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ABSTRACT. Let x ⩾ 2, let Nx be an integer chosen uniformly at random from the set Z∩ [1, x], and
let (V1, V2, . . .) be a Poisson–Dirichlet process of parameter 1. We prove that there exists a coupling
of these two random objects such that

E
∑
i⩾1

∣∣ logPi − Vi log x
∣∣≪ 1,

where the implied constant is absolute and Nx = P1P2 · · · is the unique factorization of Nx into
primes or ones with the Pi’s being non-increasing. This establishes a conjecture of Arratia (2002),
who proved that the left-hand side in the above estimate can be made ≪ loglog x. We also use this
coupling to give a probabilistic proof of the Dirichlet law for the average distribution of the integer
factorization into k parts proved in 2023 by Leung and we improve on its error term.

1. INTRODUCTION

Let Nx be an integer chosen uniformly at random from the set Z ∩ [1, x]. We may then factor
it uniquely as Nx = P1P2 · · · with the Pi’s forming a non-increasing sequence of primes or ones.
In 1972, Billingsley [5] showed that, for any fixed positive integer r, the joint distribution of the
random vector (

logP1

log x
, . . . ,

logPr

log x

)
converges in distribution as x→ ∞ to the first r components of the Poisson–Dirichlet distribution
(of parameter 1).

There are many ways to define the Poisson–Dirichlet distribution. One of the most intuitive ones
involves a “stick-breaking” process that we will use throughout the paper. We start by sampling
a sequence of i.i.d. random variables (Ui)i⩾1 that are all uniformly distributed in [0, 1]. We then
define the sequence (Li)i⩾1 in the following way:

L1 := U1 and Lj := Uj

j−1∏
i=1

(1− Ui) for j ⩾ 2.

The distribution of the process L = (L1, L2, . . .) is called the GEM distribution (of parameter
1). Lastly, we sort the components of L in non-increasing order to create V = (V1, V2, . . .). The
distribution of this process is the Poisson–Dirichlet distribution (of parameter 1)1. We note that
both

∑
i⩾1 Li and

∑
i⩾1 Vi are equal to 1 almost surely.

In 2000, Tenenbaum [17] studied the rate of convergence in Billingsley’s Theorem by pro-
viding an asymptotic series for the difference between the cumulative distribution functions of(
logP1

log x
, . . . , logPr

log x

)
and of (V1, . . . , Vr).

Date: July 4, 2024.
1The GEM and Poisson–Dirichlet distributions have more general definitions involving typically a parameter θ. In

the rest of the paper, we will not be mentioning the parameter since we will always work with θ = 1.
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Another way to give a quantitative version of Billingsley’s result is by constructing a coupling
of Nx and V, i.e. a single probability space over which lives copies of Nx and V, such that the
expectation

(1.1) E
∑
i⩾1

∣∣ logPi − Vi log x
∣∣

is bounded by a positive monotone function that is o(log x) as x → ∞. The random variables
Nx and V must be strongly correlated in this new probability space to achieve this. Indeed, if,
for instance, P1 and V1 were independent, then we would have that P1 ⩽ x1/3 and V1 > 2/3 can
happen at the same time with positive probability, which implies

∣∣ logP1 − V1 log x
∣∣ ⩾ log x

3
with

positive probability. Hence, a coupling with Nx and V being independent (also called a trivial
coupling) makes (1.1) ≫ log x. In 2002, Richard Arratia [2] constructed a coupling satisfying

(1.2) E
∑
i⩾1

∣∣ logPi − Vi log x
∣∣≪ loglog x

for all x ⩾ 3. Moreover, he conjectured that there is a coupling for Nx and V with the expectation
above being O(1). The main goal of this paper is to prove this conjecture:

Theorem 1. There is a coupling of Nx and V satisfying

E
∑
i⩾1

∣∣ logPi − Vi log x
∣∣≪ 1

for all x ⩾ 1.

Remarks. (a) Theorem 1 is optimal. Indeed, since logPi can never take any value in (0, log 2), we
have

E
∑
i⩾1

∣∣ logPi − Vi log x
∣∣ ⩾ log 2

3
· E
[
#
{
i ⩾ 1 : Vi ∈ [a(x), 2a(x)]

}]
with a(x) := log 2

3 log x
, no matter how we choose the coupling between Nx and V. However, the

expectation above is exactly equal to log 2 for any choice of x ⩾ 2.

(b) The way we construct Nx inside the coupling will be with a deterministic function of some
random variables. These random variables stay unchanged as x grows. The coupling actually
generates a random process (Nx)x⩾1.

(c) Let σ be a random permutation uniformly distributed in the permutation group Sn. It is well
known that the factorization into primes of Nx and the decomposition into disjoint cycles of σ
share similar statistics when n ≈ log x. In 2006, Arratia, Barbour and Tavaré [3] have proved that
there exists a coupling between σ and V such that

(1.3) E
∑
i⩾1

|Ci − nVi| ∼
log n

4
,

with Ci being the number of cycles of length i in σ. They showed that (1.3) was optimal by using
the inequality |Ci − nVi| ⩾ ∥nVi∥ where ∥·∥ is the distance to the closest integer, and computing
E
∑

i⩾1 ∥nVi∥. This breaks the analogy between primes and permutations since Theorem 1 and
(1.3) are not of the same order of magnitude when n is replaced by log x. The main reason why
it is possible to get a better result in Theorem 1 is because the set {log p : p primes} have much
shorter gaps around log x than the gaps of Z around n.
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1.1. Application to the distribution of factorizations of random integers. We apply the cou-
pling of Theorem 1 in the theory of divisors. Let ∆k−1 be the set of k-tuples α = (α1, . . . , αk) ∈
Rk

⩾0 satisfying α1 + · · ·+ αk = 1. We also need to define a special class of functions:

Definition 1.1 (The class of functions Fk(α)). Given k ∈ Z⩾2 and α ∈ ∆k−1, let Fk(α) be the
set of functions f : Nk → R⩾0 satisfying the following three properties:

(a) For any fixed positive integer n, the function f(d) is a probability mass function over all
vectors d ∈ Nk satisfying d1 · · · dk = n, i.e.

∑
d1···dk=n f(d1, . . . , dk) = 1 for all n ∈ N.

(b) Whenever d satisfies

di :=

{
p if i = j

1 if i ̸= j.

for some 1 ⩽ j ⩽ k and prime p, then f(d) = αj .
(c) The function f is multiplicative, i.e. for any vectors a,b ∈ Nk such that (a1 · · · ak, b1 · · · bk) =

1, we have the property

f(a1b1, . . . , akbk) = f(a1, . . . , ak) · f(b1, . . . , bk).

Remark. Let ω(n) denote the number of distinct prime factors of n. If n is square-free and f ∈
Fk(α), then properties (b) and (c) of the definition above imply that

(1.4) f(d1, . . . , dk) =
k∏

j=1

α
ω(dj)
j .

We will use the class of functions Fk(α) to define certain “random factorizations” into k parts
of a random integer. Specifically, let us fix f ∈ Fk(α) and x ⩾ 1. We then define a random
k-factorization corresponding to f to be a random vector Dx = (Dx,1, . . . , Dx,k) taking values on
Nk and satisfies the formula2

(1.5) P
[
Dx,i = di ∀i ⩽ k

∣∣∣Nx = n
]
= f(d1, . . . , dk)

for all k-tuples (d1, . . . , dk) ∈ Nk with d1 · · · dk = n.
Here are three examples of such random factorizations.

Example 1 (Uniform sampling). Let f(d1, . . . , dk) = τk(d1 · · · dk)−1 with τk(n) being the number
of k-factorizations of n. Then f ∈ Fk(

1
k
, . . . , 1

k
). If f is seen as a probability mass function as in

(1.5), then we are sampling Dx,1 · · ·Dx,k uniformly among all k-factorizations of Nx.

Example 2 (Recursive sampling). Let f(d1, . . . , dk) =
∏k−1

j=1 τ(dj · · · dk)−1 with τ(n) being the
number of divisors of n. Then f ∈ Fk(

1
2
, 1
4
, . . . , 1

2k−1 ,
1

2k−1 ). One way to realize this random
k-factorization is by first sampling uniformly an divisor Dx,1 of Nx. Then, for all j < k, we
recursively sample Dx,j uniformly among the divisors of Nx

Dx,1···Dx,j−1
.

Example 3 (Multinomial sampling). For any fixed α ∈ ∆k−1, let f(d1, . . . , dk) :=
∏k

i=1 α
Ω(di)
i ·∏

p|n
(

νp(d1···dk)
νp(d1),...,vp(dk)

)
with νp(d) being the p-valuation of d and Ω(d) being the number of prime

2Strictly speaking, we only need property (a) of Definition 1.1 to define Dx. But we will also need the other two
properties when proving Theorem 2 below.
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factors of d counted with multiplicity. This function f is in Fk(α). This sampling can be under-
stood as considering a sequence of i.i.d. random variables (Bi)i⩾1 satisfying P[Bi = j] = αj and
constructing the k-factorization Dx,1 · · ·Dx,k = Nx as

Dx,j :=
∏

i⩾1: Bi=j

Pi,

where P1P2 · · · is the prime factorization of Nx as before. With this definition, the vectors
(νp(Dx,1), · · · , νp(Dx,k)) all follow multinomial distributions for every prime p.

When k = 2, we write for simplicityDx = Dx,1. In Examples 1 and 2, the samplings are exactly
the same when k = 2. In both cases, we are sampling uniformly a divisor Dx of Nx. In 1979,
Deshouillers, Dress and Tenenbaum [7] proved that

(1.6) P
[
Dx ⩽ Nu

x

]
=

2

π
arcsin

√
u+O

(
(log x)−

1
2

)
uniformly for x ⩾ 2 and u ∈ [0, 1]. Their proof uses crucially the Landau–Selberg–Delange
method to compute sums of multiplicative functions. Their result is optimal if we want an error
term uniform in u ∈ [0, 1].

It turns out that for general values of k and α, the distribution of Dx converges to the Dirichlet
distribution Dir(α). Recall that if α ∈ ∆k−1 satisfies αi > 0 for all i, we say that a ∆k−1-valued
random vector Z follows the Dirichlet distribution Dir(α) if

P
[
Zi ⩽ ui ∀i < k] = Fα(u) :=

k∏
i=1

Γ(αi)
−1

∫
· · ·
∫

0⩽ti⩽ui ∀i<k
t1+···+tk−1⩽1

k∏
i=1

tαi−1
i dt1 · · · dtk−1

with tk := 1− (t1 + · · ·+ tk−1) in the integrand, for any u ∈ [0, 1]k−1.
In 2007, Bareikis and Manstavičius [4] proved that if f ∈ F2(α1, α2) with α1, α2 > 0 and

α1 + α2 = 1, we have

P
[
Dx ⩽ Nu

x

]
= F(α1,α2)(u) +Oα1,α2

(
(1 + u log x)−α1(1 + (1− u) log x)−α2

)
.

As a matter of fact, their result covered a more general class of functions than F2(α1, α2), with
f(p, 1) being allowed to be on average α1, instead of being fixed.

In 2013, Nyandwi and Smati [15] considered the 3-factorization Dx,1Dx,2Dx,3 = Nx with its
distribution f as in Example 1. They proved

P
[
Dx,1 ⩽ Nu1

x and Dx,2 ⩽ Nu2
x

]
= F( 1

3
, 1
3
, 1
3
)(u1, u2) +O

(
(log x)−

1
3

)
.

In 2016, de la Bretèche and Tenenbaum [6] considered the 3-factorization Dx,1Dx,2Dx,3 = Nx

with its distribution f as in Example 2, and they found that

P
[
Dx,1 ⩽ Nu1

x and Dx,2 ⩽ Nu2
x

]
= F( 1

2
, 1
4
, 1
4
)(u1, u2) +O

(
(log x)−

1
4

)
.

More generally, for each fixed k ⩾ 2 and each α ∈ ∆k−1, Leung [14, Theorem 7.1] proved in
2023 that for any f ∈ Fk(α), we have

(1.7) P
[
Dx,i ⩽ Nui

x ∀i < k
]
= Fα(u) +Oα

(
(log x)−min{α1,...,αk}

)
uniformly for x ⩾ 2 and u ∈ [0, 1]k−1 satisfying u1 + · · · + uk−1 ⩽ 1. Similarly to the result of
Bareikis and Manstavičius in [4], Leung’s theorem holds for a more general class of functions than
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Fk(α), where the quantities f(1, . . . , 1, p, 1, . . . , 1), with p being at the j th coordinate, are allowed
to equal αj on average instead of pointwise.

All results mentioned above use Fourier-analytic techniques, such as the Landau–Selberg–Delange
method, as their main ingredients to get to their results.

