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Abstract. We study the heat trace asymptotics associated with the Steklov eigenvalue
problem on a Riemannian manifold with boundary. In particular, we describe the struc-
ture of the Steklov heat invariants and compute the first few of them explicitly in terms
of the scalar and mean curvatures. This is done by applying the Seeley calculus to the
Dirichlet-to-Neumann operator, whose spectrum coincides with the Steklov eigenvalues. As
an application, it is proved that a three–dimensional ball is uniquely defined by its Steklov
spectrum among all Euclidean domains with smooth connected boundary.

1. Introduction and main results

1.1. Steklov eigenvalue problem. Let Ω be a smooth compact Riemannian manifold of
dimension n with smooth boundary M = ∂Ω of dimension n − 1. Consider the Steklov
eigenvalue problem on Ω: {

∆u = 0 in Ω,
∂u
∂ν

= σ u on M.
(1.1.1)

The spectrum of the Steklov problem is discrete and is given by a sequence of eigenvalues

0 = σ0 ≤ σ1 ≤ σ2 ≤ · · · ↗ ∞.
The restrictions of the corresponding eigenfunctions to the boundary form an orthogonal
basis in L2(M).

Geometric properties of Steklov eigenvalues on Riemannian manifolds have been actively
investigated in the recent years, see [CEG, FS1, FS2, GP2, Ja, KKP]. In particular, various
estimates on eigenvalues and their multiplicities have been obtained.

1.2. Steklov heat invariants. The present paper focuses on geometric invariants associ-
ated with the Steklov problem. Steklov eigenvalues σn may be also viewed as the eigenvalues
of the Dirichlet-to-Neumann operator D : C∞(M) → C∞(M), given by Df = ∂ν(Hf),
where f ∈ C∞(M), Hf ∈ C∞(Ω) is its harmonic extension to Ω and ∂ν denotes the outward
normal derivative. It is well known that D is a pseudodifferential operator of order one
(see [Tay, pp. 37-38]). As follows from Weyl’s law for the distribution of eigenvalues, the
dimension of Ω as well as the (n − 1)–dimensional volume of the boundary M = ∂Ω can
be determined from the Steklov spectrum. Indeed, by the results of [Hö, Chapter 29], the
eigenvalue counting function of the Dirichlet-to-Neumann operator satisfies the asymptotics

#(σk ≤ σ) = Cn Vol(M)σn−1 +O(σn−2), (1.2.1)

where Cn is a constant depending on the dimension only (the explicit value of Cn can be
easily deduced from (5.1.8) and (1.5.1)). In order to obtain further geometric information,
we consider the heat trace asymptotics. While such an approach is quite standard in spectral
geometry (see [Gi] and references therein), to our knowledge, it has not previously been
systematically applied in the context of the Steklov problem.
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As follows from the results of [DG, Ag, GrSe], the trace of the associated heat kernel,
e−tD, admits an asymptotic expansion

∞∑
i=0

e−tσi = Tr e−tD =

∫
M

e−tD(x, x) dx ∼
∞∑
k=0

akt
−n+1+k +

∞∑
l=1

blt
l log t. (1.2.2)

The coefficients ak and bl are called the Steklov heat invariants, and it follows from (1.2.2)
that they are determined by the Steklov spectrum. The invariants a0, . . . , an−1, as well as
bl for all l, are local, in the sense that they are integrals over M of corresponding functions
ak(x) and bl(x) which may be computed directly from the symbol of D. However, ak is not
local for k ≥ n [Gi, GiGr]. One of the main goals of this paper is to investigate the local heat
invariants a0(x), . . ., an−1(x). In particular, we discuss their general form and also compute
a0, a1, and a2 explicitly.

1.3. Structure of the heat invariants. We will prove that the Steklov heat invariants
ak(x) must consist of explicit polynomials in the metric, its inverse, and their derivatives
in both tangential directions along the boundary and directions normal to the boundary at
x. For any term in such a polynomial, we let the (total) weight be the total number of
derivatives in that term and let the normal weight be the total number of normal derivatives
in that term; for example, a term consisting of a tangential derivative of one metric element
times a normal derivative of another metric element has weight 2 and normal weight 1. Note
that by a Taylor series argument (see Section 2.1), all derivatives of the inverse metric at
x may be expressed as polynomials in the derivatives of the metric itself at x, with the
same weight and the same normal weight as the original term. Moreover, we say that a
polynomial in the metric, its inverse, and their derivatives has total weight k if each term
has total weight k. We also say that such a polynomial has normal parity 1 if each term has
odd normal weight, and normal parity 0 if each term has even normal weight. The following
result is proved in section 3.1:

Theorem 1.3.1. For each k with 0 ≤ k ≤ n− 1, the pointwise Steklov heat invariant ak(x)
is a universal polynomial in the metric and its derivatives, of total weight k and normal
parity equal to k mod 2.

1.4. Explicit expressions. We now give expressions for the first three Steklov heat invari-
ants. Let H1 be the mean curvature, and let H2 be the second order mean curvature, given
in terms of the principal curvatures λ1, . . ., λn by

H2 =
1

(n− 1)(n− 2)

∑
α 6=β

λαλβ.

Further, let RΩ be the scalar curvature of the domain Ω and RM be the scalar curvature of
the boundary M . Finally, let

Vn = Vol(Sn−2) =
2π

n−1
2

Γ(n−1
2

)
.

