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The multiplicative structure of random integers

Question
Choose n € [1, x] uniformly at random. What is the distribution of its divisors?

The events {d;|n} and {d>|n} could have strong dependencies due to common prime
factors of dy and db.
Examples:

If 4|n, then we automatically have 2|n

If we know that 2|n, then the probability that 6|n is 1/3 and not 1/6 (but the
probability that 5|n remains 1/5).

Easier question
What is the distribution of the set of prime factors {p|n} of a randomly chosen n?



Warm-up: scale calibration

Prime factors

1
En<x|: Z 1] = Z Ph<x(p|n) ~ Z Bwloglogz—loglogy

pln, pely,2] PeEly,z] pely,z]

Divisors

En<x|: Z 1] ~ Z ;Nlogz—logy

din, dely,2] dely,z]



Early days of probabilistic number theory

Theorem (Hardy-Ramanujan (1917))
Most integers n < x have about log log x prime factors

Theorem (Erdés—Kac (1940))
If w(n) = #{p|n} and we fix a < b, then

w(n) — log log x 1 /b —2)2
P abl| ~— e dt.
n<X< log log x €la 0] Vor Ja

> For n < x, we have w(n) =3, 1y

» Kubilius: model the RVs (1,,)p<x by independent Bernoulli’s (Bp)p<x With



The distribution of intermediate prime factors

Prime factors form a Poisson Process
Let /1,..., I be disjoint subintervals of [1, x]. Then

k )\m/
Ppex(#1p[N, p € i} = m; Vj) ~ H e‘A//—.
e m!

/:

. 1 .
with \; = Z — ~loglog bj — loglog a; if I; = [a;, by].
pel;
Prime factors form a Brownian motion when normalized (Billingsley)
. #{p|n :loglogp < tlog Iogx} — tloglog x

PN - [07 1] — R, PN(t) : \/W

Then py converges in distribution to the Brownian motion in [0, 1].




Just one piece of a puzzle...

> Every integer n can be written uniquely as a product of primes. We then have

y
En<x|: Z 1] = Z Pngx(P\n)N Z Bwloglogz—loglogy
p

[n, p€ly,2] pely,z] peEly,2]

» Every monic polynomial A € Fg[T] can be written uniquely as a product of monic
irreducibles. We then have

1
IEdeg(A):m |: Z 1] = Z 7qdeg(P) ~ logk —log ¥
P|A, deg(P)€[k,£] P: deg(P)€[k,]

> Every o € Sy can be written uniquely as a product of disjoint . We
then have

Eses, |: Z 1] ~ log k — log /¢

plo, length(p)€[k,¢]



Could these seemingly unrelated anatomies be connected?

The Anatomy of Integers
and Permutations

Illustrated by Robert J. Lewis




Meta-applications to probabilistic Galois theory

Theorem (Bary-Soroker, K., Kozma (2023))

Fix H > 35. If we select f uniformly at random among all monic polynomials of degree n
with coefficients in {1,2,..., H}, then Gal(f) € {Ap, Sp} with probability ~ 1 as n — oc.

In addition, if we select f uniformly at random among all polynomials of degree n with
0, 1-coefficients, then Gal(f) € {An, S} with probability bounded away from 0.
» Breuillard—Varju (2019) can take H = 2 under GRH.
> In 2020, Bary-Soroker and Kozma proved the first statement for any H with at least
four distinct prime factors

reduce f modulo 2,3,5,7. The reductions should behave approximately

like four independent polynomials Ay, Az, As, A7, with A, uniformly distributed over monic
polynomials of degree n over Fp.



Back to integers: the distribution of large prime factors

The Poisson—Dirichlet distribution
Consider Uy, Us, ... uniform in [0, 1] and independent. Then take

Li=U, Li=(1-U)Us,..., L=(1=U)---(1=U_)U,...

Let V4, Vo,... is the sequence Ly, Ly, ... ordered decreasingly. Then V = (V4, V5, ...)
has the Poisson—Dirichlet distribution (of parameter 1).

Large prime factors follow the Poisson—Dirichlet distribution (Billingsley)
Let n= Py(n)Px(n)---, where Py(n) > P>(n) > --- are primes or ones. Then

Pngx(ﬂ(”) <xU, ..., Pk(n) <Xuk) ~P(Vi <y, Vie < ).

Example: #{n < x: Py(n) < xY} ~ x - p(1/u), where p is the Dickman—de Bruijn function.



Arratia’s coupling

Theorem (Haddad-K. (2024))
Let Ny ~ Uniform(Z N [1,x]) and let V = (V;, V,,...) follow the Poisson—-Dirichlet distr.

There exists a coupling of V and Ny such that

EY Vi :O<Io;;x>’

]
i>1

log P;

log x

where Ny = PyPs--- with Py > P> > --- all primes or ones.

> Arratia proved this in 1998 with O(*°%£'°%6X) and conjectured the above (which is
optimal).