We have a new approach to this problem: Since the size of the divisors on a logarithmic scale
of any integer is entirely determined by the size of its prime factors, we might expect Leung’s
theorem to be a consequence of some quantitative form of Billingsley’s Theorem. Indeed, using
the coupling from Theorem 1, we deduce an improved form of Leung’s theorem for the class of
functions Fk(α).

Theorem 2 (Dirichlet law for the factorization into k parts). Let k ⩾ 2, let α ∈ ∆k−1 be fixed with
αi > 0 for all i, and let f ∈ Fk(α). In addition, let x > 1 and let Dx be the random k-factorization
corresponding to f .

For any u ∈ [0, 1]k−1 with at least one i ∈ {1, . . . , k − 1} with ui ̸= 1, we have

P
[
Dx,i ⩽ Nui

x ∀i < k
]
= Fα(u) +O

( ∑
1⩽i<k
ui ̸=1

1

(1 + ui log x)1−αi(1 + (1− ui) log x)αi

)
;

the implied constant in the big-Oh is completely uniform in all parameters.

Remark. When u ∈ [0, 1/2], we have (1 + ui log x)
1−αi(1 + (1 − ui) log x)

αi ⩾ (0.5 log x)αi .
Similarly, when u ∈ [1/2, 1], we have (1+ui log x)1−αi(1+(1−ui) log x)αi ⩾ (0.5 log x)1−αi . We
thus find that the expression in the big-Oh in Theorem 2 is ⩽ (0.5 log x)−min{α1,...,αk,1−α1,...,1−αk}

uniformly in u ∈ [0, 1]k−1. Since 1−αj ⩾ αi for all i ̸= j by our assumption that α1+· · ·+αk = 1,
we conclude that the error term in Theorem 2 is ≪α (log x)−min{α1,...,αk}, thus recovering Leung’s
estimate (1.7) when f lies in the class Fk(α).

The proof of Theorem 2 is based on a 1987 result of Donnelly and Tavaré [8], who proved the
following probabilistic version of Leung’s theorem: If V = (V1, V2, . . .) is a Poisson–Dirichlet
process and (Ci)i⩾1 is a sequence of i.i.d. random variables supported on {1, . . . , k} satisfying
P[Ci = j] = αj , then

(1.8)

( ∑
i: Ci=1

Vi, . . . ,
∑

i: Ci=k

Vi

)
follows exactly the Dirichlet distribution Dir(α). In 1998, Arratia [1] used this result to show that
the left-hand side of (1.6) is 2

π
arcsin

√
u+ o(1) as x→ ∞ with probabilistic methods. We use the

coupling to bridge between the distribution of (1.8) and Theorem 2 and get an explicit error term.

Remarks. Here is a brief heuristic about the shape of the error term we obtain in Theorem 2. Let
δx := ( logDx,1

logNx
, . . . ,

logDx,k

logNx
). There exists a coupling between δx and the random vector (1.8)

such that their distance is of typical size ≍ 1
log x

. For each j, the marginal distribution of the j th

component of Dir(α) is Beta(αj, 1− αj), which is why we get the error term of Theorem 2 when
none of the ui’s are close to either 0 or 1.

When one of the ui’s is close to 0 or 1, the behavior changes completely in the error term of
Theorem 2, because the vector δx has a discrete distribution (compared to the continuous distribu-
tion Dir(α)). For instance, if ui < log 2/ log x for some i, then the relation Dx,i ⩽ Nui

x implies
that Dx,i = 1.
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1.2. Structure of the paper. We have organized the paper in two main parts.
Part I contains the proof of Theorem 1. It is divided as follows:

• In Section 2, we present the coupling implicit in Theorem 1 and present a proof of the
latter as a corollary of four key results (Lemmas 2.1-2.3 and Proposition 2.4). Lemma 2.2
is simple and proven right away.

• In Section 3, we prove Lemma 2.1.
• In Section 4, we explain another way to realize a GEM process that was presented by

Arratia in [2], and we use it to prove Lemma 2.3. This alternative way of describing a
GEM process will be also key in proving Proposition 2.4.

• Sections 5, 6 and 7 are reserved to prove Proposition 2.4.
Finally, Part II contains the proof of Theorem 2 and it is organized in the following way:

• In Section 8, we present the argument due to Donnelly–Tavaré showing that random k-
partitions of the components of a Poisson–Dirichlet process are distributed according to a
Dirichlet law.

• In Section 9, we use the coupling of Section 2 to construct a coupling of the random k-
factorization Dx and an analogous k-partition of the Poisson–Dirichlet distribution. We
then use this coupling to reduce Theorem 2 to estimating two boundary events, one involv-
ing number-theoretic objects and the other one using pure probabilistic objects.

• In Section 10, we prove the necessary estimate for the number-theoretic boundary event,
and in Section 11 we show the analogous probabilistic estimate.

Remark. The readers interested only in Theorem 2 need to only understand Section 2 from Part I.

1.3. Notation. We let logj denote the j-iteration of the natural logarithm, meaning that log1 = log
and logj = log ◦ logj−1 for j ⩾ 2.

Throughout the paper, the letter p is reserved for prime numbers and the letter n is reserved
for natural numbers, unless stated otherwise. Given such p and n, we write νp(n) for the p-adic
valuation of n, that is to say the largest integer v ⩾ 0 such that pv|n. In addition, we write ω(n)
for the number of distinct prime factors of n.

Moreover, for n ∈ N, we let s(n) denote its largest square-full divisor. Also, we let n♭ := n/s(n)
and we note that n♭ is square-free and co-prime to s(n).

We write π(x) for the number of primes ⩽ x. We shall also use heavily Chebyshev’s function
θ(x) :=

∑
p⩽x log p.

To describe various estimates, we use Vinogradov’s notation f(x) ≪ g(x) or Landau’s notation
f(x) = O(g(x)) to mean that |f(x)| ⩽ C · g(x) for a positive constant C. If C depends on a
parameter α, we write f(x) ≪α g(x) or f(x) = Oα(g(x)). If two positive functions f, g have the
same order of magnitude in the sense that f(x) ≪ g(x) ≪ f(x), then we write f(x) ≍ g(x).

If P is some proposition, then the indicator function 1P will be equal to 1 if P is true and 0 if P
is false. For a set or an event A, we will sometimes write 1A(ω) to mean 1ω∈A.
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PART I. SHARPENING ARRATIA’S COUPLING

2. THE COUPLING

In this section, we describe the coupling behind Theorem 1. To construct it, we begin with an
ambient probability space Ω containing the following objects:

• a GEM process L = (L1, L2, . . .);
• three mutually independent random variables U ′

1, U
′
2 and U ′

3 that are also independent from
L, and which are uniformly distributed in the open interval (0, 1).

We shall extract an integer Nx and a Poisson–Dirichlet process V as deterministic functions of
these random objects. Extracting V is done by sorting the components of L in non-increasing
order. The extraction of Nx is more complicated, and we need to introduce additional notation to
describe it.

Let (λj)j⩾0 be the increasing sequence of positive real numbers defined by λ0 := e−γ and

λj := exp

(
− γ +

∑
i⩽j

1

viqi

)
for j ⩾ 1

with γ being the Euler-Mascheroni constant and qj = p
vj
j being the j th smallest prime power, i.e.,

(qj)j⩾1 is the sequence 2, 3, 22, 5, 7, 23, 32, . . . Note that

(2.1) λj = log qj +O(1/(log qj)
2).

Indeed, Mertens’s theorems and the Prime Number Theorem [12, Theorems 3.4 and 8.1] yield∑
pk⩽y

1

kpk
= log2 y + γ +O(1/(log y)3) (y ⩾ 2).

A detailed proof of this estimate is given in Proposition A.2. Taking y = qj in it proves (2.1).
Moreover, we have that

(2.2) qj+1 = qj +O(qj/(log qj)
3).

Indeed, the Prime Number Theorem (Proposition A.1) implies that θ(qj+Cqj/(log qj)3)−θ(qj) >
0 if C is large enough, whence qj+1 ⩽ qj + Cqj/(log qj)

3, as needed.
Next, we define the step-function h : R>0 → R>0 by

(2.3) h(t) :=
∑
j⩾1

(log qj) · 1λj−1<t⩽λj

In particular, (2.1) and (2.2) imply that, if r(t) := |h(t)− t|, then

(2.4) r(t) ≪ min{t, t−2} for all t > 0.

Using the above notation, here is how to extract Nx from L, U ′
1, U

′
2 and U ′

3:

(1) Construct the sequence of random prime powers or ones (Qi)i⩾1 by lettingQi := eh(Li log x).
Note that Qi = 1 whenever Li ⩽ e−γ

log x
so there are only finitely many Qi’s that are prime

powers.

(2) Define the random integer Jx :=
∏

j⩾2Qj .
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(3) Define the extra prime Pextra as the smallest element in the set {1} ∪ {primes} that would
satisfy θ(Pextra) ⩾ U ′

1θ(x/Jx), where θ(y) =
∑

p⩽y log p is Chebyshev’s function. (In
particular, we have Pextra = 1 when Jx > x/2; otherwise, Pextra is a prime ⩽ x/Jx.)

(4) Let µx be the probability measure induced by the random variable Mx := JxPextra, and let
νx be the uniform counting measure on Z∩[1, x]. Then, by Lemma B.2 and our assumption
that U ′

2 and U ′
3 exist on Ω, there exists a random variable Nx on Ω such that:

• Nx is uniformly distributed on Z ∩ [1, x],
• P
[
Mx ̸= Nx

]
= dTV(µx, νx)

with dTV being the total variation distance defined in (B.1).

This completes the definition of our coupling, since the space Ω contains a Poisson–Dirichlet
process V and also a random variable Nx with distribution νx.

In Section 2.1, we show how to use the coupling to prove Theorem 1. Lastly, in Section 2.2, we
make some technical remarks on the coupling.

2.1. Reducing Theorem 1 to three lemmas and a proposition. With the following four key
results, we directly get Theorem 1. Recall that s(n) denotes the largest square-full divisor of the
integer n. In addition, let

Θx :=
∑
i⩾1

r(Vi log x).

Lemma 2.1 (The ℓ1 distance within the coupling). When Mx = Nx, we have the inequality∑
i⩾1

| logPi − Vi log x| ⩽ log(x/Nx) + 2 · log s(Nx) + 2 ·Θx.

Lemma 2.2 (Properties of Nx). Fix α ∈ [0, 1) and β ∈ [0, 1/2). Uniformly over x ⩾ 1, we have

E
[
(x/Nx)

αs(Nx)
β
]
≪α,β 1.

Proof. We must show that

S :=
∑
n⩽x

(x/n)αs(n)β ≪α,β x.

Indeed, if we let a = n♭ and b = s(n), then

S ⩽
∑
b⩽x

b square-full

xαbβ−α
∑
a⩽x/b

a−α ≪α

∑
b⩽x

b square-full

xαbβ−α(x/b)1−α ⩽ x
∑

b square-full

bβ−1,

where we used our assumption that α < 1. Since we have assumed that β < 1/2, the sum over b
converges, thus completing the proof. □

Lemma 2.3 (Properties of Θx). Fix α ⩾ 0. Uniformly over x ⩾ 1, we have

E
[
eαΘx

]
≪α 1.

Proposition 2.4 (Total variation distance between Mx and Nx). For x ⩾ 2, we have

P
[
Mx ̸= Nx

]
≪ 1

log x
.



ON ARRATIA’S COUPLING AND THE DIRICHLET LAW FOR THE FACTORS OF A RANDOM INTEGER 9

The proof of Lemma 2.1 is given in Section 3, and the proof of Lemma 2.3 is given in Section
4. The proof of Proposition 2.4 is the longest part. We set it up in Sections 5 and 6 to eventually
give it in Section 7. Here is how we get Theorem 1 with these results:

Proof of Theorem 1. Let S :=
∑

i⩾1 | logPi − Vi log x|. We always have the trivial bound S ⩽
2 log x. This bound and Lemma 2.1 gives us

S ⩽ 1Mx ̸=Nx · (2 log x) + 1Mx=Nx ·
(
log(x/Nx) + 2 · log s(Nx) + 2 ·Θx

)
.

Taking expectations on both sides, we get E[S] ≪ 1 with Lemmas 2.2-2.3 and with Proposition
2.4. □

In fact, if we condition on the event Mx = Nx, we can obtain a much stronger bound:

Proposition 2.5. Fix α ∈ [0, 1/4). For x ⩾ 2, we have

E

[
exp

(
α
∑
i⩾1

| logPi − Vi log x|
) ∣∣∣∣Mx = Nx

]
≪α 1.