Theorem 1.4.1. The first three pointwise heat invariants ak(x) of the Steklov spectrum of
an n–dimensional Riemannian manifold Ω with boundary M = ∂Ω are given by the formulas

a0(x) = (2π)−n+1VnΓ(n− 1), n ≥ 1; (1.4.2)
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a1(x) =
Vn(n− 2)Γ(n− 1)

2(2π)n−1
H1, n ≥ 2; (1.4.3)

a2(x) =
VnΓ(n− 2)

8(2π)n−1

[
(n− 1)(n− 2)(n2 − n− 4)

n+ 1
H2

1 −
n(n− 3)(n− 2)

n+ 1
H2

+
n− 2

n− 1
RΩ −

n− 4

3(n− 1)
RM

]
, n ≥ 3. (1.4.4)

Remark 1.4.5. Edward and Wu have shown in [EW] that a1 = 0 for any simply connected
domain Ω in R2; this agrees with our result, which indicates that in fact the pointwise heat
invariant a1(x) = 0 whenever n = 2.

Theorem 1.4.1 is proved in sections 4.1 and 4.2. The expression for a2(x) simplifies sig-
nificantly if Ω has constant sectional curvature K. In this case, RΩ = n(n − 1)K and
RM = (n− 1)(n− 2)(K +H2) (see [ALM]). We therefore have

Corollary 1.4.6. When Ω has constant sectional curvature K,

a2(x) =
VnΓ(n− 2)

8(2π)n−1

[
(n− 1)(n− 2)(n2 − n− 4)

n+ 1
H2

1 −
4(n2 − 3n− 1)

3(n2 − 1)
RM

+
2n(n− 1)(n− 2)

n+ 1
K

]
. (1.4.7)

In particular, when n = 3 and Ω ⊂ R3,

a2(x) =
1

16π

(
H2

1 +
RM

6

)
. (1.4.8)

Apart from Euclidean domains (K = 0), examples covered by the corollary include do-
mains in spheres (K > 0) and in hyperbolic spaces (K < 0).

1.5. Applications to spectral rigidity. The coefficients ak, k = 0, . . . , n− 1, in the heat
trace expansion (1.2.2) are given by

ak =

∫
M

ak(x).

As was mentioned in section 1.2, it follows from Weyl’s law that the volume of M is deter-
mined by the Steklov spectrum. Formula (1.4.2) provides an alternative proof of this result,
as

a0 =
Γ(n− 1)

2n−2π
n−1
2 Γ(n−1

2
)

Vol(M). (1.5.1)

For n = 2, the first heat invariant a1 = 0, but when n ≥ 3, a1 is a nonzero multiple of the
total mean curvature. As a consequence, we obtain

Proposition 1.5.2. When n ≥ 3, the total mean curvature
∫
M
H1 of the boundary M = ∂Ω

is determined by the Steklov spectrum.

In sections 5.1 and 5.2, we prove the following spectral rigidity result:

Theorem 1.5.3. Let Ω ⊂ R3 be a domain with connected and smooth boundary M . Suppose
its Steklov spectrum is equal to that of Bρ, a ball of radius ρ. Then Ω = Bρ.
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The proof of the theorem is split into two parts. First, we use eigenvalue and multiplicity
asymptotics to show that M is simply connected; this step is based on an argument of
Zelditch [Z]. We then use the heat invariants computed above to show that M is a sphere.

Remark 1.5.4. An analogue of Theorem 1.5.3 in two dimensions is well–known. Indeed, it was
shown by Weinstock ([We], see also [GP1]) that among simply connected planar domains, of
a given perimeter, the first Steklov eigenvalue attains its unique maximum on a disk. Since
perimeter is spectrally determined, this implies that a disk is uniquely determined by its
Steklov spectrum among all simply connected planar domains. An alternative proof of this
result could be found in [Ed].

It is unknown whether a ball maximizes the first Steklov eigenvalue in higher dimensions
among all domains of fixed volume of the boundary; therefore, the above argument can not
be used in higher dimensions. There exist generalizations of Weinstock’s inequality due to
[Br] and [BS], but they involve Vol(Ω), and it is not known whether it is an invariant of the
Steklov spectrum.

We conclude this section with the following conjecture, motivated by Theorem 1.5.3 and
Remark 1.5.4.

Conjecture 1.5.5. A ball in Rn is uniquely determined by its Steklov spectrum among all
n-dimensional Euclidean domains.

Note that the analogue of this conjecture holds for Dirichlet and Neumann eigenvalue
problems. Indeed, the volumes of both the domain and its boundary can be determined
from either the Dirichlet or the Neumann spectrum (see [Gi]). At the same time, the ball
is a unique Euclidean domain for which the classical isoperimetric inequality turns into an
equality. Alternatively, one could use the Faber–Krahn (respectively, Szegő–Weinberger)
inequality, stating that the ball is a unique minimizer (respectively, maximizer) of the first
Dirichlet (respectively, first nonzero Neumann) eigenvalue among all Euclidean domains of
given volume (see [He]).

There are other situations in which similar rigidity theorems can be proved using heat
invariants. For example, the round sphere is known to be determined by the spectrum of
the Laplace-Beltrami operator in dimensions n ≤ 6 [Tan]. Hassell and Zworski also use heat
invariants to prove resonant rigidity for S2 in the setting of obstacle scattering in R3 [HZ].

