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Approximating reals by rationals

Fundamental Question
Given an irrational number x , find fractions a/q that approximate it “well”.

I the error |x − a/q| must be small
I q must be small (fractions of “low complexity”)

Remark
In various application, we might need q to lie in a restricted set of denominators
(e.g. primes, squares etc.)



Dirichlet’s theorem

Dirichlet (c.1840):

∀x irrational, we have i.o. ∣∣∣x − a
q

∣∣∣ < 1
q2 .

Improving Dirichlet’s theorem:

1. Can we replace 1/q2 by something smaller?
2. Can we restrict q to lie in some special set of denominators?



Irrationality measure

Irrationality measure:

µ(x) := sup
{

E > 0 : 0 <
∣∣∣x − a

q

∣∣∣ 6 1
qE i.o.

}
Results:

I Roth (1955): µ(x) = 2 for every algebraic irrational x .

I Zeilberger–Zudilin (2020): µ(π) 6 7.10320533 . . .



Using special denominators

Zaharescu (1995):
Fix ε > 0 and x ∈ R \Q. Then∣∣∣x − a

q2

∣∣∣ 6 1
q8/3−2ε =

1
(q2)4/3−ε i.o.

Matomäki (2009):
Fix ε > 0 and x ∈ R \Q. Then∣∣∣x − a

p

∣∣∣ 6 1
p4/3−ε i.o. with p prime.

Hard open problems:

Improve “4/3” to “3/2” in Zaharescu’s theorem and “4/3” to “2” in Matomäki’s
theorem.



Metric Diophantine approximation

Diophantine approximation:

Approximate a fixed irrational number x
 hard open problems

Metric Diophantine approximation:
I Prove results about almost all numbers.
I Exclusion of small pathological sets
 simple-to-state, general results

The basic set-up:
Given “permissible errors” ∆1,∆2, . . . > 0, let

A :=

{
x ∈ [0,1] :

∣∣∣x − a
q

∣∣∣ < ∆q i.o.
}



Khinchin’s theorem

Khinchin (1924):

Let A =
{

x ∈ [0,1] :
∣∣x − a/q

∣∣ < ∆q i.o.
}

.

1. If
∑

q∆q <∞, then m(A) = 0.
2. If

∑
q∆q =∞ and q2∆q ↘, then m(A) = 1.

The Borel–Cantelli lemmas:
E1,E2, . . . events; E event that∞-many Ej occur.

1. If
∑

P(Ej) <∞, then P(E) = 0.
2. If

∑
P(Ej) =∞ and the Ej ’s are independent, then P(E) = 1.

Proof of 1: consider the events Aq :=
{

x ∈ [0,1] :
∣∣x − a/q

∣∣ < ∆q
}

.



Sketch of proof of Khinchin’s theorem

Step 1: Cassels’ 0− 1 law about m(A)

I Let ψ : R/Z→ R/Z be the multiplication by 2, i.e. ψ(α) = 2α (mod 1).

I This is an ergodic map; in particular, if ψ(A) ⊆ A, then m(A) ∈ {0,1}.

I A = lim supq→∞Aq = {α ∈ [0,1] : ∃∞−many (a,q) s.t. |α− a/q| < ∆q}.

I Corollary of Lebesgue’s density theorem: for any r > 0, we have
m(rA4A) = 0 with

rA := {α ∈ [0,1] : ∃∞−many (a,q) s.t. |α− a/q| < r∆q}.

I Consider Ã :=
⋃

j∈Z 2jA, for which m(Ã) = m(A) and ψ(Ã) ⊆ Ã.

I Conclusion: m(A) ∈ {0,1}.



Sketch of proof of Khinchin’s theorem

Step 2: weakening the independence assumption in Borel-Cantelli

I Fix R > Q and let N(α) = #{(a,q) : q ∈ [Q,R], |α− a/q| < ∆q}.

I supp(N) =
⋃

q∈[Q,R]Aq

I N = N · 1N>0
Cauchy–Schwarz

=⇒ m(supp(N)) >
(
∫ 1

0 N(α)dα)2∫ 1
0 N(α)2dα

I
∫ 1

0
N(α)dα =

∑
q∈[Q,R]

2q∆q =
∑

q∈[Q,R]

m(Aq).