Proof. This follows readily by Hölder’s inequality and by Lemmas 2.1-2.3. □

2.2. Remarks on the coupling. (a) As discussed previously, we have λj−1 ≈ λj ≈ log qj , and
thus (log x)Li ≈ logQi as long as Li is not too small. In particular, we expect that

∑
i⩾1 logQi

would be too close to log x, and thus
∏

i⩾1Qi cannot serve as a proxy of Nx. This is the reason
we have to delete Q1 from the factors of Jx, and we insert instead an extra random prime Pextra

conveniently chosen so that JxPextra has a distribution close to νx.
As we already remarked, we have Pextra = 1 if, and only if, Jx > x/2 (which happens rarely);

otherwise, Pextra is a prime ⩽ x/Jx. As a matter of fact, for all j ∈ Z ∩ [1, x/2], we have

(2.5) P
[
Pextra = p | Jx = j

]
=
1p⩽x/j · log p
θ(x/j)

.

This is the crucial property that will allow us to show that Mx = JxPextra is close to being uni-
formly distributed.

(b) The coupling we defined above is a modification of Arratia’s coupling in [2]. Some of the
differences in our definition are purely aesthetic. The one major difference is within step (3), which
is the whole reason why we obtain a stronger bound than (1.2). The construction of Arratia’s extra
prime PArratia had a different distribution which satisfied

(2.6) P
[
PArratia = p | Jx = j

]
=

1

1 + π(x/j)

for all j ⩽ x and all p ∈ {1} ∪ {primes ⩽ x/j}. It is possible to get the inequality in Lemma 2.1
with Arratia’s original coupling. However, it would be impossible to get a version of Proposition
2.4 with a bound better than log2 x

log x
.

3. THE ℓ1 DISTANCE WITHIN THE COUPLING

In this section we establish Lemma 2.1. We need the following rearrangement inequality.

Lemma 3.1 (Rearrangement inequality). For two non-increasing sequences (xi)i⩾1 and (yi)i⩾1 of
real numbers, and for any two permutations σ, ρ : N → N, we have∑

i⩾1

|xi − yi| ⩽
∑
i⩾1

|xσ(i) − yρ(i)|.
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Proof. See [3, Lemma 3.2]. □

Proof of Lemma 2.1. Recall that the definitions of the sequence (Qi)i⩾1, the extra prime Pextra and
Mx. We create another sequence of primes or ones (P̃i)i⩾1 in the following way:

• We set P̃1 := Pextra.
• If i ⩾ 2 with Qi = 1, then we set P̃i := 1.
• If i ⩾ 2 with Qi > 1, we set P̃i to be the only prime dividing Qi.

We let (P̂i)i⩾1 be the sequence (P̃i)i⩾1 in non-increasing order, and we set

M̂x :=
∏
i⩾1

P̃i =
∏
i⩾1

P̂i.

Since Mx = Nx, we have Pi ⩾ P̂i for all i, because (P̂i)i⩾1 is a subsequence of the non-increasing
sequence (Pi)i⩾1. Therefore,∑

i⩾1

| logPi − Vi log x| ⩽
∑
i⩾1

| log P̂i − Vi log x|+
∑
i⩾1

log(Pi/P̂i)

We have that
∏

i⩾1 Pi/P̂i =Mx/M̂x. Furthermore, the integerMx/M̂x only contains prime factors
whose square divides Nx. Thus, Mx/M̂x divides s(Nx), and

(3.1)
∑
i⩾1

log(Pi/P̂i) = log(Mx/M̂x) ⩽ log s(Nx),

and thus

(3.2)
∑
i⩾1

| logPi − Vi log x| ⩽
∑
i⩾1

| log P̂i − Vi log x|+ log s(Nx).

Next, we use the rearrangement inequality (Lemma 3.1) to find that∑
i⩾1

| log P̂i − Vi log x| ⩽ | logPextra − L1 log x|+
∑
i⩾2

| log P̃i − Li log x|

⩽ | logPextra − L1 log x|+
∑
i⩾2

| logQi − Li log x|+
∑
i⩾2

log(Qi/P̃i),

where we used that P̃i ⩽ Qi for each i. Moreover, we have
∏

i⩾2Qi/P̃i = Mx/M̂x, so (3.1)
implies that∑

i⩾1

| log P̂i − Vi log x| ⩽ | logPextra − L1 log x|+
∑
i⩾2

| logQi − Li log x|+ log s(Nx).

Finally, we also note that logPextra = logMx −
∑

i⩾2 logQi and L1 = 1 −
∑

i⩾2 Li. Since we
have assumed that Mx = Nx, we have

| logPextra − L1 log x| ⩽ log(x/Nx) +
∑
i⩾2

| logQi − Li log x|.

Combining the two above displayed inequalities with (3.2), we conclude that∑
i⩾1

| logPi − Vi log x| ⩽ log(x/Nx) + 2
∑
i⩾2

| logQi − Li log x|+ 2 log s(Nx).
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To complete the proof, recall that logQi = h(Li log x) and r(t) = |h(t)− t|, whence∑
i⩾2

| logQi − Li log x| =
∑
i⩾2

r(Li log x) ⩽ Θx.

This proves Lemma 2.1. □

4. ANOTHER REALIZATION OF THE GEM DISTRIBUTION

For the proof of Lemma 2.3 and Proposition 2.4, we will need to be more precise as to how the
GEM process L is sampled in the coupling. The construction we present below is also the one used
by Arratia [2].

Definition 4.1 (The Poisson Process R).
(a) We denote by R the Poisson process on R2

>0 that has intensity measure e−wy dw dy. With-
out loss of generality, we may assume that the w-coordinates of the points of R are always
distinct.

(b) We index the points of R =
{
(Wi, Yi) : i ∈ Z

}
according to the following rules:

• Wi < Wi+1 for all i ∈ Z;
• if we let Si :=

∑
ℓ⩾i Yℓ for all i ∈ Z, then we have S1 ⩽ log x < S0.

Remark. By the Mapping Theorem (Proposition B.3), projecting R on the w-axis yields a Poisson
Process with intensity dw

w
and, similarly, projecting R on its y-axis yields a Poisson Process with

intensity dy
y

. Therefore, the w-coordinates of the points in R have almost surely exactly one limit
point at 0 and they are almost surely unbounded. Hence, the indexing (Wi, Yi) in part (b) of the
above definition is well-defined.

The following lemma describes the distribution of the point process Si.

Lemma 4.2 (Scale-invariant spacing lemma). The point process {Si : i ∈ Z} is a Poisson process
on the positive real line with intensity measure ds

s
.

Proof. See [3, Lemma 7.1]. □

Using this lemma, we have the following description of the GEM distribution.

Proposition 4.3 (Arratia, [2]). The process
(
1− S1

log x
, Y1

log x
, Y2

log x
, . . .

)
follows a GEM distribution.

Proof. Applying the map Tx(s) := log2 x − log s to the points of {Si : i ∈ Z} gives a homo-
geneous Poisson process on the real line with constant rate 1, by using the Mapping Theorem
(Proposition B.3) with Lemma 4.2. Furthermore, we have Tx(S0) < 0 ⩽ Tx(S1) and (Tx(Si))i∈Z
increasing. Therefore, Tx(S1) and Tx(Si+1) − Tx(Si) for all i ⩾ 1 are independent exponential
random variables of parameter 1. If X is a standard exponential random variable, then 1−e−X is a
uniform random variable in [0, 1]. We conclude that 1− S1

log x
, Y1

S1
, Y2

S2
, . . . are independent uniform

random variables in [0, 1]. The proposition follows by the characterization of the GEM distribution
described in the introduction. □

For the next sections and the proof below, we will assume that the process L = (L1, L2, . . .)

sampled for our coupling was determined by R by defining L1 := 1 − S1

log x
and Lj :=

Yj−1

log x
for

j ⩾ 2. In this setting, we now have that

(4.1) Jx =
∏
i⩾1

eh(Yi).
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4.1. Proof of Lemma 2.3. We conclude this section by using the realization of the GEM described
here to prove Lemma 2.3. Note that

(4.2) Θx = r(L1 log x) +
∑
i⩾1

r(Yi) ⩽ Θ∞ +O(1)

with Θ∞ :=
∑

i∈Z r(Yi). With Campbell’s Theorem (Proposition B.5), we directly compute that

(4.3) E[eαΘ∞ ] = exp

(∫ ∞

0

eαr(y) − 1

y
dy

)
.

This integral is convergent for all fixed α > 0 because eαr(y) − 1 ≪α r(y) ≪ min{y, y−2}.
Combining this fact with (4.2) proves that E[eαΘx ] ≪α 1. We have thus established Lemma 2.3.

5. AN INTEGER-FRIENDLY VERSION OF Jx

Let Λ be the von Mangoldt function, that is to say

Λ(n) =

{
log p if n = pk for some prime power pk,
0 otherwise.

Recall the Poisson Process R given in Definition 4.1. We then define

R∗ :=
{(
WY/h(Y ), eh(Y )

)
: (W,Y ) ∈ R, Y > e−γ

}
.

Without loss of generality, we may assume that the quantities WY/h(Y ) with (W,Y ) ∈ R and
Y > e−γ are all distinct. By the Mapping Theorem (Proposition B.3) applied to the map (w, y) 7→
(wy/h(y), eh(y)) on the Poisson process R restricted to R>0 × R>e−γ , the random set R∗ is a
Poisson process on the space R>0 × {prime powers} with mean measure µ∗ satisfying

µ∗(B × {q}) =
∫
B

Λ(q)

q1+t
dt

for any B ⊆ R>0 and any q ∈ N. Note that the w-coordinates of the points in R restricted to
R>0 × R>e−γ are now bounded with probability one. For each such realization of the points of
R∗, there is a unique labeling of them as {(T ∗

i , Q
∗
i ) : i ∈ Z⩽K} in such a way that the following

properties hold:
• T ∗

i−1 < T ∗
i for all i ∈ Z⩽K ;

•
∏K

i=1Q
∗
i ⩽ x <

∏K
i=0Q

∗
i .

(Note that K is a random variable and is not fixed.) We then define the random integer

J∗
x :=

K∏
i=1

Q∗
i .

One advantage of introducing J∗
x is that the computation for the distribution of J∗

x can be done
more easily and precisely than the distribution of Jx. We perform this calculation in this section.
We will then see in the next section that the probability that Jx is different from J∗

x is small enough
to be negligible in the calculation of the total variation distance in Section 7.

This random integer J∗
x was used by Arratia in [2], and he estimated its distribution in his Lemma

2. For the sake of completeness, we repeat his proof in Lemma 5.2 below. But first, we need the
following preliminary result on a particular sum of independent Poisson random variables.
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Lemma 5.1. Let λ ∈ (0, 1), let (Xk)k⩾1 be a sequence of independent Poisson random variables
such that E[Xk] =

λk

k
, and let Z :=

∑
k⩾1 k ·Xk. Then we have

P
[
Z = ℓ

]
= (1− λ) · λℓ for ℓ = 0, 1, 2 . . .

Proof using generating functions. Let s ∈ C with |s| < λ−1. We have that E[sXk ] = exp(λ
k

k
· (s−

1)). With the independence of the Xk’s, we have

E[sZ ] =
∞∏
k=1

exp(λ
k

k
· (sk − 1)) = exp

(
− log(1− λs) + log(1− λ)

)
=

∞∑
j=0

(1− λ)λj · sj.

We finally recover the probability mass function of Z using

P
[
Z = ℓ

]
=

1

2πi

∮
|s|=1

E[sZ ]
sℓ+1

ds. □

Proof using combinatorics. For the case ℓ ⩾ 1, we have

P
[
Z = ℓ

]
=

∑
m1,...,mℓ⩾0∑

jmj=ℓ

(
ℓ∏

j=1

P[Xj = mj]
∞∏

j=ℓ+1

P[Xj = 0]

)

= exp

(
−

∞∑
j=1

λj

j

)
· λℓ ·

∑
m1,...,mℓ⩾0∑

jmj=ℓ

ℓ∏
j=1

(1/j)mj

mj!
.

By a classical formula due to Cauchy [16, Proposition 1.3.2], the expression ℓ!·
∏ℓ

j=1
(1/j)mj

mj !
equals

the number of permutations in Sℓ with mj cycles of length j for all j. In particular,∑
m1,...,mℓ⩾0∑

jmj=ℓ

ℓ∏
j=1

(1/j)mj

mj!
= 1,

whence P[Z = ℓ] = (1 − λ) · λℓ, as claimed. Finally, for the case ℓ = 0, we recover P[Z = 0]
using the formula P[Z = 0] = 1− P[Z ⩾ 1]. □

Lemma 5.2 (Arratia [2]). For x ⩾ 2 and 1 ⩽ j ⩽ x, we have

P
[
J∗
x = j

]
=

1

j log x

(
1 +O

(
1

log x

))
.