1.6. Plan of the paper. In sections 2.1 and 2.2 we compute the symbol of the Dirichlet-to-
Neumann operator in boundary normal coordinates, following [LU]. Combining these results
with the Seeley calculus, we obtain local expressions for the first n − 1 heat invariants in
section 2.3. This allows us to prove Theorem 1.3.1 in section 3.1. Some applications and
extensions of this result are presented in section 3.2. In particular, the heat invariants of
product–type manifolds are described in Corollary 3.2.2. Sections 4.1 and 4.2 are devoted
to the proof of Theorem 1.4.1. In section 4.3 we verify these results by a direct calculation
of the first few heat invariants of Euclidean balls in dimensions three and four. Finding an
explicit expression for the heat invariant a2(x) is the most technically involved part of the
paper. The proofs of auxiliary lemmas used in this calculation are presented in sections 6.1
and 6.2. Some integrals appearing in the computations are given in section 6.3. Finally, in
sections 5.1 and 5.2, we prove Theorem 1.5.3.

Acknowledgments. The authors would like to thank P. Hislop and P. Perry for useful
discussions, as well as Jean Lagacé and the anonymous referee for helpful remarks. Research
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2. Seeley calculus for the Dirichlet-to-Neumann operator

2.1. Specialized coordinates. To compute the first few terms in the symbol of D, we
follow the work of Lee and Uhlmann [LU]. Since the heat invariants ak(x) are local, we are
free to choose coordinates which are well-adapted to our analysis near a fixed point P and
then compute ak(P ). We use Riemannian normal coordinates centered at P , with any choice
of initial orthonormal frame, to write the metric on M in coordinates as

n−1∑
α,β=1

gαβ(x)dxαdxβ.

Here P corresponds to the origin and gαβ(x) = δαβ + O(x2), where δαβ is the Kronecker
delta. Let the inverse metric be gαβ. Notice that all first derivatives of the metric and its
inverse vanish at P .

Following [LU], we now extend these coordinates to ’boundary normal coordinates’ in
a neighborhood of M ⊂ Ω. For each x ∈ M near P , let xn be the parameter along the
geodesic starting at x with initial direction given by the inward-pointing boundary normal.
Then the coordinates (xα|n−1

α=1, x
n), which we write x′ = (x, xn) (note that the notation differs

slightly from that in [LU]), are local coordinates on Ω in a neighborhood of P . Moreover,
the definition of xn does not depend on the initial orthonormal frame. In these coordinates,
the metric is precisely

g =
n−1∑
α,β=1

gαβ(x′)dxαdxβ + (dxn)2.

As in [LU], we use the Greek indices for coordinates along M and Roman indices for co-
ordinates in Ω. Let the dual coordinates to xα be ξα, and let the squared volume element
δ(x′) = det(gij(x

′)) = det(gαβ(x′)).
Using these coordinates, we still have freedom to choose our initial orthonormal frame on

M ; in particular, we may choose a frame that diagonalizes the second fundamental form.
First fix any orthonormal frame X1, . . . , Xn−1, and let the local normal be Xn (which is
independent of the choice of frame). Then, letting Γkij be the Christoffel symbols for g, we
may write the linear operator associated to the second fundamental form as

S(Xβ) =
n−1∑
α=1

−Γαβn(P )Xα.

Using the formula for the Christoffel symbols (see, e.g. [dC]) together with the fact that
g(P ) = Id, we have, writing ∂kgij as gij,k:

−Γαβn = −1

2
(gnα,β + gαβ,n − gβn,α).

However, since gnα = 0 in a neighborhood of P in Ω, we have

−Γαβn = −1

2
gαβ,n.

So the (α, β) entry of the matrix of the second fundamental form at P is just −1
2
gαβ,n(P ).

This is a symmetric matrix and hence orthogonally diagonalizable, so we may choose an
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initial orthonormal frame which diagonalizes the second fundamental form at P . In these
coordinates, gαβ,n(P ) = 0 whenever α 6= β, and gαα,n(P ) = −2λα, where λα is the corre-
sponding principal curvature at P .

It will also prove helpful to have similar expressions for the inverse metric at P . Viewing
the metric g(x′) as a function of xn with values in symmetric 2-tensors on M , we Taylor
expand around xn = 0:

g(x′) = Id +A1x
n + A2(xn)2 +O((xn)3).

The inverse metric then must have the expansion

g−1(x′) = Id−A1x
n + (A2

1 − A2)(xn)2 +O((xn)3).

We conclude that gαβ,n = −gαβ,n, and in particular that gαβ,n(P ) = 2λαδαβ. Moreover, from
the second order terms, we observe that∑

α

gαα,nn(P ) =
∑
α

8λ2
α −

∑
α

gαα,nn(P ). (2.1.1)

2.2. The symbol of the Dirichlet-Neumann operator. Letting Dxj = −i∂xj , we write
the Laplacian on Ω as

D2
xn + iE(x′)Dxn +Q(x′, Dx),

where

E(x′) = −1

2

∑
α,β

gαβ(x′)∂xngαβ(x′),

Q(x′, Dx) =
∑
α,β

gαβ(x′)DxαDxβ − i
∑
α,β

(
1

2
gαβ(x′)∂xα log δ(x′) + ∂xαg

αβ(x′))Dxβ .

