \cap V_5|$.

3
Consider the edges from V_5 to V_1. Since every vertex v in V_5 has at least $8d_{V_5}(v)$ edges to V_1, we can choose a subset where each $v \in V_5$ has exactly $8d_{V_5}(v)$ edges to V_1. Let B be the bipartite graph spanned by this reduced set of edges. If $v \in V_1$ has an even (resp. odd) number of edges in B, then place v into the set V_{1e} (resp. V_{1o}). Also, partition L into two sets L_a and L_b based on a two colouring of L.

We will weight the edges so that the colour of each vertex has an arity mod 8 as specified in Table 1. The arities of the vertices ensure that there will be no cross partition conflicts because vertices in L have no neighbours in V_2.

<table>
<thead>
<tr>
<th>V_1</th>
<th>V_2</th>
<th>L_a</th>
<th>L_b</th>
<th>V_3</th>
<th>V_4</th>
<th>V_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or 4</td>
<td>1 or 2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>3 or 7</td>
</tr>
</tbody>
</table>

Table 1
Target Arity For Partition Elements

To begin, we assign weights between 1 and 8 to the edges within $V_1 \cup L$ so that every vertex that has no neighbours outside $V_1 \cup L$ has the arity specified in Table 2. We can do so by applying Lemma 7 to $E(G)$ and discarding the weights of edges outside of $V_1 \cup L$.

<table>
<thead>
<tr>
<th>V_{1e}</th>
<th>V_{1o}</th>
<th>L_a</th>
<th>L_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2
Initial Arity Choices

We will assign edge weights to the unweighted edges and modify some weighted edges to achieve the target arities from Table 1 and to ensure that there are no internal conflicts. The target arity choices and edge weighting steps are necessarily intermingled.

Process the vertices of V_1 in order. For each vertex v_i with current weighted degree w_{v_i}, if v_j is a backward neighbour of v_i, we say v_j blocks the range $[w_{v_j} - 2, w_{v_j} + 2]$. By giving weights to v_i’s forward edges which are not yet weighted, and modifying the weights on some of v_i’s remaining forward edges, we wish to change w_{v_i} to a new value which is not blocked and give it the right arity as specified in Table 2. Note that if v_i has d backward neighbours, it has at least $d + 1$ forward edges. We allow forward edges of v_i to $V - V_1 - L$ to take weights in the range $[3, 14]$. In addition, we allow ourselves to add 8 to an arbitrary subset of the forward edges to $V_1 \cup L$. By making such changes, there are at least $d + 1$ distinct values with the right arity available to v_i. Choose one that is not blocked by any backward neighbour.

Remark: It might seem more natural to use either the discarded weight $w(e)$ or $w(e) + 8$ on an edge from V_1 to $V - V_1 - L$, however, later we will need
the fact that the edge weights in this set lie between 3 and 14. We note that our more complicated approach relies on the property that each \(v_i \in V_1 \) has strictly more forward neighbours than backward neighbours.

After processing the vertices of \(V_1 \), the weighted degrees of all vertices in \(V_1 \) and \(L \) have the arities specified in Table 2. Consider the subgraph induced by \(V - V_1 - L \) which, by construction, is simply a collection of non-bipartite components. We choose new target arities for the vertices in \(V - V_1 - L \) based on the arity difference between sum of the edges from \(V_1 \) and the target arity from Table 1. We satisfy the requirements of Lemma 7 as each component has at least one vertex in \(V_2 \) which has both an even and odd choice for target arity. We then apply Lemma 7 to weight the edges of the graph induced by \(V_2 \cup V_3 \cup V_4 \cup V_5 \) to achieve the target arities. All edges of \(G \) are now weighted.

Process the vertices of \(V_2, V_3, V_4 \) in order. Distinguish \(v \in V_i \) from previously processed neighbours \(w \in V_i \) by adding 8 to a subset of \(v \)'s forward edges. In our final step, we adjust the weight of edges in \(B \) to distinguish adjacent vertices in \(V_5 \) and ensure that the colour of all vertices in \(V_1 \) is either 0 or 4 mod 8, whilst preventing any new conflicts in \(V_1 \). We do this by using Theorem 6 where \(X = V_1 \cap V(B) \) and \(Y = V_5 \cap V(B) \) to determine a subgraph \(H \). For each edge \(e \in E(H) \), we will add 2 to its weight, and for each \(e \notin E(H) \), we will subtract 2.