I
∫ 1

0
N(α)2dα =

∑
q,r∈[Q,R]

m
(
Aq ∩ Ar

) ?
6 101010 ·

( ∑
q∈[Q,R]

m(Aq)
)2



Sketch of proof of Khinchin’s theorem

Step 3: controlling pairwise intersections

I Aq = [0,1] ∩
⋃q

a=0[ a
q −∆q,

a
q + ∆q], Ar = [0,1] ∩

⋃r
b=0[b

r −∆r ,
b
r + ∆r ]

I δ = min{∆q,∆r} ∆ = max{∆q,∆r}

I Aq ∩Ar ≈ [0,1]∩

( ⋃
| aq−

b
r |<2∆

Interval(a/q,b/r)︸ ︷︷ ︸
length62δ

)
= Diagonal︸ ︷︷ ︸

a
q = b

r

⋃
Off-diagonal︸ ︷︷ ︸

a
q 6=

b
r

I Problem: the diagonal part could have Lebesgue measure that is too large
and forces 2nd moment to explode!

I Fix: consider instead A∗q = [0,1] ∩
⋃

06a6q
gcd(a,q)=1

[a
q
−∆q,

a
q

+ ∆q

]
.



Sketch of proof of Khinchin’s theorem

Revised step 3: controlling pairwise intersections for reduced fractions

I A∗q = [0,1] ∩
⋃

06a6q
gcd(a,q)=1

[a
q
−∆q,

a
q

+ ∆q

]
; A∗ = lim sup

q→∞
A∗q

I New goal: show that m(A∗) > 0 if
∑

q q∆q =∞ and q∆q ↘.

I Pollington–Vaughan: if D(q, r) := max{∆q,∆r} · lcm[q, r ], then

m(A∗q ∩ A∗r )� m(A∗q) m(A∗r )︸ ︷︷ ︸
=∆qφ(q)∆rφ(r)

·1D(q,r)>1 ·
∏

p|qr/ gcd(q,r)2

p>D(q,r)

(
1 +

1
p

)
︸ ︷︷ ︸

loss of factor � q
φ(q)
· r
φ(r)

,

I When q∆q ↘, it’s easy to show that
∑

q q∆q �
∑

j 4j∆2j �
∑

q φ(q)∆q.



The Duffin–Schaeffer counterexample

Duffin–Schaeffer (1941):

Khinchin’s theorem fails in full generality: ∃∆1,∆2, . . . > 0 such that∑
q∆q =∞ and yet m(A) = 0.

Strategy: Construct q1,q2, . . . s.t.
∑

j qj∆qj <∞ but
∑

j
∑

q|qj
q∆qj =∞.

0

0

0

1

1

1

1
3

1
3

2
3

2
3

1
5

2
5

3
5

4
5

1
5

2
5

3
5

4
5

1
15

2
15

4
15

7
15

8
15

11
15

13
15

14
15

Example with A3,A5 ⊂ A15



The Duffin–Schaeffer conjecture

Removing repetitions:

A∗ :=

{
x ∈ [0,1] :

∣∣∣∣x − a
q

∣∣∣∣ < ∆q i.o. with gcd(a,q) = 1
}

The Duffin–Schaeffer conjecture (1941):

1. If
∑
φ(q)∆q <∞, then m(A∗) = 0.

2. If
∑
φ(q)∆q =∞, then m(A∗) = 1.



History of results on the Duffin–Schaeffer conjecture

I Duffin–Schaeffer (1941): DSC is true when lim sup
Q→∞

∑
q6Q ∆qφ(q)∑

q6Q ∆qq
> 0.

I Gallagher (1961): There is a 0− 1 law, i.e. m(A∗) ∈ {0,1}.

I Erdős (1970) & Vaaler (1978): DSC is true when ∆q = O(1/q2) for all q.

I Pollington–Vaughan (1990): DSC is true in all dimensions > 1.

I Haynes–Pollington–Velani (2012), Beresnevich–Harman–Haynes–Velani
(2013), Aistleitner, Harman, Haynes, Lachman, Munsch, Technau,
Zafeiropoulos (2018), Aistleitner (2019): DSC is true “with extra divergence”
(i.e.