In particular, we can read off the full symbol of Q, which we write q2(x′, ξ) + q1(x′, ξ).
By observing that the Dirichlet-to-Neumann operator D satisfies a Riccati-type equation,

Lee and Uhlmann compute its full symbol [LU]. First, define the symbol of a pseudodiffer-

ential operator with parameter xn, which we call D̂, recursively by the following formulas,
corresponding to (1.7), (1.8), and (1.9) in [LU]:

r̂1 = −√q2, (2.2.1)

r̂0 =
1

2
√
q2

(∑
α

dξα
√
q2Dxα

√
q2 − q1 − ∂xn

√
q2 + E

√
q2

)
, (2.2.2)

and for m ≥ 0,

r̂−m−1 =
1

2
√
q2


∑

−m≤j≤1
−m≤k≤1
|K|=j+k+m

1

K!
∂Kξ (r̂j)D

K
x′ (r̂k) + ∂xn r̂−m − Er̂−m

 . (2.2.3)

Let D̃ be the restriction of D̂ to xn = 0. Then as in [LU] the Dirichlet-to-Neumann operator
D is equal, modulo smoothing operators, to −D̃; the sign is chosen so that D has positive
principal symbol. Write the symbol of D as r1 + r0 + r−1 + b−2, where b−2 has order −2;
expressions for r1, r0, and r−1 may be computed from (2.2.1), (2.2.2), and (2.2.3).
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2.3. Seeley calculus and the heat invariants. One may now apply the work of Seeley
[Se] to compute the local expressions for the first n− 1 heat invariants of D. We follow the
exposition of Gilkey and Grubb [GiGr]. Namely, let S(λ) be a parametrix for D − λ: that
is, a pseudodifferential operator of order −1 with parameter λ for which (D − λ)S(λ) and
S(λ)(D − λ) are both pseudodifferential operators of order −∞. Such a pseudodifferential
operator must have symbol s−1(x, ξ, λ) + s−2(x, ξ, λ) + . . . given by:

s−1(x, ξ, λ) =
1

r1 − λ
, (2.3.1)

s−1−m(x, ξ, λ) = − 1

r1 − λ


∑

−m≤j≤−1
−m≤k≤1

|K|=m+k+j≥0

(−i)|K|

K!
∂Kξ rk∂

K
x sj

 . (2.3.2)

For later reference, we write out the formulas for s−2 and s−3:

s−2 = −r0(r1 − λ)−2 − i(∂ξr1 · ∂xr1)(r1 − λ)−3; (2.3.3)

s−3 = −(r1 − λ)−1

r0s−2 + r−1s−1 − i(∂ξr1 · ∂xs−2 − ∂ξr0 · ∂xs−1)−
∑
|K|=2

1

K!
∂Kξ r1∂

K
x s−1

 .
(2.3.4)

The heat invariants may now be computed by using the functional calculus; see [Se] for
the details. Letting Γ be a contour around the positive real axis and letting T ∗xM be the
cotangent space at x, we have that for 0 ≤ k ≤ n− 1,

ak(x) =
i

(2π)n

∫
T ∗xM

∫
Γ

e−λs−1−k(x, ξ, λ) dλ dξ. (2.3.5)

3. General form of the heat invariants

3.1. Structure theorem. Here we prove Theorem 1.3.1. The proof proceeds by first ana-
lyzing the inductive formulas for the symbol of D and then passing to the inductive formulas
for the heat invariants. In these formulas, we repeatedly encounter expressions of the form

|ξ|−kp(x′, ξ), (3.1.1)

where k ∈ Z, |ξ|2 is shorthand for gαβξαξβ, and p(x′, ξ) is a polynomial in ξ with coeffi-
cients equal to polynomials in the metric, its inverse, and their derivatives. We say that an
expression of the form (3.1.1) has total weight w if each term in p(x′, ξ) has total weight
w. Additionally, we say that such an expression has total parity equal to 1 if each term in
p(x′, ξ) has odd total weight, or equal to 0 if each term has even total weight; note that the
total parity is not defined if there are terms of both odd and even total weight in p(x′, ξ).
Analogous definitions may be formulated for normal weight and normal parity. Finally, we
define the ξ-parity of (3.1.1) to be 1 if p(x′, ξ) is odd in ξ and 0 if p(x′, ξ) is even in ξ.

Note that each of these definitions is independent of a change of form in (3.1.1) - for
instance, increasing k by 2 and multiplying p(x′, ξ) by |ξ|2 changes nothing. Furthermore:
suppose p̂(x′, ξ) = |ξ|−kp(x′, ξ) has well-defined total weight, normal parity, and ξ-parity.
Then it is an easy calculation to see that each of ∂xn p̂, ∂xα p̂, and ∂ξα p̂ may also be written
in the form (3.1.1), and each has well-defined total weight, normal parity, and ξ-parity. All
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x′-derivatives increase the total weight by 1, the xn-derivative also flips the normal parity,
and any ξ-derivative flips the ξ-parity.

Lemma 3.1.2. For each m ≥ −1, r̂−m(x′) is a sum of terms of the form (3.1.1), each of
which has total weight m+ 1. Moreover, the total parity, normal parity, and ξ-parity of each
term are all well-defined, and their sum is equal to zero mod 2.

Note that since D = −D̂|xn=0, an identical statement obviously holds for rj(x, ξ).

Proof. The proof is by induction on m; the lemma may be verified by explicit computation
for r̂1 and r̂0. Now assume the inductive hypothesis holds for r̂−m, . . ., r̂1, and use the
equation (2.2.3) to compute r̂−m−1 term by term. Multiplication by E increases both the
total and normal weight by 1 while leaving the ξ-parity unchanged, and differentiation in xn

does the same. Therefore |2ξ|−1(−Er̂−m + ∂xn r̂−m) has the properties we claim. The only
remaining term in the expression for r̂−m−1 is

1

2|ξ|
∑

−m≤j≤1
−m≤k≤1
|K|=j+k+m

1

K!
∂Kξ (r̂j)D

K
x (r̂k). (3.1.3)