The DDT theorem

The DDT theorem (Deshouillers—Dress—Tenenbaum (1979))
12#{d|n:d<nu} 2
X T N

(n) Q

. 1
arcsin/u + O(\/m).

n<x

A more probabilistic formulation

Recall Ny ~ Uniform(Z N [1, x]). Fix parameters o; € (0,1) with ay + - + ) = 1.
Define the random k-factorization Dy = (Dy 1, .. ., Dy k) such that

P[Dx,/ =q;Vj ‘ Ny = n] = 1</11k704j(d,-) whenever dy - -- dix = n.

» DDT: k =2 and a4 :a2:1/2.
» Sun-Kai Leung (2023): P[Dy; < Ny Vj < k — 1] = Dirichlet(c; u) + O((Iogx)_%).



The Dirichlet law via Arratia’s coupling

Theorem (Donnelly—Tavaré (1987))

> LetV =(V;, Vo,...) be a Poisson-Dirichlet distribution of parameter 1.

> Letaje (0,1)withay +---+a, =1.

> Let Cy,Cy, ... beindependent RVs s.t. P[C; =] = oy forall £ =1,... k.
Then (3 ;51 Vilg=1,- -+, > i1 Vilc=k) follows Dirichlet(c).

Theorem (Haddad—K. (2024))
Forx >2andu € [0,1]* ", we have

P[DX <SNIV < k- 1] — Dirichlet(c; u)
k—1

”
* O<Z (1 + ujlog x)1=2i(1 + (1 — ) Iogx)ai>'

i=1




A cautionary tale about divisors

Theorem (Tenenbaum 1980)
If A is any positive density set of integers, then there is no weak limit for the distributions

 #{d|n: 28 < u}
FalW) = =gy

as n — oo over elements of A/

n typically has ~ (log n)'°2 divisors; these points are neither nearly
constant to get a singular measure, nor are there enough of them to cover nicely [0, log n].

Is the set of log d’s with d|n well-spaced or does it form large clusters?



The Erddés—Hooley function

A(n) = Tgﬁ(#{dln logd € (u,u+ 1]}

Conjecture of Erdds (1948), proven by Maier—Tenenbaum (1985)
A(n) > 1 for almost all integers n.

Rough reason: For a typical n, there are ~ (log n)"°2° distinct fractions Z—;.

Theorem (Ford—Green—K. (2023))
For almost all n, we have A(n) > (log log n)"*+°() with 5 ~ 0.35332.

> Improves on Maier—Tenenbaum (1985, 2009) and La Breteche—Tenenbaum (2023).
» La Breteche—Tenenbaum (2023): A(n) < (loglog n)¢*+°() with ¢ ~ 0.6102,



Hooley’s “new technique”

Theorem (Hooley (1979))
- ZA < (logx)¥™1 (4 —1 < 1)
n<x
Remark: Hooley was motivated by many applications to problems in Diophantine
equations/inequalities, e.g. he deduced #{a2 + b* + c* < x} > x(log x)'~7 o).

Theorem (K.-Tao (2024), Ford-K.-Tao (2024))

1
14n—o(1) . 11/4
(log log x) <5 Z A(n) < (loglog x)

n<x

> Improves 2023 u.b. by La Breteche—Tenenbaum of rough shape exp(c/log log x)
> Improves 1982 |.b. by Hall-Tenebaum

> La Bretéche—Tenenbaum (2024+): (loglog x)%/2 < 13~ A(n) < (loglog x)5/2



Ford’s work

Theorem (Ford (2008))

1

Pngx(3d|n, de [D,QD]) = (log D) °(loglog D)~>/2 with & = /1 “* log tdt ~ 0.08

» If nhas gloglog x prime factors, then it has ~ (log x)?'°82 divisors d all of whose
logarithms log d lie in [0, log X].
» To have good chances to “hit” the region [log D, log D + log 2] we need o > 1/ log 2.
> Prex(nhas @ log log x prime factors) =< (log x) ~°(log log X)~
> |f for some scale y, the number of prime factors < y exceeds
(1/log2) - loglog y + \CL ,

large constant

expected amount

then the log d’s get “trapped” inside a small region.



Sub-ballistic trajectories

Arguin—Bourgade—Radziwitt (2023+) proof of Fyodorov—Hiary—Keating con;.

) log T
> m : a. +i) x ———.
Theorem (ABR): Fora.a. 7 € [0, T], “Tﬂé IC(1/2 + it)] (loglog )77
» For fixed h P IC(1/2 4+ i(T + h)| > log T o]
T =~ .
’ 7€[0.7] (loglog T)'/* log T

1 log y

—1
- > C 2T
1/2+:t) ‘ ~— log | 3/4°
p large constant w/

» Reason for 3/4: If Jy s.t. ‘ H <1
p<y
expected amount
then “there aren’t enough points t” so that for one of them |{(1/2 + it)| reaches the

log T
value {ioglog TY/A"



Zeta’s cousin

Let 7(n; &) = de d’. For almost all n < x with o loglog x prime factors, we have

w(o)
T(n) = max |r(n &) = —o8X)"
¢ef1.2] (log log x)

for certain constants u(p) < log2 and a(p) > 0.
Hall proved T(n) < (log x)*(M+o(") for almost all n < x, where (1) ~ 0.65238
Tenenbaum proved* T(n) > (log x)1/2+o(1)
Proof*** of tight u.b. in conjecture, and of weak I.b. with correct exponent of log x.



Thank you for your attention



