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Approximating reals by rationals

Fundamental Question
Given an irrational number x, find fractions a/q that approximate it “well”.

» the error |[x — a/q| must be small

» g must be small (fractions of “low complexity”)

In various application, we might need g to lie in a restricted set of denominators
(e.g. primes, squares etc.)



Dirichlet’s theorem

Dirichlet (c.1840):

Vx irrational, we have i.o.

’X_7‘< P

Can we replace 1/g? by something smaller?
Can we restrict g to lie in some special set of denominators?



Irrationality measure

Irrationality measure:

1 .
w(x) .:sup{ >0 O<)X——‘ SoF .0.}
Results:

» Roth (1955): u(x) = 2 for every algebraic irrational x.

» Zeilberger—Zudilin (2020): p(r) < 7.10320533...



Using special denominators

Zaharescu (1995):
Fixe >0and x € R\ Q. Then
1 1

‘ < q8/3—2= ~ (q2)4/3—< i.0.

a
\X g

Matomaki (2009):

Fixe >0and x € R\ Q. Then
‘ a
X

_ ,5‘ < p4/13—5 i.0. with p prime.

Improve “4/3” to “3/2” in Zaharescu’s theorem and “4/3” to “2” in Matomaki’s
theorem.



Metric Diophantine approximation

Approximate a fixed irrational number x
~+ hard open problems
Metric Diophantine approximation:

» Prove results about almost all numbers.

> Exclusion of small pathological sets
~ simple-to-state, general results

The basic set-up:
Given “permissible errors” Aq, Ao, ... > 0, let

A= {xe [0,1] ‘X—Z‘ < Aq i.o.}



Khinchin’s theorem

Khinchin (1924):
Let A= {x€[0,1]:|x—a/q| <Ay io.}.
1. 1f > gAg < oo, then m(A) = 0.
2. 1fY°qAqy = o0 and ,then m(A) =1.

The Borel-Cantelli lemmas:
Eq, Ep, ... events; E event that co-many E; occur.

1. 1Y P(Ej) < oo, then P(E) = 0.
2. It Y- P(Ej) = oo and the Ej’s are ,then P(E) = 1.

consider the events Ay := {x € [0,1] : |x — a/q| < Ag}.



Sketch of proof of Khinchin’s theorem

Step 1: Cassels’ 0 — 1 law about m(.A)
» Letvy : R/Z — R/Z be the multiplication by 2, i.e. ¢(«) = 2a(mod 1).
» This is an ergodic map; in particular, if )(A) C A, then m(A) € {0,1}.
> A=limsupy_,o, Ag = {a €[0,1] : 300 —many (&, q) s.t. |« — a/q| < Ag}.

> Corollary of Lebesgue’s density theorem: for any r > 0, we have
m(rAA A) = 0 with

rA:={a€0,1]: Joo —many (a,q) s.t. |a — a/q| < rAq}.

> Consider A := (J;c;, 2/ A, for which m(A) = m(A) and ¢(A) € A.
» Conclusion: m(A) € {0,1}.



Sketch of proof of Khinchin’s theorem

Step 2: weakening the independence assumption in Borel-Cantelli
» Fix R> Qandlet N(o) = #{(a,9) : g € [Q,R], |a —a/q| < Ag}.

> supp(N) = qu[O»Rl Ag

» N=N-1pns9 Cauchy_Schwarz m(supp(N)) > fo ()
fo () 2da
1
> / NoYa= 3 2q85= 3 m(Ag).
0 9€[Q.A] q€[Q.A]
? 2
/N(a )2da = m(AgNA;) < 1o‘°‘°-( 3 m(Aq))

q, re[O R] q€lQ,A]



Sketch of proof of Khinchin’s theorem

Step 3: controlling pairwise intersections
> Ag=[011NUol2 —2g. 2+ A, A =1[0,11nUpol2 - A2+ A/]

> 5 — mln{Aq, Ar} A — maX{Aq, Ar}

> AgNA,~[0,1]N ( U Interval(a/q, b/r)) = U Off-diagonal
2 b h/—/ %,—/
|5*ﬂ<2A length<26 §:€ g¢%

> the diagonal part could have Lebesgue measure that is too large

and forces 2nd moment to explode!

> Fix: consider instead A3 = [0,1]n | J [f ng 2y Aq].
0<a<q g
ged(a,q)=1



Sketch of proof of Khinchin’s theorem

Revised step 3: controlling pairwise intersections for reduced fractions

a a
s a0 U [Eoaaliadi 4 - imsnd;
0<a<q e
ged(a,q)=1

> New goal: show that m(A*) > 01if 3, gAq = co and gAg \..
» Pollington—Vaughan: if D(q, r) == max{Aq, A} - lcm[q, r], then

1
m(Ay A7) < M) mAD) Tognst - ] <1+p),
N—

=Dq¢(q)Ard(r) P|CZ£%C(dq(7Crfﬂ)r)2

loss of factor < 33 30

> When gAq \,, it's easy to show that >°, qAq =< 3, 440y < 3 6(q)Aq. [



The Duffin—Schaeffer counterexample

Duffin-Schaeffer (1941):

Khinchin’s theorem in full generality: 3A4, Ao, ... > 0 such that

> qAg=oc0 andyet m(A)=0.