The total weight of each term is (−j + 1) + (−k + 1) +K = m+ 2, as required. Moreover,
by the inductive hypothesis, the sum of the total weights, normal parities, and ξ-parities of
each term in r̂j and r̂k is equal to zero mod 2 for all j and k. Therefore, the sum of the total
weights, normal parities, and ξ-parities of each term in (3.1.3) is K + K = 0 mod 2. This
completes the proof of the lemma. �

The next step is to pass to the parametrix S(λ). In this analysis, expressions of the form

(|ξ| − λ)−l|ξ|−kp(x, ξ) (3.1.4)

arise frequently; we define weights and parities of such expressions analogously to those for
expressions of the form (3.1.1). Even though these expressions are restricted to xn = 0, they
may involve normal derivatives of the metric, so normal weight and parity still make sense.
A similar lemma holds for the sj:

Lemma 3.1.5. For each m ≥ −1, s−m(x, ξ, λ) may be written as a sum of terms of the form
(3.1.1); each summand has total weight m − 1. Moreover, the total parity, normal parity,
and ξ-parity of each summand are all well-defined, and their sum is equal to zero mod 2.

Proof. The proof is extremely similar to the previous lemma, and again proceeds by induction
on m. It is easy to check s−1 explicitly. Now assume the inductive hypothesis. Using the
previous lemma and the inductive hypothesis, the total weight of each term in the sum
(2.3.2) for s−m−1 is (−k + 1) + (−j − 1) + K = m, as required. Moreover, the sum of the
total weights, normal parities, and ξ-parities of each term in rk and sj is equal to zero mod
2. As before, we conclude that the sum of the total weights, normal parities, and ξ-parities
of each term in (2.3.2) is K +K = 0 mod 2. This completes the proof. �

We now pass from the parametrix S(λ) to the heat invariants ak(x) themselves by using
formula (2.3.5): fixing x, integrate in λ and in ξ. Each individual term in s−1−k has the form
(3.1.4). The contour integral in (2.3.5) may be explicitly computed using Lemma 4.1.3; the
result for each term is e−|ξ| times an expression of the form (3.1.1) which has the same total
weight, normal parity and ξ-parity as the terms in s−1−k. Now perform the ξ integral; this
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integral will vanish identically for all terms with ξ-parity 1, and so each term which survives
is a polynomial in the metric, its inverse, and their derivatives at x, with total weight and
normal parity summing to zero mod 2. Since the total weight is k, each term in ak(x) has
normal parity equal to k mod 2. This completes the proof of Theorem 1.3.1.

3.2. Generalizations and applications. Recall that for the Laplacian on a closed Rie-
mannian manifold, the local heat invariants are polynomials in the curvature tensor and its
covariant derivatives [Gi]. We may re-write Theorem 1.3.1 in this form as well. Let RiemΩ

be the curvature tensor for Ω and let H be the second fundamental form of M ⊂ Ω; also let
∇Ω and ∇M be the covariant derivatives on Ω and M respectively. Then

Theorem 3.2.1. For 1 ≤ k ≤ n − 1, the local Steklov heat invariant ak(x) may be written
as a universal polynomial in the entries of the tensors ∇j

ΩRiemΩ, 0 ≤ j ≤ k− 2, and ∇j
MH,

0 ≤ j ≤ k − 1.

Proof. The statement is an immediate consequence of Theorem 1.1.3 in [Gi]. The restrictions
on j follow from the weights in Theorem 1.3.1. �

An interesting special case is when the embedding M ⊂ Ω is product type: suppose that
there exists a δ > 0 and a tubular neighborhood U of M in Ω such that U is isometric to
M × [−δ, δ]xn with the product metric. In this situation, the second fundamental form H is
identically zero, as are all derivatives of the metric and its inverse in the xn direction. We
claim

Corollary 3.2.2. If the embedding M ⊂ Ω is product type, the heat invariants ak(x) vanish
for any odd k between 1 and n− 1. On the other hand, for even k between 1 and n− 1, the
heat invariants are polynomials in the entries of the boundary curvature tensor RiemM and
its covariant derivatives ∇j

MRiemM , 0 ≤ j ≤ k − 2.

Proof. The vanishing of the odd heat invariants follows immediately from Theorem 1.3.1;
each term in the universal polynomial for an odd heat invariant contains an odd number
of normal derivatives of the metric, and hence contains at least one such normal derivative.
Since the embedding is product type, each such term must be identically zero, and therefore
the whole invariant is zero.

As for the even heat invariants, Theorem 3.2.1 indicates that they are universal poly-
nomials in RiemΩ and its Ω-covariant derivatives. Since all normal derivatives vanish, we
may rewrite all of the Ω-covariant derivatives of RiemΩ in terms of M -covariant derivatives
of RiemM . Finally, examining the weights in Theorem 1.3.1, the corollary follows immedi-
ately. �

Note that in the product-type case, it is known that the Dirichlet-to-Neumann operator
is a square root of the boundary Laplacian, in the sense that its square is equal, modulo
infinitely smoothing operators, to the boundary Laplacian [Le].