Proof. Let t > 0 and let q be a prime power, and consider the random variable Nq(t) that counts
the number of points (T ∗

i , Q
∗
i ) with T ∗

i > t and Q∗
i = q. Moreover, let I∗t :=

∏
qNq(t) with the

product being over all prime powers q, and let Zp(t) :=
∑∞

k=1 kNpk(t). Thus, we have

I∗t =
∏
p

pZp(t).

The family of random variables (Zp(t))p is independent since R∗ is a Poisson process. We also
know that each random variable Npk(t) follows a Poisson distribution with parameter 1

kpk(1+t) .
Hence, P

[
Zp(t) = ℓ

]
= (1− p−1−t)p−ℓ(1+t) by Lemma 5.1 for all ℓ ⩾ 0, and we have

P
[
I∗t = j

]
=
∏
p

P
[
Zp(t) = νp(j)

]
=

j−1−t

ζ(1 + t)
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for all j ⩾ 1. All points of R∗ have distinct T ∗-coordinates with probability one. In this situation,
we have that J∗

x = j if, and only if, there exists exactly one point (T ∗, Q∗) ∈ R∗ such that I∗T ∗ = j
and Q∗ > x

j
. Thus, we have

1J∗
x=j =

∑
(T ∗,Q∗)∈R∗

1I∗
T∗=j and Q∗>x/j

almost surely. Taking expectations on both sides and using the Mecke equation (Proposition B.6),
we get the distribution of J∗

x :

(5.1) P
[
J∗
x = j

]
=

∫ ∞

0

( ∑
q>x/j

Λ(q)

q1+t

)
· j−1−t

ζ(1 + t)
dt.

We want to estimate this integral. Let S(u) :=
∑

q⩽u
Λ(q)
q

. We have S(u) = log u+O(1) for u ⩾ 1
by Mertens’ estimate [12, Theorem 3.4(a)]. We use partial summation to get∑

q>x/j

Λ(q)

q1+t
=

∫ ∞

x/j

u−t dS(u) =
(x/j)−t

t
(1 +O(t)).

for all t > 0. By putting this estimate in (5.1), we have

P[J∗
x = j] =

1

j

∫ ∞

0

x−t(1 +O(t))

t · ζ(1 + t)
dt.

Since ζ(1 + t) ⩾ 1 for all t > 0, the portion of the integral over t ⩾ 1 is ≪ 1/(x log x). On the
other hand, if t ∈ (0, 1], we have 1/ζ(1 + t) = t+O(t2). We conclude that

P[J∗
x = j] =

1

j

∫ 1

0

x−t(1 +O(t)) dt+O

(
1

jx log x

)
=

1

j log x

(
1 +O

(
1

log x

))
.

This concludes the proof. □

6. WHEN Jx AND J∗
x ARE DIFFERENT

To prove Proposition 2.4, we must get a hold of the distribution of Jx. Since we have a good
approximation for the distribution of J∗

x , it will be enough, for our purposes, to show that the event
{Jx ̸= J∗

x} occurs with low probability.
For any t > 0, consider the random variable

It :=
∑

(W,Y )∈R

Y · 1W>t.

We compute below the distribution of It.

Proposition 6.1 (Arratia, [2]). For any fixed t > 0, the random variable It follows an exponential
distribution of parameter t, i.e. P[It > y] = e−ty for all y > 0.

Proof. A direct application of Campbell’s Theorem (Proposition B.5) implies that E[esIt ] = t/(t−
s) for Re(s) < t, which agrees with the moment generating function of an exponential distribution
of parameter t. This completes the proof. □
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Let η be the smallest positive constant satisfying
a

h(a)
· h(b)
b

⩽ 1 +
η

min{a, b}2
.

for all a, b > e−γ . Such a constant must exist by (2.4). In addition, let

r0 := sup
y>0

r(y).

Let us then define the following events:

• E1 =
{
S1 < log x−Rx − r0, S0 > log x+Rx + 2r0

}
, where Rx :=

∑
i⩾2 r(Yi).

• E2 is the event where Wi

W0
> 1 + η

min{Y0,Yi}2 for all i ⩾ 1.

• E3 is the event where W0

Wi
> 1 + η

min{Y0,Yi}2 for all i ⩽ −1.

The variable Rx depends on the value of x since the labeling of points in R change as x grows,
even if R stays fixed.

Lemma 6.2. For x > 1, we have E1 ∩ E2 ∩ E3 ⊆ {Jx = J∗
x}. In particular,

P
[
Jx ̸= J∗

x

]
⩽ P[Ec

1 ] + P[E1 ∩ Ec
2 ] + P[E1 ∩ Ec

3 ].

Proof. Recall that Jx =
∏

i⩾1 e
h(Yj) and assume that E1 occurs. Then

(6.1) log Jx =
∞∑
i=1

h(Yi) ⩽
∑
i⩾1

(
Yi + r(Yi)

)
⩽ S1 +Rx + r0 < log x,

since r(Y1) ⩽ r0. Similarly, we have

log
(
Jx · eh(Y0)

)
=

∞∑
i=0

h(Yi) ⩾
∑
i⩾0

(
Yi − r(Yi)

)
⩾ S0 −Rx − 2r0 > log x.

Therefore, E1 implies the inequalities

(6.2) Jx < x < Jxe
h(Y0).

In particular, we must have Y0 > e−γ .
Assume now further that E2 and E3 also occur. We claim that this implies Jx = J∗

x . Let B+ be
the set of integers i ⩾ 1 such that Yi > e−γ , and let B− be the set of integers i ⩽ −1 such that
Yi > e−γ . By our assumption that E2 ∩ E3 occurs and by the definition of η, we have

(6.3)
WiYi
h(Yi)

>
W0Y0
h(Y0)

if i ∈ B+

and, similarly,

(6.4)
WiYi
h(Yi)

<
W0Y0
h(Y0)

if i ∈ B−.

Now, let K ⩾ 0 and (T ∗
j , Q

∗
j) with j ∈ Z⩽K be the indexing of points of R∗ given in Section 5,

that is to say we have T ∗
j−1 < T ∗

j for all j ∈ Z⩽K , and such that
∏K

j=0Q
∗
j > x ⩾

∏K
j=1Q

∗
j . Let

j0 ∈ Z⩽K be such that T ∗
j0
= W0Y0/h(Y0) (which exists because Y0 > e−γ). Using relations (6.3)

and (6.4), we find that ∏
j0<j⩽K

Q∗
j =

∏
i∈B+

eh(Yi) =
∏
i⩾1

eh(Yi) = Jx.
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On the other hand, we have
∏

j0⩽j⩽K Q
∗
j = eh(Y0)Jx. Hence, using (6.2), we find that

∏
j0<j⩽K Q

∗
j <

x <
∏

j0⩽j⩽K Q
∗
j . In particular, j0 = 0 and thus J∗

x =
∏

j0<j⩽K Q
∗
j = Jx, as claimed. □

The following lemma requires a lot more care than in Arratia’s paper [2] since he only needed
P[J ̸= J∗] ≪ log2 x

log x
to be true for his coupling.

Lemma 6.3. We have P[Ec
1 ] ≪ 1

log x
for x ⩾ 2.

Proof. We may assume that x is large enough. We have E[eRx ] ⩽ E[eΘ∞ ] ≪ 1 by (4.3). There-
fore, the event Rx > log2 x occurs with probability ≪ 1

log x
. Using Lemma 4.2, we find that the

probability that there exists i ∈ Z such that |Si − log x| ⩽ 4r0 is O(1/ log x). In conclusion,

P[Ec
1 ] ⩽

∑
k∈{0,1}

P
[
4r0 < |Sk − log x| ⩽ Rx + 2r0, Rx ⩽ log2 x

]
+O

(
1

log x

)
.

Note that if there exists k ∈ Z with Wk > (log2 x)
−10 and |Sk − log x| ⩽ log2 x + 2r0, then

I(log2 x)−10 ⩾ log x− log2 x− 2r0. So, using Proposition 6.1, we find that

P
[
∃k : |Sk − log x| ⩽ log2 x+ 2r0, Wk > (log2 x)

−10
]
⩽ P

[
I(log2 x)−10 > log x− log2 x− 2r0

]
= exp

(
− log x− log2 x− 2r0

(log2 x)
10

)
for x large enough. Consequently,

P[Ec
1 ] ⩽

∑
k∈{0,1}

P
[
4r0 < |Sk − log x| ⩽ Rx +2r0, Rx ⩽ log2 x, Wk ⩽ (log2 x)

−10
]
+O

(
1

log x

)
.

Let m0 be the largest integer such that 2m0−1r0 ⩽ log2 x. Hence, if 2r0 < Rx ⩽ log2 x, then there
exists a unique integer m ∈ [2,m0] such that 2m−1r0 < Rx ⩽ 2mr0, in which case the condition
|Sk − log x| ⩽ Rx + 2r0 implies that |Sk − log x| ⩽ 2mr0 + 2r0 ⩽ 2m+1r0. We conclude that

P[Ec
1 ] ⩽

∑∑
k∈{0,1}
2⩽m⩽m0

P
[
R > 2m−1r0, |Sk − log x| ⩽ 2m+1r0, Wk ⩽ (log2 x)

−10
]
+O

(
1

log x

)
.

Note that 1Rx>2m−1r0 ⩽ 41−m

r20
1Rx>2r0R

2
x. In addition, if Rx > 2r0, then

∑
i⩾2 r(Yi)

2 ⩽ r0Rx <

R2
x/2, whence R2

x ⩽ 4
∑

i>j⩾2 r(Yi)r(Yj). We conclude that

P[Ec
1 ] ⩽

∑∑
k∈{0,1}
2⩽m⩽m0

42−m

r20
E
[∑∑

i,j: i>j>k

r(Yi)r(Yj) · 1|Sk−log x|⩽2m+1r0 · 1Wk⩽(log2 x)
−10

]
+O

(
1

log x

)
,

Therefore, to complete the proof of the lemma, it is enough to show that

(6.5) E(z) := E
[∑∑∑

i,j,k∈Z: i>j>k

r(Yi)r(Yj) · 1|Sk−log x|⩽z · 1Wk⩽(log2 x)
−10

]
≪ z

log x

uniformly for z ∈ [0, 4 log2 x].
For the rest of the proof, we fix z ∈ [0, 4 log2 x]. Given t′′ > t′ > t > 0, let

It,t′,t′′ :=
∑

(W,Y )∈R, W∈R>t\{t′,t′′}

Y.
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Since the Wi’s are almost surely distinct, we have

E(z) ⩽ E
[ ∑∑∑

(W,Y ),(W ′,Y ′),(W ′′,Y ′′)∈R
W ′′>W ′>W

r(Y ′)r(Y ′′) · 1|Y+Y ′+Y ′′+IW,W ′,W ′′−log x|⩽z · 1W⩽(log2 x)
−10

]
.

Hence, using the Mecke equation (Proposition B.6) and the fact that It,t′,t′′ has the same distribution
as It, we find that

E(z) ⩽
∫

· · ·
∫

0<w<w′<w′′

w⩽(log2 x)
−10

y,y′,y′′⩾0
y+y′+y′′⩽log x+z

r(y′)r(y′′)P
[∣∣Iw + y + y′ + y′′ − log x

∣∣ ⩽ z
] dw · · · dy′′

ewy+w′y′+w′′y′′
,

where the integral is sixfold with variables w,w′, w′′, y, y′, y′′. Proposition 6.1 implies that

P
[∣∣Iw + y + y′ + y′′ − log x

∣∣ ⩽ z
]
⩽ e−w(log x−y−y′−y′′)(ewz − e−wz) ≪ wze−w(log x−y−y′−y′′),

since w ⩽ (log2 x)
−10 and z ⩽ 4 log2 x. Consequently,

E(z) ≪
∫

· · ·
∫

0<w<w′<w′′

y,y′,y′′⩾0
y+y′+y′′⩽log x+z

r(y′)r(y′′)zwe−w log x−(w′−w)(y′+y′′)−(w′′−w′)y′′ dw · · · dy′′

=
z

(log x)2

∫∫∫∫
t,y,y′,y′′⩾0

y+y′+y′′⩽log x+z

r(y′)r(y′′)

y′′(y′ + y′′)
te−t dt dy dy′ dy′′,

where we made the change of variables t = w log x. Since
∫∞
0
r(u)/u du ≪ 1 and log x + z ≪

log x, relation (6.5) follows. This completes the proof of the lemma. □

Lemma 6.4. We have P[E1 ∩ Ec
2 ] + P[E1 ∩ Ec

3 ] ≪ 1/ log x for x ⩾ 2.