First, choose \(\{a_v^-, a_v^+\} \) for each vertex in \(X \) as follows. For each \(v \in X \), we choose \(a_v^- = \lfloor d_B(v)/2 \rfloor \) and set \(a_v^+ = a_v^- + 1 \). Then, choose \(\{a_v^-, a_v^+\} \) for each vertex in \(Y \) as follows. Process the vertices of \(Y \) in any order. For each \(v \in Y \) in turn, we choose \(a_v^- \in [d_B(v)/4, d_B(v)/2] \) (recall that 8 divides \(d_B(v) \), so this range has integer endpoints), and set \(a_v^+ = a_v^- + d_B(v)/4 + 1 \). We make our choice to ensure that for any previously processed neighbour \(u \in V_5 \), for any \(a_v \in \{a_v^-, a_v^+\} \), and for any \(a_u \in \{a_u^-, a_u^+\} \), \(w_v + 2a_v - 2(d_B(v) - a_v) \neq w_u + 2a_u - 2(d_B(u) - a_u) \). This is possible since each previously processed neighbour can prevent at most two choices for \(a_v^- \) and there are precisely \(2d_{V_5}(v) + 1 \) choices.

Next, we show that this set of degree choices satisfies the conditions of Theorem 6. The degree choices for \(X \) exactly match the theorem. Also, it is clear that for all \(v \in Y \), \(a_v^- \leq d_B(v)/2 \leq a_v^+ \), so it only remains to show that for all \(v \in Y \), Equation 3 holds. Since \(a_v^- \leq d_B(v)/2 \), \(a_v^+ = a_v^- + d_B(v)/4 + 1 = d_B(v)/4 + a_v^-/2 + 1 \leq d_B(v)/2 + a_v^-/2 + 1 \). Also, since \(a_v^- \geq d_B(v)/4 \), \(a_v^+ = a_v^- + d_B(v)/4 + 1 \leq 2a_v^- + 1 \). Thus, by Theorem 6, a subgraph \(H \) of \(B \) exists such that after performing the additions/subtractions described in the previous paragraph, all adjacent vertices in \(V_5 \) have different weights.

The weighted degrees of vertices in \(V_{1e} \) either stay the same or increase by 4, and thus are now either 0 or 4 mod 8. No conflicts exist within \(V_{1e} \) because
adjacent vertices’ weighted degrees were initially at least 8 apart. Similarly, the weighted degrees of vertices in \(V_{io} \) are now either 0 or 4 mod 8, and there are no conflicts within \(V_{io} \). Let \(uv \in E \) with \(u \in V_{io} \) and \(v \in V_{io} \). Prior to the final step, \(w_u \) and \(w_v \) were at least 3 apart. This implies, by a simple arity argument, that either \(w_u \) was at least 6 greater than \(w_v \) or \(w_u \) was at least 10 less than \(w_v \). Since \(w_u \) can only increase by 4 and \(w_v \) can only change by two, no conflict is possible inside \(V_1 \).

Furthermore, the weighted degrees of all vertices in \(V_5 \) are either 3 or 7 mod 8 because these vertices have even degree in \(B \). Thus, we have achieved the target arities from Table 1. It is easy to verify that all edges end up with a weight in the range of \([1, 16]\) to complete the proof. \(\square \)

References

A Appendix

Proof of Theorem 5 For \(v \in V \) choose \(a_v \in \{a_v^-, a_v^+\} \) and set \(b_v = a_v + 1 \). For a given \(H \), the deficiency of \(H \) with respect to the choices of the \(a_v \) is the quantity

\[
\sum_v \max(0, a_v - d_H(v)).
\]

Suppose the desired subgraph does not exist. Choose \(a_v \in \{a_v^-, a_v^+\} \) and \(H \) such that \(\forall v \in V, d_H(v) \leq b_v \) so that the deficiency is minimized over all such choices. Necessarily, there is \(v \in V \) such that \(d_H(v) < a_v \), so the deficiency of \(H \) is positive.