4. Computation of heat invariants

In this section, we compute and analyze the first few heat invariants, proving Theorem
1.4.1. Throughout, we fix a point P on M and use the P -centered coordinates from Section
2.1 to compute ak(P ). Recall from Section 2.1 that we may choose an initial orthonormal
frame on M which diagonalizes the second fundamental form at P ; we use this frame in all
calculations that follow.
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4.1. Computations of a0 and a1. We now evaluate the expressions (2.2.1), (2.2.2), (2.3.1),
and (2.3.3) at P using our local coordinates. These expressions, written out, are

r̂1 = −√q2 = −
√
gαβξαξβ;

r̂0 =
1

8q
3/2
2

(
∑
γ

−i∂ξγq2∂xγq2)− q1

2
√
q2

− 1

4q2

∂xnq2 +
E

2

=
−i

8q
3/2
2

∑
γ

(
∑
α,β

gαβ(δγαξβ + δγβξα))(
∑
α,β

gαβ,γξαξβ)− 1

4q2

∑
α,β

gαβ,nξαξβ

+
i

2q
1/2
2

∑
α,β

(
1

2
gαβ(x′)∂xα log δ(x′) + ∂xαg

αβ(x′))ξβ − 1

4

∑
α,β

gαβgαβ,n. (4.1.1)

Since we are using Riemannian normal coordinates at P , any first derivative in xα of the
metric or its inverse, for 1 ≤ α ≤ n− 1, vanishes at P . Using (4.1.1) and the fact that D is

−1 times the restriction of D̂ to xn = 0, we obtain that r1(P, ξ) = |ξ| and

r0(P, ξ) =
1

2|ξ|2
∑
α

λα(ξα)2 − 1

2

∑
α

λα. (4.1.2)

Note that the subprincipal symbol of D, given in (4.1.2), has previously been computed by
Taylor (Ch. 12, Proposition C1 in [Tay]). We may also simplify (2.3.1) and (2.3.3); note
in particular that any tangential first derivative of r1 vanishes at P . Also remember that
gαβ(P ) = δαβ, gαβ,n(P ) = −2λαδαβ, and gαβ,n(P ) = 2λαδαβ. The results are

s−1(P, ξ, λ) = (|ξ| − λ)−1;

s−2(P, ξ, λ) = −(|ξ| − λ)−2(
1

2|ξ|2
∑
α

λα(ξα)2 − 1

2

∑
α

λα).

Now plug these expressions into (2.3.5). The contour integrals may be computed explicitly:

Lemma 4.1.3. For any k ≥ 1 and any a ∈ R+,∫
C

e−λ

(a− λ)k
dλ = −2πi

e−a

(k − 1)!
.

Proof. The proof is a simple computation with calculus of residues. �

Using the contour integrals, then using the integrals in section 6.3 to evaluate the ξ
integrals, we have, where Vn = Vol(Sn−2),

a0(P ) = (2π)−n+1

∫
Rn−1

e−|ξ| dξ = (2π)−n+1VnΓ(n− 1); (4.1.4)

a1(P ) = (2π)−n+1
∑
α

λα
2

∫
Rn−1

e−|ξ|(1− (ξα)2

|ξ|2
) dξ =

Vn(n− 2)Γ(n− 1)

2(n− 1)(2π)n−1

∑
α

λα

=
Vn(n− 2)Γ(n− 1)

2(2π)n−1
H1. (4.1.5)

This completes the proof of the expressions for a0 and a1 in Theorem 1.4.1.
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4.2. Computation of a2. The computation of a2 is somewhat more involved; this is typical
of heat invariant calculations, which tend to increase dramatically in complexity as one goes
farther out in the expansion. As a starting point, we write out the expression for s−3 given
in (2.3.4):

s−3(P, ξ, λ) = (r0(P ))2(|ξ| − λ)−3 − (r−1(P ))(|ξ| − λ)−2 − i(∂ξr1 · ∂xr0)(|ξ| − λ)−3

+(∂ξr1 · ∂x(∂ξr1 · ∂xr1))(|ξ| − λ)−4 + (r1 − λ)−1(
∑
|K|=2

1

K!
(∂Kξ r1)(P )(∂Kx s−1)(P )).

Simplifying, using the fact that first derivatives in x of r1, and therefore also first derivatives
in x of s−1, vanish at P :

s−3(P, ξ, λ) = (r0(P ))2(|ξ| − λ)−3 − (r−1(P ))(|ξ| − λ)−2 − i(∂ξr1 · ∂xr0)(|ξ| − λ)−3

+(
∑
γ,ε

(∂ξεr1∂ξγr1∂xγ∂xεr1))(|ξ| − λ)−4 − (
∑
|K|=2

1

K!
(∂Kξ r1)(P )(∂Kx r1)(P ))(|ξ| − λ)−3.

As before, plug this expression into (2.3.5) and evaluate the contour integrals. We also switch
from rj to r̃j = −rj for later ease of computation. After all this, we obtain the following
expression for a2:

a2(P ) = (2π)−n+1

∫
Rn−1

b(P, ξ)e−|ξ| dξ, (4.2.1)

where

b(P, ξ) =
(r̃0(P, ξ))2

2
+ r̃−1(P, ξ)− i

2
(∂ξ r̃1 · ∂xr̃0)

− 1

6

∑
γ,ε

(∂ξε r̃1∂ξγ r̃1∂xγ∂xε r̃1)− 1

2
(
∑
|K|=2

1

K!
(∂Kξ r̃1)(P, ξ)(∂Kx r̃1)(P, ξ)). (4.2.2)

Our strategy is a direct approach: write out b(P, ξ) in terms of the metric and then
integrate to get a2(P ). In this calculation, b(P, ξ) splits naturally into two components
bn(P, ξ) and bt(P, ξ), which we call the normal and tangential components respectively. To
define bn and bt, first write out the expression for r̂−1 in terms of r̂1 and r̂0:

r̂−1 =
1

2|ξ|

(r̂0)2 − i
∑
γ

(∂ξγ r̂0∂xγ r̂1 + ∂ξγ r̂1∂xγ r̂0)−
∑
|K|=2

1

K!
(∂Kξ r̂1∂

K
x r̂1)