Proof. Recall that E2 failing means that there exists i ⩾ 1 such thatWi/W0 ⩽ 1+η/min{Y0, Yi}2.
In addition, recall that the event E1 implies that Y0 > e−γ (this was explained in the beginning of
the proof of Lemma 6.2). Hence, we have that

P[E1 ∩ Ec
2 ] ⩽ E

[ ∑∑
(W,Y ),(W ′,Y ′)∈R

11<W ′/W⩽1+η/min{Y,Y ′}2 · 1Y ′,Y >e−γ · 1IW,W ′+Y ′∈(log x−Y,log x]

]
with It,t′ :=

∑
(W,Y )∈R, W∈R>t\{t′} Y . We use Mecke’s equation as in the proof of (6.5) to get that

P[E1 ∩ Ec
2 ] ⩽

∫∫∫∫
0<w<w′<w(1+η/min{y,y′}2)

y,y′>e−γ , y′⩽log x

P
[
log x− y < Iw + y′ ⩽ log x

]
· e−wy−w′y′ dw dw′ dy dy′.

We have e−w′y′ ⩽ e−wy′ , thus

P[E1 ∩ Ec
2 ] ≪

∫∫∫
w>0, y,y′>e−γ

y′⩽log x

P
[
log x− y < Iw + y′ ⩽ log x

]
· we

−w(y+y′)

min{y, y′}2
dw dy dy′.
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By Proposition 6.1, we have

P
[
log x− y < Iw + y′ ⩽ log x

]
⩽

{
e−w(log x−y−y′) if y ⩽ log x,
1 if y > log x.

Therefore,

P[E1 ∩ Ec
2 ] ≪

∫∫∫
w>0, y,y′>e−γ

y,y′⩽log x

we−w log x

min{y, y′}2
dw dy dy′ +

∫∫∫
w>0, y,y′>e−γ

y′⩽log x<y

we−w(y+y′)

(y′)2
dw dy dy′

⩽
∫∫

e−γ<y,y′⩽log x

1

min{y, y′}2(log x)2
dy dy′ +

∫∫
y,y′>e−γ

y′⩽log x<y

1

(yy′)2
dy dy′

≪ 1/ log x.

This completes the proof of the claimed bound on P[E1 ∩ Ec
2 ].

Finally, we bound P[E1 ∩ Ec
3 ] using a very similar argument. We have

P[E1 ∩ Ec
3 ] ⩽ E

[ ∑∑
(W,Y ),(W ′,Y ′)∈R

11<W/W ′⩽1+η/min{Y,Y ′}2 · 1Y ′,Y >e−γ · 1IW∈(log x−Y,log x]

]
=

∫∫∫∫
0<w′<w<w′(1+η/min{y,y′}2)

y,y′>e−γ

P
[
log x− y < Iw ⩽ log x

]
· e−wy−w′y′ dw dw′ dy dy′

⩽ J1 + J2,

where

J1 :=

∫∫∫∫
0<w′<w<w′(1+η/min{y,y′}2)

y,y′>e−γ , y⩽log x

e−w log x−w′y′ dw dw′ dy dy′

and

J2 :=

∫∫∫∫
0<w′<w<w′(1+η/min{y,y′}2)

y>log x, y′>e−γ

e−wy−w′y′ dw dw′ dy dy′.

Using e−w log x ⩽ e−w′ log x, we find that

J1 ≪
∫∫∫

w′>0, y,y′>e−γ

y⩽log x

w′e−w′(y′+log x)

min{y, y′}2
dw′ dy dy′

=

∫∫
y,y′>e−γ

y⩽log x

1

min{y, y′}2(y′ + log x)2
dy dy′

≪ 1/ log x.
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Similarly, we have

J2 ≪
∫∫∫

w′>0, y′>e−γ

y>log x

w′e−w′(y+y′)

min{y, y′}2
dw′ dy dy′

=

∫∫
y′>e−γ

y>log x

1

min{y, y′}2(y + y′)2
dy dy′

≪ 1/ log x.

This implies that P[E1 ∩ Ec
3 ] ≪ 1/ log x, thus completing the proof of the lemma. □

As an immediate corollary of Lemmas 6.2, 6.3 and 6.4, we have:

Proposition 6.5. For x ⩾ 2, we have P
[
Jx ̸= J∗

x

]
≪ 1/ log x.

7. PROOF OF PROPOSITION 2.4

With a good estimation of the distribution of J∗
x and with the fact that Jx = J∗

x with a quantifiably
high probability, we are able to give an upper bound on the total variation distance between the
distribution of Mx and Nx.

Proof of Proposition 2.4. Recall that we constructed Nx in the coupling such that P[Mx ̸= Nx] =
dTV(µx, νx) with µx and νx being the distribution of Mx and Nx respectively. Note that Mx > x
must imply that Jx > x, which means that E1 cannot happen by (6.1). Hence, using Lemma 6.3,
we see that it is enough to show that

P[Mx ∈ A] =
#A

⌊x⌋
+O

( 1

log x

)
uniformly over all A ⊆ Z ∩ [1, x].

For each j ⩽ x, we define the sets

Aj :=
⋃

p: pj∈A

(
θ(p− 1)

θ(x/j)
,
θ(p)

θ(x/j)

]
.

Note that Mx ∈ A and Jx ⩽ x/2 if, and only if, Jx = j for some j ⩽ x/2 and U ′
1 ∈ Aj . With this

in mind, we define the following events:

• B1 = {Jx = J∗
x ⩽ x/2};

• B2 = {Mx ∈ A};
• B3 = {J∗

x = j and U ′
1 ∈ Aj for some j ⩽ x/2}.

Since B1 ∩ B2 = B1 ∩ B3, we have∣∣∣P[B2]− P[B3]
∣∣∣ ⩽ P[Bc

1] ⩽ P
[
Jx ̸= J∗

x

]
+ P

[
x/2 < J∗

x ⩽ x
]
≪ 1

log x
.
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by Lemma 5.2 and by Proposition 6.5. Therefore, we have

P
[
Mx ∈ A

]
=
∑
j⩽x/2

P
[
J∗
x = j, U ′

1 ∈ Aj

]
+O

(
1

log x

)

=
∑∑
p,j: pj∈A

log p

θ(x/j)
· P[J∗

x = j] +O

(
1

log x

)
.(7.1)

Since θ(t)/t = 1 + O
(
(log t)−2

)
for all t ⩾ 2 by the Prime Number Theorem [12, Theorem 8.1],

we have

(7.2)
P[J∗

x = j]

θ(x/j)
=

1

⌊x⌋ log x

(
1 +O

(
1

(log(x/j))2
+

1

log x

))
for j ⩽ x/2. In addition, note that

(7.3)
∑∑
p,j: pj∈A

log p ·
(

1

(log(x/j))2
+

1

log x

)
≪
∑
j⩽x/2

(
x

j(log(x/j))2
+

x

j log x

)
≪ x.

By combining (7.1), (7.2) and (7.3), we reduce the problem to showing the following:

(7.4)
∑∑
p,j: pj∈A

log p

log x
= #A+O

( x

log x

)
.

If we set L(a) :=
∑

p|a log p, then we have

(7.5)
∑∑
p,j: pj∈A

log p

log x
=
∑
a∈A

L(a)

log x
= #A−

∑
a∈A

log(x/a) + (log a− L(a))

log x

The quantity log(x/a) is non-negative whenever a ⩽ x. Furthermore, the integer a/(
∏

p|a p) is
always a divisor of s(a), thus 0 ⩽ log a− L(a) ⩽ log s(a). Therefore,∑

a∈A

log(x/a) + (log a− L(a))

log x
≪
∑
a⩽x

log(x/a) + log s(a)

log x

=
⌊x⌋
log x

· E
[
log(x/Nx) + log s(Nx)

]
≪ x

log x

by Lemma 2.2. With this inequality combined with (7.5), we establish (7.4), and hence it completes
the proof of Proposition 2.4. □
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PART II. FACTORIZATION INTO k PARTS

8. THEOREM 2 FOR THE PROBABILISTIC MODEL

With the following probabilistic version of Theorem 2 given by Donnelly and Tavaré in 1987 [8,
Section 3], we see how a Poisson–Dirichlet process relates to the Dirichlet distribution. We repeat
their proof since they use a Poisson process that will come in handy later.

Proposition 8.1 (Donnelly–Tavaré [8]). Let V = (V1, V2, . . .) be a Poisson–Dirichlet process, let
α = (α1, . . . , αk) ∈ ∆k−1 such that αi > 0 for all 1 ⩽ i ⩽ k, and let (Ci)i⩾1 be a sequence
of i.i.d. random variables (also independent of V) with P[Ci = j] = αj for all i ⩾ 1. Then the
random vector ( ∑

i: Ci=1

Vi, . . . ,
∑

i: Ci=k

Vi

)
is distributed according to Dir(α).

Proof. Let X1 > X2 > · · · be the points of a Poisson process on R>0 with intensity e−x

x
dx, and

let S :=
∑

i⩾1Xi. For each i ⩾ 1, Let Vi := Xi

S
. We then know that (V1, V2, . . .) follows the

Poisson–Dirichlet distribution [9, Theorem 2.2]. With the Colouring Theorem (Proposition B.4),
the point processes

Πm = {Xi : Ci = m}

form independent Poisson processes of intensity αm · e−x

x
dx for all m = 1, . . . , k. We then let

Sm :=
∑

X∈Πm

X

for m = 1, 2, . . . , k. With Campbell’s Theorem (Proposition B.5), we compute the moment gener-
ating function

logE[esSm ] = αm ·
∫ ∞

0

esx − 1

x
· e−x dx = −αm log(1− s)

for Re(s) < 1. This coincides with the moment generating function of Gamma(αm, 1) distribution.
We thus deduce that the vector( ∑

i: Ci=1

Vi, . . . ,
∑

i: Ci=k

Vi

)
=

(
S1∑k

m=1 Sm

, . . . ,
Sk∑k

m=1 Sm

)
follows the distribution Dir(α) (see [11, Chapter 49, pp. 485-487] for a proof). □

9. A COUPLING FOR Dx

Fix k ⩾ 2, α ∈ ∆k−1 with αi > 0 for all i, and f ∈ Fk(α). In addition, let Dx be a random
variable satisfying (1.5), and let Z be a ∆k−1-valued random variable distributed according to
Dir(α). We will construct an appropriate coupling between Dx and Z. This will build on the
coupling given in Section 2. To state our result, we also introduce the random vectors

(9.1) δx :=

(
logDx,1

logNx

, . . . ,
logDx,k

logNx

)
and δ∗

x :=

(
logDx,1

log x
, . . . ,

logDx,k

log x

)
,
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which are more convenient to work with than Dx because we can compare them to Z. To this end,
we write ∥·∥∞ for the supremum norm in Rk. Note that

(9.2) ∥δx − δ∗
x∥∞ =

log(x/Nx)

(log x)(logNx)
· max
1⩽i⩽k

logDx,i ⩽
log(x/Nx)

log x
.

In addition, we have the following lemma:

Lemma 9.1. Let x ⩾ 2 and assume the above notation. There exists a probability space Ω′

containing copies of the random variables Nx, δx, δ∗
x, V and Z, and an event E such that:

(a) P[Ec] ≪ 1/ log x;
(b) If E occurs, then

∥δx − Z∥∞ ⩽
2 · log(x/Nx) + 3 · log s(Nx) + 2 ·Θx

log x
.

Proof. Our starting point is the coupling of Nx and V described in Section 2. We equip this space
with some additional random variables that are all independent of each other and of Nx and V, and
whose role will become apparent later:

• a sequence (C ′
i)i⩾1 of random variables such that P[C ′

i = ℓ] = αℓ for all i ⩾ 1 and all
ℓ = 1, 2, . . . , k;

• for each natural number n and each prime p, let
(
X

(1)
p (n), . . . , X

(k)
p (n)

)
be independent

random vectors

P
[
X(i)

p (n) = ei ∀i ⩽ k
]
= f(pe1 , . . . , pek),

for every non-negative integer solutions to e1 + · · ·+ ek = νp(n).
Finally, we take E = {Mx = Nx}, which satisfies the required property (a) by Proposition 2.4.

We will now show that the space we constructed above contains copies of δx, δ∗
x and of Z

satisfying part (b). The construction of δx and δ∗
x is rather straightforward. Indeed, using the fact

that f ∈ Fk(α) (property (c) of Definition 1.1), we may easily check that the random k-tuple
(
∏

p p
X

(i)
p (Nx))ki=1 satisfies (1.5). Thus, we may take

Dx,i :=
∏
p

pX
(i)
p (Nx) for i = 1, 2, . . . , k,

so that the distribution of Dx = (Dx,1, . . . , Dx,k) is indeed in accordance with (1.5). We then
define δx and δ∗

x as in (9.1).
Next, we define Z. Firstly, we introduce a new sequence of random variables (Ci)i⩾1. To define

them, fix n ∈ Z ∩ [1, x] and, for every prime p|n♭ = n/s(n), fix a number ℓ(p) ∈ {1, . . . , k}.
Moreover, fix choices of ℓ′1, ℓ

′
2, . . . ∈ {1, 2, . . . , k}. Recall that Nx = P1P2 · · · with the Pi’s

forming a non-increasing sequence of primes or ones. Assume that the events Nx = n, X(j)
p =

1j=ℓ(p) for j = 1, . . . , k, and C ′
i = ℓ′i occur.