Strategy: Construct g1, gz, ... s.t. >_;gjAg < oo but ijq\qj qAg = oo.

1 2
0 3 3 1
1 2 3 4
0 5 5 5 5 1
G —— —— —— —— —
1 2 1 4 1 2 7 8 3 2 1 4 13 14
0 T 1 5 5 3 5 i5 15 5 3 5 5 5 15 1

Example with Az, As C Aqsg



The Duffin—Schaeffer conjecture

Removing repetitions:

A" = {xe [0,1] :

X — Z' < Ag Q0. with ged(a, q) = 1}

The Duffin—Schaeffer conjecture (1941):

11> é(q)Ag < oo, then m(A*) = 0.
2. 1> 6(q)Ag = oo, then m(A*) = 1.



History of results on the Duffin—Schaeffer conjecture

A
» Duffin—Schaeffer (1941): DSC is true when lim sup M
Q—o0 quo Aqq

» Gallagher (1961): Thereisa 0 — 1 law, i.e. m(.A*) € {0,1}.

> 0.

> Erdds (1970) & Vaaler (1978): DSC is true when A = O(1/q?) for all g.
» Pollington—Vaughan (1990): DSC is true in all dimensions > 1.

» Haynes—Pollington—Velani (2012), Beresnevich—-Harman—Haynes—Velani
(2013), Aistleitner, Harman, Haynes, Lachman, Munsch, Technau,
Zafeiropoulos (2018), Aistleitner (2019): DSC is true “with extra divergence”
(i.e. > g Aqé(q)/L(q) = oo with various functions L(q) — oc).

» K.—Maynard (2019): the Duffin—Schaeffer conjecture is true.



Catlin’s conjecture (1976):
Let Af := sup{Agq, Azg, ... }. Then
mA) =1 < > d(g)ay=
Proof: If o ¢ Qand Ay — 0, thena € Aif-f a € A" = A* (A}, A5, ...).

Hausdorff dimensions

Using a mass-transference principle of Beresnevich—Velani (2006), we have:
> 1f > ¢(q)Ag < oo so that m(A*) = 0, then

dim(A*) = inf{s > 0: ) ¢(q)A§ < oo}
> If - ¢(q)Ay < oo so that m(A) = 0, then
dim(A) =inf{s > 0: > ¢(q)(Af)° < oo}.



Proof strategy

How to prove that m(A*) when . ¢(q)Aq = oo:

» Gallagher's 0 — 1 law: enough to show m(.A*) > 0

» Cauchy—Schwarz: enough to show m(A5 N A7) < m(Ag) m(AF) “on average”.

» Pollington—Vaughan: enough to show H (14+1/p) < 1 “on average”.
plgr/ ged(q,r)?
p>D(q,r)
» When S = supp(A) is “dense or regular enough”, we may use facts about the
“anatomy of integers” to prove this (theorems of Duffin—Schaeffer and
Erdds—Vaaler).



v

Gallagher's 0 — 1 law

Assume for contradiction 0 < m(A*) < 1 and let p be a prime.
The maps ¢y(a) = pa(mod 1) and ¢1(«) = pa+ 1/p(mod 1) are ergodic.
We have v;(rA;) C prA; for j=0,1, where
rA; = {a €[0,1] : |a — a/q| < rAg i.0. with ged(a, q) = 1, pi”q}
Thus m(A4f) € {0,1} for j = 0,1, whence m(A;) =0 for j =0, 1.
Conclusion: m(A*) = m(A%,), where
t2i={a€l0,1]:|a—a/q| < Agio. with ged(a,q) = 1, p?|q}

But A%, is %-periodic, and p is arbitrary. Violates Lebesgue’s density theorem.



The Erdos—Vaaler theorem

> For simplicity, let A4 € {0, é} We must show m(.A*) > 0 when

Z¢(Q)Aq =00 <= Z @ =00 Wwith S =supp(A).
q ges q

> To simplify further, assume Joo-many x € N's.t. 3~ sx 24 @ = X.

> Pollington-Vaughan: m(A; N A7) < m(Ay)m(A;) [ (1+1/p).

oo Plar/ecd(q.r)?
qr

= #{”<X3Hp|n(1 +1/p) >A} < x/e



Potential counterexamples to DSC

Strategy to prove that m(A*) when . ¢(q)Aq = oo:

» Gallagher's 0 — 1 law: enough to show m(.A*) > 0

» Cauchy—Schwarz: enough to show m(A5 N A7) < m(Ag) m(AF) “on average”.

» Pollington—Vaughan: enough to show H (14+1/p) < 1 “on average”.

plar/ ged(q,r)?
p>D(q.r)
» When S = supp(A) is “dense or regular enough”, we may use facts about the
“anatomy of integers” to prove this.

What if S is supported on a sparse set of integers with lots of small prime factors?



Thank you for your attention