+∂xn r̂0 +
1

2

∑
α,β

gαβgαβ,nr̂0

)
. (4.2.3)

The normal component bn consists of the terms involving normal derivatives of the metric;
as we will see, these are the first term in (4.2.2) along with the restrictions to xn = 0 of the
first term and the last two terms in (4.2.3). The tangential component bt is the remainder.
The expressions for bn and bt may be written out and simplified; note in particular that
the term in r̂−1 involving a first derivative of the metric, ∂xγ r̂1, is zero at P . Writing out
the multi-index notation, and noting that the factor of K!−1 precisely compensates for the
double-counting, we have:

bn(P, ξ) = (
1

2
+

1

2|ξ|
)r̃2

0(P, ξ) +
1

2|ξ|
(∂xn r̂0)(P, ξ)− 1

2|ξ|
∑
α

λαr̃0(P, ξ); (4.2.4)
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bt(P, ξ) =

[
−i(1

2
+

1

2|ξ|
)
∑
γ

∂ξγ r̃1 · ∂xγ r̃0 −
1

6

∑
γ,ε

∂ξε r̃1 · ∂ξγ r̃1 · ∂xγ∂xε r̃1

−(
1

4
+

1

4|ξ|
)
∑
γ,ε

∂ξγ∂ξε r̃1 · ∂xγ∂xε r̃1

]
(P, ξ). (4.2.5)

Now we write bn and bt in terms of the metric. Recall that when integrating over the
tangent space, any term which is odd in ξα for any particular α will integrate to zero. We
therefore define an equivalence relation ∼= on functions of ξ by writing a(ξ) ∼= b(ξ) iff∫

Rn−1

e−|ξ|(a(ξ)− b(ξ)) dξ = 0.

Lemma 4.2.6. Let Rij be the Ricci tensor on M . Then:

bn(P, ξ) ∼=
1

8

∑
α,β

λαλβ(1 +
1

|ξ|
)(1− (ξα)2

|ξ|2
)(1− (ξβ)2

|ξ|2
) +

1

2|ξ|5
∑
α,β

λαλβ(ξα)2(ξβ)2

− 1

8|ξ|3
∑
α

gαα,nn(ξα)2 +
1

2|ξ|
∑
α

λ2
α −

1

8|ξ|
∑
α

gαα,nn −
1

4|ξ|
∑
α,β

λαλβ(1− (ξβ)2

|ξ|2
);

bt(P, ξ) ∼= (
1

12|ξ|3
+

1

12|ξ|2
)
∑
α

Rαα(ξα)2.

The proof is a direct calculation; we plug in the formulas for the r̃i and simplify. The
analysis of bt uses the Taylor expansion of a Riemannian metric in normal coordinates as
well as symmetries of the Riemann curvature tensor. The details of the proof are deferred
to section 6.1.

Since we have found b = bn + bt, we proceed to compute a2(P ), which we correspondingly
write a2,n(P ) + a2,t(P ). In the computation, the integrals in section 6.3 are useful. Each
integral contains a factor of Vn, and since each integral has either k = 0 or k = −1, we
can also bring out a factor of Γ(n − 2) (and then multiply the k = 0 integrals by n − 2 to
compensate). We obtain:

a2,t(P ) =
VnΓ(n− 2)

12(2π)n−1
RM ,

a2,n(P ) =
VnΓ(n− 2)

(2π)n−1

[
1

8

∑
α,β

λαλβ(n− 1)(1− 2

n− 1
+

1 + 2δαβ
n2 − 1

) +
1

2

∑
α,β

λαλβ
1 + 2δαβ
n2 − 1

− 1

8(n− 1)

∑
α

gαα,nn +
1

2

∑
α

λ2
α −

1

8

∑
α

gαα,nn −
1

4

∑
α,β

λαλβ(1− 1

n− 1
)

]
. (4.2.7)

Simplifying and using (2.1.1), we find

a2,n(P ) =
VnΓ(n− 2)

8(2π)n−1

[
(n− 5 +

2

n− 1
+

n+ 3

n2 − 1
)
∑
α,β

λαλβ

+(
2n+ 6

n2 − 1
+ 4− 8

n− 1
)
∑
α

λ2
α −

n− 2

n− 1

∑
α

gαα,nn

]
. (4.2.8)
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Finally, recall that∑
α,β

λαλβ = (n− 1)2H2
1 ;
∑
α

λ2
α = (n− 1)2H2

1 − (n− 1)(n− 2)H2, (4.2.9)

so we may rewrite the eigenvalue sums as combinations of H2
1 and H2. Moreover, the last

term in the expression for a2,n may also be rewritten in terms of mean curvatures:

Lemma 4.2.10.

−
∑
α

gαα,nn(P ) = RΩ −RM − 2(n− 1)2H2
1 + 3(n− 1)(n− 2)H2.

This proof is deferred to section 6.2. From Lemma 4.2.10 and (4.2.9), we conclude after
some algebraic manipulations that

a2,n(P ) =
VnΓ(n− 2)

8(2π)n−1

[
(n− 1)(n− 2)(n2 − n− 4)

n+ 1
H2

1

−n(n− 3)(n− 2)

n+ 1
H2 +

n− 2

n− 1
(RΩ −RM)

]
. (4.2.11)

Combining this with a2,t(P ) yields Theorem 1.4.1.