• If i ⩾ 1 is such that Pi|n♭, then we let Ci = ℓ(Pi).
• If i ⩾ 1 is such that Pi|s(n), then we let Ci = ℓ′i.

Since f ∈ Fk(α) satisfies property (b) of Definition 1.1, a straightforward computation reveals
that the random variables (Ci)i⩾1 are independent of each other, of Nx and of V, and they satisfy

P[Ci = ℓ] = αℓ for i = 1, 2, . . . and ℓ = 1, 2, . . . , k.
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Finally, equipped with these random variables and motivated by the proof of Donnelly and Tavaré
in Section 8, we take

Z :=

( ∑
i⩾1: Ci=1

V1, . . . ,
∑

i⩾1: Ci=k

Vk

)
,

which is distributed according to Dir(α) by the discussion in Section 8.
In order to complete the proof of the lemma, it remains to show that (b) holds when E = {Mx =

Nx}. Define the auxiliary random variable

ρx :=

( ∑
i⩾1: Ci=1

logPi

log x
, . . . ,

∑
i⩾1: Ci=k

logPi

log x

)
.

When E holds, then Lemma 2.1 implies that∑
i⩾1

| logPi − Vi log x| ⩽ log(x/Nx) + 2 · log s(Nx) + 2 ·Θx.

Thus, we readily find that

(9.3) ∥ρx − Z∥∞ ⩽
log(x/Nx) + 2 · log s(Nx) + 2 ·Θx

log x
.

In addition, by the construction of the random variables Ci, we claim that

(9.4) ∥δ∗
x − ρx∥∞ ⩽

log s(Nx)

log x
.

Indeed, if Nx = n, then we have

logDx,ℓ =
∑
p|n♭

X(ℓ)
p (n) log p+

∑
p|s(n)

X(ℓ)
p (n) log p

=
∑

i⩾1: Pi|n♭

1
X

(ℓ)
Pi

(n)=1
logPi +

∑
p|s(n)

X(ℓ)
p (n) log p

=
∑

i⩾1: Pi|n♭

1Ci=ℓ logPi +
∑
p|s(n)

X(ℓ)
p (n) log p,

whence (9.4) follows readily.
Combining (9.2)-(9.4) completes the proof of part (b), and hence of the lemma. □

In order to make use of Lemma 9.1, we need to introduce some further notation. Let

RNT := 3 · log(x/N
♭
x)

log x
and RPD := 2 · Θx

log x
.

We write B(x, r) for the closed ball of radius r ⩾ 0 centered at x in the normed vector space
(Rk, ∥·∥∞). We recall that ∆k−1 is the standard (k − 1)-dimensional simplex. For any subset A ⊆
∆k−1, we write ∂A for the boundary of A in the relative topology of ∆k−1 (cf. Definition C.1(c)).

In addition, we define the following events:
• ENT(A) :=

{
B(δ∗

x, RNT) ∩ ∂A = ∅
}

;
• EPD(A) :=

{
B(Z, RPD) ∩ ∂A = ∅

}
.
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Lemma 9.2. For any measurable set A ⊆ ∆k−1, we have

P
[
δx ∈ A

]
= P

[
Z ∈ A

]
+O

(
P
[
ENT(A)

c
]
+ P

[
EPD(A)c

]
+

1

log x

)
.

Proof. Let E be as in Lemma 9.1. Hence, it suffices to show that

(9.5)
∣∣∣P[E ∩ {δx ∈ A}

]
− P

[
E ∩ {Z ∈ A}

]∣∣∣ ⩽ P
[
ENT(A)

c
]
+ P

[
EPD(A)c

]
.

We shall prove the following stronger statement: if E ∩ ENT(A) ∩ EPD(A) occurs, then δx ∈ A if,
and only if, Z ∈ A.

Indeed, assume that E ∩ ENT(A) ∩ EPD(A) occurs, and we also have δx ∈ A. Aiming for a
contradiction, we also assume that Z /∈ A.

Let R′
NT := (log x)−1(2 · log(x/Nx) + 3 · log s(Nx)). Note that B(δx, R

′
NT) ⊆ B(δ∗

x, RNT) by
(9.2). By assumption of ENT(A), we know that B(δx, R

′
NT) ∩ ∂A = ∅. Since δx ∈ A, we use

Lemma C.2 to find
B(δx, R

′
NT) ∩∆k−1 ⊆ A.

And by assumption of EPD(A), we have Z ∈ ∆k−1 \ A and B(Z, RPD) ∩ ∂A = ∅, which implies

B(Z, RPD) ∩∆k−1 ⊆ ∆k−1 \ A.

In particular, we find that B(δx, R
′
NT) ∩ B(Z, RPD) ∩ ∆k−1 = ∅. On the other hand, we know

that ∥δx − Z∥∞ ⩽ R′
NT +RPD when E occurs by Lemma 9.1(b). In particular, there exists a point

y on the line segment connecting δx and Z such that ∥δx − y∥∞ ⩽ R′
NT and ∥y − Z∥∞ ⩽ RPD.

Since the sets ∆k−1, B(δx, R
′
NT) and B(Z, RPD) are convex, we conclude that y lies in their

intersection. But we had seen before that this intersection is the empty set. We have thus arrived at
a contradiction. This completes the proof that if E ∩ ENT(A) ∩ EPD(A) occurs, and we also know
that δx ∈ A, then we must also have that Z ∈ A.

Conversely, we may show by a simple variation of the above argument that if E ∩ ENT(A) ∩
EPD(A) occurs, and we also know that Z ∈ A, then we must also have that δx ∈ A. This completes
the proof of the lemma. □

To prove Theorem 2, we need to bound P[ENT(A)
c] and P[EPD(A)c] when A equals the set

∆k−1
u := {x ∈ ∆k−1 : xi ⩽ ui ∀i < k}.

with u ∈ (0, 1]k−1. Note that

∂
(
∆k−1

u

)
⊆ {x ∈ ∆k−1 : ∃i < k such that xi = ui < 1},

(here it is important that the boundary of ∆k−1
u is defined with respect to the topology of ∆k−1).

Therefore,

ENT(∆
k−1
u )c ⊆

⋃
i<k
ui ̸=1

B(i)
NT(ui), where B(i)

NT(u) :=
{∣∣ logDx,i − u log x

∣∣ ⩽ 3 log(x/N ♭
x)
}
,

as well as

EPD(∆k−1
u )c ⊆

⋃
i<k
ui ̸=1

B(i)
PD(ui), where B(i)

PD(u) :=

{∣∣Zi − u
∣∣ ⩽ 2Θx

log x

}
,

We then have the following two crucial estimates:
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Lemma 9.3. For i ∈ {1, 2, . . . , k − 1} and u ∈ (0, 1), we have the uniform estimate

P
[
B(i)
NT(u)

]
≪ 1

(1 + u log x)1−αi(1 + (1− u) log x)αi
.

Lemma 9.4. For i ∈ {1, 2, . . . , k − 1} and u ∈ (0, 1), we have that

P
[
B(i)
PD(u)

]
≪ 1

(1 + u log x)1−αi(1 + (1− u) log x)αi
.

Using Lemmas 9.2-9.4 together with Proposition 8.1 yields immediately Theorem 2. Thus, it
remains to prove Lemmas 9.3 and 9.4, which we do in the next two sections.

Remarks. (a) The proofs of Lemmas 9.3 and 9.4 are rather involved. However, it is possible
to obtain slightly weaker versions of them in a rather easy manner, which will then lead to a
correspondingly weaker version of Theorem 2.

First, we prove a variation of Lemma 9.2. Let E∗(A) be the event that B(Z, R∗) ∩ ∂A = ∅ with

R∗ :=
2 · log(x/Nx) + 3 · log s(Nx) + 2 ·Θx

log x
.

A straightforward modification of the proof of Lemma 9.2 implies that

(9.6) P[Dx ∈ A] = P[Z ∈ A] +O

(
P
[
E∗(A)c

]
+

1

log x

)
for any measurable set A. With Chernoff’s bound and Lemmas 2.2-2.3, the probability that R∗ >
log2 x is ≪ 1/ log x. Moreover, for any δ ∈ (0, 1/4], we can show by a direct computation with
the Dirichlet distribution the uniform bound

P
[
∃j < k such that |Zj − uj| ⩽ δ

]
≪

∑
1⩽j<k

δ

(uj + δ)1−αj(1− uj + δ)αj

for all u ∈ [0, 1]k−1 (see Lemma 11.1 below for a proof of this claim). Taking δ = log2 x
log x

proves
that

P
[
Dx,i ⩽ Nui

x ∀i < k
]
= Fα(u) +O

( ∑
1⩽i<k
ui ̸=1

1

(1 + ui
log x
log2 x

)1−αi(1 + (1− ui)
log x
log2 x

)αi

)
.

(b) As a matter of fact, the above proof could have worked with Arratia’s original coupling from
[2]. Under this coupling, we have P[Mx ̸= Nx] ≪ log2 x

log x
(see Remark (b) at the end of Section 2),

so that Lemma 9.1 would hold with part (a) replaced by the weaker bound P[Ec] ≪ log2 x
log x

, and thus
(9.6) would hold with log2 x

log x
in place of 1

log x
.

10. PROOF OF LEMMA 9.3 USING ELEMENTARY NUMBER-THEORETIC TECHNIQUES

Note that

(10.1) P
[
N ♭

x ⩽ x/(log x)3
]
⩽

1

log x
E
[
(x/N ♭

x)
1/3
]
≪ 1

log x

by Lemma 2.2 applied with α = β = 1/3.
Fix now i ∈ {1, . . . , k − 1} and u ∈ (0, 1). For simplicity, let us write

α = αi
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for the remainder of this section. Given z, let us define

S(z) :=
∑
n⩽x

n♭∈(x
z
, 2x
z
]

∑
d1···dk=n

di∈[xuz−3,xuz3]

f(d1, . . . , dk).

Using (10.1) and (1.5), we find that

(10.2) P
[
B(i)
NT(u)

]
⩽

1

⌊x⌋
∑

1⩽m⩽5 log2 x

S(2m) +O

(
1

log x

)
.

Hence Lemma 9.3 follows readily from the estimate below:

Lemma 10.1. There exists a universal constant x0 ⩾ 2 such that if x ⩾ x0 and z ∈ [2, (log x)4],
then we have the uniform estimate

S(z) ≪ log z√
z

· x

(1 + u log x)1−α(1 + (1− u) log x)α
.

Proof. If d1 · · · dk = n, then we may uniquely write dj = d′jd
′′
j with d′j|n♭ and d′′j |s(n). In par-

ticular, d′′j ⩽ s(n) ⩽ x/n♭ ⩽ z for all j. Hence, if di ∈ [xuz−3, xuz3], we must also have that
d′i ∈ [xuz−4, xuz3]. Hence, using property (c) of Definition 1.1, we deduce that∑

d1···dk=n
di∈[xuz−3,xuz3]

f(d1, . . . , dk) ⩽
∑

d′1···d′k=n♭

d′i∈[xuz−4,xuz3]

f(d′1, . . . , d
′
k)

∑
d′′1 ···d′′k=s(n)

f(d′′1, . . . , d
′′
k).

Relation (1.4) implies that f(d′1, . . . , d
′
k) =

∏k
j=1 α

ω(d′j)

j . Moreover, using property (a) of Defini-
tion 1.1, we find that the sum over d′′j equals 1. In conclusion,

∑
d1···dk=n

di∈[xuz−3,xuz3]

f(d1, . . . , dk) ⩽
∑

d′1···d′k=n♭

d′i∈[xuz−4,xuz3]

k∏
j=1

α
ω(d′j)

j =
∑
d|n♭

d∈[xuz−4,xuz3]

αω(d)(1− α)ω(n
♭/d).

Let n♭ = dm and s(n) = b. If n♭ ∈ [x
z
, 2x

z
] and d ∈ [xuz−4, xuz3], then m ∈ [x1−uz−4, 2x1−uz3].

Hence, we find that

S(z) ⩽
∑∑
dm∈[x

z
, 2x
z
]

d∈[xuz−4,xuz3]
m∈[x1−uz−4,2x1−uz3]

αω(d)(1− α)ω(m)
∑
b⩽z

b square-full

1

≪
√
z

∑∑
dm∈[x

z
, 2x
z
]

d∈[xuz−4,xuz3]
m∈[x1−uz−4,2x1−uz3]

αω(d)(1− α)ω(m) =
√
z · (S1 + S2),(10.3)

where S1 denotes the double sum over d and m with the additional constraint d ⩽
√
2x/z, and S2

is the corresponding sum over pairs (d,m) with d >
√
2x/z and m ⩽

√
2x/z.