Let \(A_0 = \{v : d_H(v) < a_v\} \). An \(H \)-alternating walk is a walk \(P = v_0v_1 \ldots v_k \) with \(v_0 \in A_0 \) and \(v_iv_{i+1} \notin H \) for \(i \) even, \(v_iv_{i+1} \in H \) for \(i \) odd. We let \(A = \{v : \text{there is an even } H \text{-alternating walk ending in } v\} \), and \(B = \{v : \text{there is an odd } H \text{-alternating walk ending in } v\} \). For \(v \in A \), \(d_H(v) \leq a_v \), or else by reversing which edges are in \(H \) along an even alternating walk ending in \(v \), we decrease the deficiency. Similarly, for \(v \in B \), \(d_H(v) = b_v \) or else we can likewise decrease the deficiency by reversing which edges are in \(H \), this time along an odd alternating walk ending in \(v \). Since \(b_v > a_v \) this implies \(A \) and \(B \) are disjoint. Furthermore note that for \(v \in A \), if \(vw \in E \) and \(w \notin B \) then \(vw \in H \) by the definition of \(B \). Similarly if \(v \in B \), \(vw \in E \) and \(w \notin A \) then \(vw \notin H \). By these observations we have that

\[
\sum_{v \in A} a_v > \sum_{v \in A} d_H(v) = \sum_{v \in A} d_{G-B}(v) + \sum_{v \in B} d_H(v) = \sum_{v \in A} d_{G-B}(v) + \sum_{v \in B} b_v,
\]

which implies that Equation 1 fails for this \(A \) and \(B \).

We make the following two claims:

\(\forall v \in A, a_v - d_{G-B}(v) \leq d_B(v)/2 \) \hspace{1cm} (A.1)

and

\(\forall v \in B, b_v \geq d_A(v)/2. \) \hspace{1cm} (A.2)

These two statements together with the fact that \(\sum_{v \in A} d_B(v) = \sum_{v \in B} d_A(v) \) imply Equation 1 holds for this \(A \) and \(B \), completing the proof by contradiction.

Consider \(v \in A \) and assume that \(d_H(v) < a_v \). (Note that reversing which edges are in \(H \) along an even alternating walk will never increase the deficiency: we may thus ensure that any single vertex \(v \in A \) satisfies \(d_H(v) < a_v \).) We may assume \(a_v = a_v^+ > d_v/2 \) or else A.1 holds automatically. We may further assume that \(d_{G-B}(v) > a_v^- + 1 \) or else by setting \(a_v = a_v^- \) and removing from \(H \) some of the edges from \(v \) to \(B \), we can reduce the deficiency. Now, by
Corollary 8 Given a graph $G = (V, E)$ and, $\forall v \in V$, an integer
\[a_v \in [[d(v)/4], [d(v)/2]], \]
setting there is a subgraph $H = (V, E')$ of G such that $\forall v \in V$, $d_H(v) \in \{a_v, a_v + 1, a_v + [d(v)/4], a_v + [d(v)/4], +1\}$.

PROOF. It is not hard to check that for such a_v, letting $a_v^- = a_v$ and $a_v^+ = a_v + [d(v)/4]$, all the conditions of Theorem 5 are satisfied. \(\square \)

Proof of Theorem 6 As in the proof of Theorem 5, for a given set of choices of the a_v^- and a_v^+ suppose such a subgraph does not exist. Choose $a_v \in \{a_v^-, a_v^+\}$ for $v \in Y$ and subgraph H to minimize the deficiency. Let A_0, A, B be defined as in Theorem 5 - it is not hard to see using the bipartiteness condition that A and B are indeed disjoint. All the results on which edges are and are not in H from Theorem 5 clearly hold in this setting. Let $A_X = A \cap X$ and define $A_Y, B_X,$ and B_Y similarly. Also as above, for $v \in A_X, d_H(v) = a_v^-$ and for $v \in B_X, d_H(v) = a_v^+$. It must be the case that either

\[\sum_{v \in A_X} (a_v^- - d_G - B_Y(v)) - \sum_{v \in B_Y} a_v > 0, \quad (A.3) \]

or

\[\sum_{v \in A_Y} (a_v - d_G - B_X(v)) - \sum_{v \in B_X} a_v^+ > 0, \quad (A.4) \]

or else, since there are no edges from A_X to B_X or from A_Y to B_Y, the negations of these two equations give us that the deficiency is in fact zero. We now show that in fact neither of these equations hold, proving the theorem by contradiction. The proof parallels that of Theorem 5. Let $v \in A_X$. By the definition of a_v, $a_v^- - d_G - B_Y(v) \leq [d_B(v)/2]$. We claim that for $v \in B_Y$,
$a_v \geq d_{A_X}(v)/2$, which completes the proof that Equation A.3 does not hold. This is clear if $a_v = a_v^+$, so we may assume $a_v = a_v^-$. Assume for a contradiction that $2a_v < d_{A_X}(v)$ - then as in the proof of Theorem 5 we may set $a_v = a_v^+$ and add some edges from v to A_X into H to reduce the deficiency, contradicting its minimality. A similar proof shows Equation A.4 does not hold. □