∑
q ∆qφ(q)/L(q) =∞ with various functions L(q)→∞).

I K.–Maynard (2019): the Duffin–Schaeffer conjecture is true.



Catlin’s conjecture (1976):

Let ∆′q := sup{∆q,∆2q, . . . }. Then

m(A) = 1 ⇐⇒
∑

φ(q)∆′q =∞.

Proof: If α /∈ Q and ∆q → 0, then α ∈ A if-f α ∈ A′ := A∗(∆′1,∆
′
2, . . . ).

Hausdorff dimensions
Using a mass-transference principle of Beresnevich–Velani (2006), we have:
I If

∑
φ(q)∆q <∞ so that m(A∗) = 0, then

dim(A∗) = inf{s > 0 :
∑

φ(q)∆s
q <∞}.

I If
∑
φ(q)∆′q <∞ so that m(A) = 0, then

dim(A) = inf{s > 0 :
∑

φ(q)(∆′q)s <∞}.



Proof strategy

How to prove that m(A∗) when
∑

q φ(q)∆q =∞:

I Gallagher’s 0− 1 law: enough to show m(A∗) > 0

I Cauchy–Schwarz: enough to show m(A∗q ∩A∗r )� m(A∗q) m(A∗r ) “on average”.

I Pollington–Vaughan: enough to show
∏

p|qr/ gcd(q,r)2

p>D(q,r)

(1 + 1/p)� 1 “on average”.

I When S = supp(∆) is “dense or regular enough”, we may use facts about the
“anatomy of integers” to prove this (theorems of Duffin–Schaeffer and
Erdős–Vaaler).



Gallagher’s 0− 1 law

I Assume for contradiction 0 < m(A∗) < 1 and let p be a prime.

I The maps ψ0(α) = pα (mod 1) and ψ1(α) = pα + 1/p (mod 1) are ergodic.

I We have ψj(rA∗j ) ⊆ prA∗j for j = 0,1, where

rA∗j :=
{
α ∈ [0,1] : |α− a/q| < r∆q i.o. with gcd(a,q) = 1, pj‖q

}
I Thus m(A∗j ) ∈ {0,1} for j = 0,1, whence m(A∗j ) = 0 for j = 0,1.

I Conclusion: m(A∗) = m(A∗>2), where

A∗>2 :=
{
α ∈ [0,1] : |α− a/q| < ∆q i.o. with gcd(a,q) = 1, p2|q

}
I But A∗>2 is 1

p -periodic, and p is arbitrary. Violates Lebesgue’s density theorem.



The Erdős–Vaaler theorem

I For simplicity, let ∆q ∈
{

0, 1
q2

}
. We must show m(A∗) > 0 when

∑
q

φ(q)∆q =∞ ⇐⇒
∑
q∈S

φ(q)

q2 =∞ with S = supp(∆).

I To simplify further, assume ∃∞-many x ∈ N s.t.
∑

q∈S∩[x ,2x ]
φ(q)

q � x .

I Pollington–Vaughan: m(A∗q ∩ A∗r )� m(A∗q) m(A∗r )︸ ︷︷ ︸
=φ(q)φ(r)

qr

∏
p|qr/ gcd(q,r)2

(
1 + 1/p

)
.

I #
{

n 6 x :
∏

p|n
(
1 + 1/p

)
> A

}
� x/eeA



Potential counterexamples to DSC

Strategy to prove that m(A∗) when
∑

q φ(q)∆q =∞:

I Gallagher’s 0− 1 law: enough to show m(A∗) > 0

I Cauchy–Schwarz: enough to show m(A∗q ∩A∗r )� m(A∗q) m(A∗r ) “on average”.

I Pollington–Vaughan: enough to show
∏

p|qr/ gcd(q,r)2

p>D(q,r)

(1 + 1/p)� 1 “on average”.

I When S = supp(∆) is “dense or regular enough”, we may use facts about the
“anatomy of integers” to prove this.

Question

What if S is supported on a sparse set of integers with lots of small prime factors?



Thank you for your attention