First, we bound S1. Note that for the conditions on d to be compatible we must have that
u ⩽ 2/3, provided that x is large enough. Assuming this is the case, we apply twice Proposition
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A.3 to find that

S1 ⩽
∑

d⩽
√

2x/z

d∈[xuz−4,xuz3]

αω(d)
∑
m⩽ 2x

dz

(1− α)ω(m)

≪
∑

d⩽
√

2x/z

d∈[xuz−4,xuz3]

αω(d) · x(log x)
−α

dz

≪ x(log z)(1 + u log x)α−1(log x)−α

z
.(10.4)

We bound S2 in a similar manner. For this sum to be non-empty, we have u ⩾ 1/3. If this is the
case, then we have

S2 ⩽
∑

m⩽
√

2x/z

m∈[x1−uz−4,2x1−uz3]

(1− α)ω(m)
∑
d⩽ 2x

mz

αω(d)

≪
∑

m⩽
√

2x/z

m∈[x1−uz−4,2x1−uz3]

(1− α)ω(m) · x(log x)
α−1

mz

≪ x(log z)(1 + (1− u) log x)−α(log x)α−1

z
.(10.5)

Combining (10.3), (10.4) and (10.5), while keeping in mind that S1 = 0 if u > 2/3 and that S2 = 0
if u < 1/3, completes the proof of the lemma, □

11. PROOF OF LEMMA 9.4 USING PROBABILISTIC TECHNIQUES

Since Z follows the distribution Dir(α), its i-th component Zi follows the Beta(αi, 1 − αi)
distribution, meaning that if [a, b] ⊆ [0, 1], then

(11.1) P
[
Zi ∈ [a, b]

]
=

1

Γ(αi)Γ(1− αi)

∫ b

a

dt

t1−αi(1− t)αi
=

sin(παi)

π

∫ b

a

dt

t1−αi(1− t)αi
,

by Euler’s reflection formula. For this reason, we need the following preliminary estimate.

Lemma 11.1. Uniformly for u ∈ [0, 1], α ∈ (0, 1) and δ > 0, we have

sin(πα)

∫
[u−δ,u+δ]∩[0,1]

dt

t1−α(1− t)α
≪ δ

(u+ δ)1−α(1− u+ δ)α
.

In particular, if δ ⩾ 1/ log x, then

sin(πα)

∫
[u−δ,u+δ]∩[0,1]

dt

t1−α(1− t)α
≪ δ log x

(1 + u log x)1−α(1 + (1− u) log x)α
.

Proof. Note that both sides of the claimed inequality are invariant under the change of variables
(α, u) 7→ (1 − α, 1 − u). Hence, we may assume without loss of generality that u ∈ [0, 1/2]. In
addition, observe that

sin(πα)

∫ 1

0

dt

t1−α(1− t)α
=

sin(πα)

Γ(α)Γ(1− α)
= π.
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Hence the lemma is trivially true if δ > 1/4.
We have thus reduced the proof to the case when α ∈ (0, 1), u ∈ [0, 1/2] and δ ∈ [0, 1/4]. In

particular, u+ δ ⩽ 3/4, so that 1− t ∈ [1/4, 1] for all t ∈ [0, u+ δ]. It thus suffices to prove that

(11.2) sin(πα)

∫
[u−δ,u+δ]∩[0,1]

dt

t1−α
≪ δ

(u+ δ)1−α
.

Assume first that δ ⩽ u/2. We then have t ⩾ u/2 whenever t ∈ [u − δ, u + δ]. Using also the
trivial bound sin(πα) ⩽ 1, we conclude that

sin(πα)

∫
[u−δ,u+δ]∩[0,1]

dt

t1−α
⩽
∫
[u−δ,u+δ]∩[0,1]

dt

(u/2)1−α
≪ δ

(u+ δ)1−α
.

This proves the lemma in this case.
Finally, assume that δ ⩾ u/2. We then use that

sin(πα)

∫
[u−δ,u+δ]∩[0,1]

dt

t1−α
⩽ sin(πα)

∫ 3δ

0

dt

t1−α
=

sin(πα)

α
· (3δ)α ≪ δα ≍ δ

(u+ δ)1−α
.

This completes the proof of the lemma in all cases. □

Let us now show Lemma 9.4. For simplicity of notation, let us fix i ∈ {1, 2, . . . , k} and u ∈
(0, 1), and let us set α := αi and

∆ :=
1

(1 + u log x)1−α(1 + (1− u) log x)α
.

Thus, our goal is to show that

(11.3) P
[∣∣Zi − u

∣∣ ⩽ 2Θx

log x

]
≪ ∆.

Recall that
Θx =

∑
j⩾1

r(Vj log x),

and that there exists an absolute constant c ⩾ 1 such that r(y) ⩽ cmin{y, y−2} for all y > 0 (see
(2.4)). Since there are at most 10 indices j such that Vj ⩾ 0.1, we find that

Θx ⩽ Θ′
x + 10c, where Θ′

x :=
∑

j⩾1: Vj<0.1

r(Vj log x).

Now, using Lemma 11.1 and relation (11.1), we have that

P
[∣∣Zi − u

∣∣ ⩽ 200c

log x

]
≪ ∆.

On the other hand, if 200c
log x

< |Zi−u| ⩽ 2Θx

log x
⩽ 20c+2Θ′

x

log x
, then we must have Θ′

x > 90c. In particular,

there exists m ∈ Z such that 2m > 40c and Θ′
x ∈ (2m, 2m+1], whence |Zi − u| ⩽ 20c+2m+2

log x
. We

thus conclude that

P
[∣∣Zi − u

∣∣ ⩽ 20c+ 2Θ′
x

log x

]
⩽

∑
m∈Z: 2m>40c

P
[∣∣Zi − ui

∣∣ ⩽ 20c+ 2m+2

log x
, Θx > 2m

]
+O(∆).

Therefore Lemma 9.4 will follow if we can prove that

(11.4) P
[∣∣Zi − u

∣∣ ⩽ 20c+ 4κ

log x
, Θ′

x > κ

]
≪ ∆

κ
for all κ ⩾ 40c.
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We shall make a further reduction. If we set

G(λ) := #
{
j ⩾ 1 : Vj log x ∈ (λ, 2λ]

}
,

then we have

Θ′
x =

∑
j⩾1: Vj<0.1

r(Vj log x) ⩽ c
∑

j⩾1: Vj<0.1

min
{
Vi log x, (Vi log x)

−2
}

⩽ c
∑
m⩾0

2m⩽0.1 log x

G(2m)

4m
+ c

∑
m<0

2m+1G(2m)

⩽ 5c max
m⩾0

2m⩽0.1 log x

(
G(2m)

23m/2

)
+ 5cmax

m<0

(
2m/2G(2m)

)
,

since
∑

m⩾0 2
−m/2 < 5 and

∑
m<0 2

1+m/2 < 5. We thus find that

P
[∣∣Zi − u

∣∣ ⩽ 20c+ 4κ

log x
, Θ′

x > κ

]
⩽

∑
m⩾0

2m⩽0.1 log x

P
[∣∣Zi − u

∣∣ ⩽ 20c+ 4κ

log x
, G(2m) >

23m/2κ

10c

]

+
∑
m<0

P
[∣∣Zi − u

∣∣ ⩽ 20c+ 4κ

log x
, G(2m) >

κ2−m/2

10c

]
.

Note that in both sums, we have G(2m) ⩾ 4, since κ ⩾ 40c. Hence, Markov’s inequality implies

P
[∣∣Zi − u

∣∣ ⩽ 20c+ 4κ

log x
, Θ′

x > κ

]
⩽

∑
m⩾0

2m⩽0.1 log x

100c2

κ223m
E
[
1|Zi−u|⩽ 20c+4κ

log x
· 1G(2m)⩾4 ·G(2m)2

]

+
∑
m<0

100c22m

κ2
E
[
1|Zi−u|⩽ 20c+4κ

log x
· 1G(2m)⩾4 ·G(2m)2

]
.

This reduces (11.4), and thus Lemma 9.4, to proving the following estimate:

Lemma 11.2. Uniformly for µ ⩾ 1 and λ ∈ (0, 0.1 log x], we have

E
[
1|Zi−u|⩽ µ

log x
· 1G(λ)⩾4 ·G(λ)2

]
≪ (λ+ µ) ·∆.

Proof. Let us call E the quantity we seek to bound from above. Consider two independent Poisson
processes (Aj)j⩾1 with intensity α e−x

x
dx and (Bj)j⩾1 with intensity (1 − α) e

−x

x
dx. Hence, the

union of the two processes is a new Poisson process of intensity e−x

x
dx. The sum SA :=

∑
j⩾1Aj

has distribution Gamma(α, 1) and the sum SB :=
∑

j⩾1Bj has distribution Gamma(1 − α, 1). If
we also set S := SA + SB, then, as we saw in the proof of Proposition 8.1, we have

E = E
[
1|SA/S−u|⩽ µ

log x
· 1GA(λ)+GB(λ)⩾4 ·

(
GA(λ) +GB(λ)

)2]
,

where GA(λ) =
∑

j⩾1 1Aj log x∈(λS,2λS] and GB(λ) =
∑

j⩾1 1Bj log x∈(λS,2λS]. We know GA(λ) +

GB(λ) ⩾ 4. Hence, if GA(λ) ⩾ GB(λ), then we must have GA(λ) ⩾ 2 and GA(λ) ⩽ GA(λ)
2/2,
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whence GA(λ) ⩽ 2
∑∑

k>j⩾1 1Ak log x,Aj log x∈(λS,2λS]. So, we find that(
GA(λ) +GB(λ)

)2
⩽ 4GA(λ)

2 = 4GA(λ) + 8
∑∑
k>j⩾1

1Ak log x,Aj log x∈(λS,2λS]

⩽ 16
∑∑
k>j⩾1

1Ak log x,Aj log x∈(λS,2λS].

The analogous inequality also holds when GB(λ) ⩾ GA(λ), with the roles of A and B reversed.
We conclude that

E ⩽ 16(EA + EB),

where

EA := E
[
1|SA/S−u|⩽ µ

log x

∑∑
k>j⩾1

1Ak log x,Aj log x∈(λS,2λS]

]
and EB is defined analogously. Using Mecke’s equation (cf. Proposition B.6), we find that

EA = α2

∫∫
2a1>a2>a1>0

E
[
1|a1+a2+SA

a1+a2+S
−u|⩽ µ

log x

2∏
j=1

1aj log x∈(λ(a1+a2+S),2λ(a1+a2+S)]

]
e−a1−a2

a1a2
da1 da2

=
α2

Γ(α)Γ(1− α)

∫∫∫∫
2a1>a2>a1>0, s1,s2>0

| a1+a2+s1
a1+a2+s1+s2

−u|⩽ µ
log x

aj log x∈(λ(a1+a2+s1+s2),2λ(a1+a2+s1+s2)] (j=1,2)

e−a1−a2−s1−s2

a1a2s
1−α
1 sα2

da1 da2 ds1 ds2,

where we used that the aj’s lie in the same dyadic interval to deduce that a2 < 2a1. We make the
change of variables t = s1/(s1+s2) and s = s1+s2. Since λ/ log x ⩽ 0.1 and a1 < a2 < 2a1, the
conditions aj log x ∈ (λ(a1+a2+ s), 2λ(a1+a2+ s)] for j = 1, 2 imply that aj log x ∈ (λs, 5λs].
Knowing also that |a1+a2+s1

a1+a2+s
− u| ⩽ µ

log x
, we find |t − u| = | s1

s1+s2
− u| ⩽ 10λ+µ

log x
. Finally, we use

Euler’s reflection formula to write Γ(α)Γ(1− α) = π/ sin(πα). We conclude that

EA ⩽
sin(πα)

π

∫∫∫∫
a2>a1>0, s>0, t∈[0,1]
|t−u|⩽(10λ+µ)/ log x

aj log x∈(λs,5λs] (j=1,2)

e−a1−a2−s

a1a2t1−α(1− t)α
da1 da2 ds dt.

For every fixed value of s, the integral over a1 and a2 is ⩽ (log 5)2, since
∫ 5w

w
e−a

a
da ⩽ log 5 for

any w > 0. We also have
∫∞
0
e−s ds = 1. We thus conclude that

EA ⩽
(log 5)2 sin(πα)

π

∫
t∈[0,1]

|t−u|⩽(10λ+µ)/ log x

dt

t1−α(1− t)α
.

Using Lemma 11.1 shows that EA ≪ (λ + µ)∆. The same estimate holds for EB too, thus
completing the proof of the lemma. □
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PART III. APPENDICES

Because this paper lies in the intersection of number theory and probability theory, readers
coming from one of these fields might not be familiar with standard results of the other one. For
this reason, we gather here some key results from both fields. We shall also need a standard fact
from topology. We present these results in the following three sections.

APPENDIX A. TOOLS FROM NUMBER THEORY

Let θ(x) :=
∑

p⩽x log p and let ψ(x) :=
∑

n⩽x Λ(n) where

Λ(n) =

{
log p if n = pk for some prime power pk,
0 otherwise.

Understanding these functions gives information about the distribution of primes. In 1896, Charles
de la Vallée Poussin and Jacques Hadamard proved the Prime Number Theorem, which gives an
approximation for ψ(x). The formulation we shall use in this paper is the following weaker version
of their result:

Proposition A.1 (The Prime Number Theorem). For x ⩾ 2, we have

θ(x) = x+O

(
x

(log x)3

)
and

ψ(x) = x+O

(
x

(log x)3

)
.

For a proof, see [12, Chapter 8].

Proposition A.2 (Strong Mertens’ estimate). For x ⩾ 2, we have∑
pk⩽x

1

kpk
= log2 x+ γ +O

(
1

(log x)3

)
.

Proof. By partial summation and the Prime Number Theorem (Proposition A.1), we directly have∑
pk⩽x

1

kpk
=

∫ x

2−

dψ(t)

t log t
= log2 x+ c+O

(
1

(log x)3

)
for some real constant c. Note that∑

pk⩽x

1

kpk
+ log

∏
p⩽x

(
1− 1

p

)
= −

∑
pk>x
p⩽x

1

kpk
.

Since the right-hand side above tends to 0, and Mertens’ estimate says that∏
p⩽x

(
1− 1

p

)
∼ e−γ

log x

(see [12, Theorem 3.4(c)] for a proof), then we have c = γ. □

In the proof of Theorem 2, we need the following estimate:
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Proposition A.3. Uniformly for α ∈ [0, 1] and x, y ⩾ 2, we have∑
n⩽x

αω(n) ≪ x(log x)α−1 and
∑

x/y<n⩽xy

αω(n)

n
≪ (log y)(log(xy))α−1.

Proof. The first bound follows readily with Theorem 14.2 in [12]. Let us now prove the second
one.

When y ⩾
√
x, we have∑
x/y<n⩽xy

αω(n)

n
⩽

∑
p|n ⇒p⩽y3

αω(n)

n
=
∏
p⩽y3

(
1 +

α

p− 1

)
≪ (log y)α

by the inequality 1 + t ⩽ et and Mertens’ theorem (Proposition A.2). This completes the proof in
this case. Finally, assume that y ⩽

√
x. We then have∑

x/y<n⩽xy

αω(n)

n
⩽

∑
m∈Z

em∈[x/y,exy]

∑
n∈(em−1,em]

αω(n)

n
⩽

∑
m∈Z

em∈[x/y,exy]

e1−m
∑
n⩽em

αω(n).

For every m as above, the innermost sum is ≪ emmα−1 ≍ em(log(xy))α−1 by the first part of the
lemma and our assumption that y ⩽

√
x. Since there are ⩽ 1 + log y ≪ log y choices for m, the

needed estimate follows in this last case too. □

APPENDIX B. TOOLS FROM PROBABILITY THEORY

B.1. The Total Variation Distance. The total variation distance is a metric between two proba-
bility distributions. Let µ and ν be two probability measures on C. Then

(B.1) dTV(µ, ν) := sup |µ(A)− ν(A)| ,
where the supremum is taken over all Lebesgue-measurable subsets of C. For any real number a,
let

a+ := max{a, 0} and a− := max{−a, 0}.
When µ and ν are supported on Z⩾1, here are some alternative definitions of the total variation
distance:

Lemma B.1. Let µ and ν be two probability measure supported on N. Then

dTV(µ, ν) =
∑
i⩾1

(µ(i)− ν(i))+ =
∑
i⩾1

(µ(i)− ν(i))−

Proof. Let E := {i ∈ N : µ(i) > ν(i)} and let ξ := µ − ν. Note that for any B ⊆ N, we have
ξ(B ∩ E) ⩾ 0 ⩾ ξ(B ∩ Ec). Therefore, for any A ⊆ N, we have

ξ(A) = ξ(E) + ξ(A ∩ Ec)− ξ(Ac ∩ E) ⩽ ξ(E).

and
ξ(A) = ξ(Ec) + ξ(A ∩ E)− ξ(Ac ∩ Ec) ⩾ ξ(Ec)

Therefore, dTV(µ, ν) = supA⊆N |ξ(A)| = max{ξ(E),−ξ(Ec)}. Note that ξ(E) =
∑

i⩾1(µ(i) −
ν(i))+, that −ξ(Ec) =

∑
i⩾1(µ(i)− ν(i))− and that∑

i⩾1

(µ(i)− ν(i))+ =
∑
i⩾1

[
(µ(i)− ν(i)) + (µ(i)− ν(i))−

]
=
∑
i⩾1

(µ(i)− ν(i))−.

The lemma follows. □
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The total variation distance will be especially useful in this paper because of the following
proposition. In [2, Section 3.8], Arratia proved that for any two random variables X and Y return-
ing positive integers, we can always construct X ′ and Y ′ within the same probability space such
that:

• X ′ and Y ′ have the same distribution as X and Y , respectively;
• Y ′ is a function of X ′, U, V where (U, V ) is a point uniformly chosen in the unit square

independent of X ′;
• P[X ′ ̸= Y ′] = dTV(X, Y ).

We repeat his proof here. Let µ and ν be two probability measures supported on N. Let zj :=∑
i⩽j

(µ(i)−ν(i))−

dTV(µ,ν)
(with z0 := 0). We consider the function fµ,ν : N× (0, 1)2 → N defined as

fµ,ν(m; a, b) :=

{
m if a · µ(m) ⩽ ν(m),∑

i⩾1 i · 1zi−1<b⩽zi otherwise.

This is the function used in Section 2 for the extraction ofNx. Note that if a, b ∈ (0, 1) andm ∈ N,
then we have the equivalency

(B.2) fµ,ν(m; a, b) ̸= m ⇐⇒ a · µ(m) > ν(m).

Indeed, the direction “⇒” is obvious. To see the converse direction, note that if a · µ(m) > ν(m),
then (µ(m)− ν(m))− = 0, and hence the interval (zm−1, zm] is empty.

Lemma B.2 (Arratia, [2]). Let µ and ν be two probability measures supported on N, let X be a
random variable with law µ, and let U and U ′ be two uniform random variables in (0, 1) such that
X,U, U ′ are independent. Let Y := fµ,ν(X;U,U ′) with fµ,ν defined as above. Then P[X ̸= Y ] =
dTV(µ, ν) and P[Y ∈ A] = ν(A).

Proof. Using (B.2), we find that

(B.3) {X ̸= Y } = {U · µ(X) > ν(X)}.

Furthermore, we directly compute that

(B.4) P
[
U · µ(m) > ν(m), X = m

]
= (µ(m)− ν(m))+.

Therefore,

(B.5) P[X ̸= Y ] = P[U · µ(X) > ν(X)] =
∑
m⩾1

(µ(m)− ν(m))+ = dTV(µ, ν)

with Lemma B.1.
Next, we prove that P[Y = n] = ν(n) for any n ∈ N. Note that Y = n if, and only if, one of two

disjoint events happen: either we have U ·µ(n) ⩽ ν(n) with X = n, or we have U ·µ(X) > ν(X)
with zn−1 < U ′ ⩽ zn. Therefore, with (B.4) and (B.5), we have

P[Y = n] = P
[
U · µ(n) ⩽ ν(n), X = n

]
+ P

[
U · µ(X) > ν(X)

]
· P
[
zn−1 < U ′ ⩽ zn

]
=
(
µ(n)−

(
µ(n)− ν(n)

)+)
+ dTV(µ, ν) ·

(µ(n)− ν(n))−

dTV(µ, ν)
= ν(n),

where we used (B.3) and (B.5) to show that P
[
U · µ(X) > ν(X)

]
= dTV(µ, ν). This concludes

the proof of the lemma. □
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B.2. Poisson Processes. The following definition and propositions are borrowed from Kingman’s
book on Poisson processes [10]. Let (S,S) be a measurable space with S being a subset of Rd for
some d ⩾ 1. A Poisson process on a state space S with mean measure µ is a random countable
subset Π ⊆ S such that:

• for any disjoint measurable subsets A1, . . . , An of S, the random variables #(Π∩A1), . . . ,
#(Π ∩ An) are independent;

• the random variable #(Π ∩ A) is a Poisson random variable of parameter µ(A) for any
A ⊂ S measurable.

We can see Π as an element of the measurable space (ΩS,FS) where ΩS is the set of countable
subsets of S and FS is the smallest σ-algebra for which the map Π 7→ #{Π ∩ B} is measurable
for all B ∈ S. If µ has no atoms, meaning no singleton with positive probability, and is σ-finite,
meaning that S is a countable union of measurable sets with finite measure, then a Poisson process
with mean measure µ always exists (see [10], the Existence Theorem in section 2.5 for a proof). If
µ is absolutely continuous with respect to the Lebesgue measure, then the function λ : S → R⩾0

such that µ(A) =
∫
A
λ(x) dx for all measurable subsets A ⊆ S is called the intensity of the

Poisson process. Here are a few important propositions about Poisson processes that we will use
in the paper and proved in [10]:

Proposition B.3 (Mapping Theorem, [10] section 2.3). If Π is a Poisson process with mean mea-
sure µ on S, and f : S → T is a measurable function such that µ∗(B) := µ(f−1(B)) has no
atoms, then f(Π) is a Poisson process on T with measure µ∗.

Proposition B.4 (Colouring Theorem, [10] section 5.1). If Π is a Poisson process with mean
measure µ on S, and the points are randomly coloured with k colours such that the probability of
a point receiving the colour i is pi, and such that the colour of a point is independent of different
points and of the position of the point. Let Πi be the subset of Π with colour i. Then all the Πi are
independent Poisson processes with mean measures µi = piµ.

Proposition B.5 (Campbell’s Theorem, [10] section 3.2). Let Π be any Poisson process on S with
mean measure µ. Let f : S → R be a measurable function. Then

Σ =
∑
X∈Π

f(X)

is absolutely convergent almost surely if, and only if,∫
S

min{f, 1} dµ <∞.

If this condition holds, then

E[esΣ] = exp

(∫
S

(esf − 1) dµ

)
for any complex s for which the integral converges. Moreover,

E[Σ] =
∫
S

f dµ

if the integral converges. In the case where it converges, we also have

Var[Σ] =

∫
S

f 2 dµ.



ON ARRATIA’S COUPLING AND THE DIRICHLET LAW FOR THE FACTORS OF A RANDOM INTEGER 35

Many probabilities or expectations that involve Poisson processes in this paper can be reformu-
lated as

E
∑
X∈Π

f(Π \ {X}, X).

In these cases, there is a generalization of the formula for E[Σ] in Campbell’s Theorem, called the
Mecke equation, allowing us to compute these objects:

Proposition B.6 (Mecke equation, [13] Theorem 4.5). Let Π be a Poisson process on S with a
σ-finite mean measure µ, and let f : ΩS × Sk → [0,∞) be measurable. Then we have

E
∑

X1,...,Xk
all distinct

f(Π \ {X1, . . . , Xk};X1, . . . , Xk) =

∫
S

· · ·
∫
S

E[f(Π;x1, . . . , xk)] dµ(x1) · · · dµ(xk).

APPENDIX C. TOOLS FROM TOPOLOGY

Recall the following basic definitions.

Definition C.1. Let (X,O) be a topological space, and let A ⊆ X .
(a) We define the interior of A to equal int(A) := {x ∈ X : ∃O ∈ O such that x ∈ O ⊆ A}.
(b) We define the closure of A to equal A := X \ int(X \ A).
(c) We define the boundary of A to equal ∂A := A \ int(A).
(d) We say that A is disconnected if there exist two disjoint open sets O1 and O2 such that

A ⊆ O1 ⊔O2 with A ∩O1 and A ∩O2 being both non-empty. We say that A is connected
if it is not disconnected.

Lemma C.2. Let X be a topological space and let A,B ⊆ X such that B ∩ ∂A = ∅ and B is
connected. Then either B ⊆ A or B ⊆ X \ A.

Proof. From the definition of closure and boundary above, the sets ∂A, int(A) and int(X \A) form
a partition of X . By our assumption that B∩∂A = ∅, we must thus have B ⊆ int(A)⊔ int(X \A).
By our assumption that B is connected, we must then have that either B ⊆ int(A) ⊆ A or that
B ⊆ int(X \ A) ⊆ X \ A. This completes the proof. □
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