4.3. Example: heat invariants of balls in R3 and R4. In this section we verify the
formulas for the heat invariants obtained using Theorem 1.4.1 by calculating them directly
for the unit balls B3 ⊂ R3 and B4 ⊂ R4. It is well-known that the eigenvalues of the Steklov
problem on a unit ball Bn ⊂ Rn are given by a sequence of natural numbers k = 0, 1, 2, 3 . . . ,
with each eigenvalue k repeated according to its multiplicity

mk =
(2k + n− 2)(k + n− 3)!

k!(n− 2)!
. (4.3.1)

Note that the eigenfunctions of the Dirichlet-to-Neumann operator D on Sn−1 are spherical
harmonics, and the numbers mk are the multiplicities of the Laplace–Beltrami eigenvalues
on Sn−1 (see, for example, [Po]). The Steklov heat trace on a ball is given by an explicit
formula

Tr e−tD =
∞∑
k=0

(2k + n− 2)(k + n− 3)!

k!(n− 2)!
e−kt. (4.3.2)

Let us compute its asymptotics as t→ 0+ for n = 3 and n = 4. For n = 3, the series (4.3.2)
takes the form

∞∑
k=0

(2k + 1)e−kt =
1 + e−t

(1− e−t)2
= t−2

(
2 + t+

t2

3
+O(t3)

)
,

and therefore the corresponding heat invariants are a0 = 2, a1 = 1 and a2 = 1/3. Taking
into account that V3 = 2π, H1 = H2 = 1 at each point x ∈ S2 and Vol(S2) = 4π, we obtain
precisely the same values for a0, a1 and a2 from Theorem 1.4.1.

Let now n = 4. Then (4.3.2) takes the form

∞∑
k=0

(k + 1)2e−kt = et
∞∑
k=0

(k + 1)2e−(k+1)t =
e2t(1 + et)

(et − 1)3
= t−3

(
2 + 2t+ t2 +O(t3)

)
.
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The corresponding heat invariants are a0 = 2, a1 = 2, a2 = 1. These results are in agreement
with Theorem 1.4.1, as one can easily check, taking into account that V4 = 4π, H1 = H2 = 1
for any x ∈ S3 and Vol(S3) = 2π2.

5. Proof of Theorem 1.5.3

In this section, we adapt an argument of Zelditch in [Z] and combine it with an analysis
of the first three heat invariants to prove Theorem 1.5.3.

5.1. Zelditch’s theorem on multiplicities.

Lemma 5.1.1. Suppose that Ω is a compact domain in R3, with smooth and connected
boundary M , and with Steklov spectrum equal to that of the ball of radius ρ in R3. Then M
is in fact simply connected.

Proof. The lemma in fact follows from a stronger result, which is an adaptation of a similar
result of Zelditch for the Laplacian (Theorem A in [Z]).

Proposition 5.1.2. Let U be a compact Riemannian manifold of dimension n with smooth
boundary (Y, g), and let 0 = λ0 < λ1 < λ2 < . . . be the distinct eigenvalues of the Dirichlet-
to-Neumann operator D, with multiplicities m0, m1, . . .. Suppose there exists a > 0 such
that

mk = akn−2 +O(kn−3).

Then (Y, g) is Zoll: that is, all geodesics on Y are periodic with a common period.

Proof. The proof is closely analogous to the proof in [Z], which is in turn based on work of
Ivrii and Hörmander. Let T ∗Y be the cotangent bundle, and let Π∗(y, η) be the microlocal
period function on T ∗Y \{0}, equal to the period of the geodesic corresponding to (y, η) if it
is periodic and equal to ∞ if it is not. Assume for contradiction that there is a non-periodic
geodesic; then the set ΓT of (y, η) for which Π∗(y, η) > T is a nonempty open cone for each
positive T . Fix a large positive T to be determined later. As in [Z], let B be a self-adjoint
pseudodifferential operator of order zero with microlocal support nontrivial and contained
in ΓT , and let b be the principal symbol of B∗B. Then define

N(λ,B∗B) =
∑
λk≤λ

∗TrB∗B|Ek ,

where Ek is the D-eigenspace corresponding to λk, and the sum
∑∗ is over distinct eigen-

values.
There is again a modified Weyl law for N(λ,B∗B) given in the proof of Theorem 29.1.5

in Hörmander [Hö]. The difference with [Z] is that the subprincipal symbol of D, r0(y, η), is
not necessarily zero. On the other hand, the subprincipal symbol of B∗B is still zero, and
the integral of the Poisson bracket {b, |η|} is still zero, so from [Hö] we have:

N(λ,B∗B) = (2π)−(n−1)

(∫∫
|η|<λ

b dy dη + ∂λ

∫∫
|η|<λ

r0(y, η)b(y, η) dy dη

)
+R(λ,B∗B),

(5.1.3)
where the remainder R(λ,B∗B) satisfies the estimate

lim sup
λ→∞

λ−(n−2) |R(λ,B∗B)| ≤ C

T

∣∣∣∣∫∫
|η|<1

b dy dη

∣∣∣∣ . (5.1.4)
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We write b̄ =
∫∫

η<1
b dy dη and note that since B has nontrivial microlocal support, b̄ > 0.

The first two terms in (5.1.3) are continuous in λ, which allows us to write

TrB∗B|Ek = lim
ε→0

(R(λk + ε, B∗B)−R(λk − ε, B∗B)).

Hence for λk greater than some λ0(T ) (it may depend on T ), we have

TrB∗B|Ek ≤
2(C + 1)

T
b̄λn−2

k .

Summing gives

N(λ,B∗B) ≤ 2(C + 1)

T
b̄
∑
λk≤λ

∗λn−2
k +OT (1). (5.1.5)

Next, use the multiplicity assumption, precisely as in [Z], to rewrite (5.1.5); the proof is
identical to that in [Z], albeit with λk here replacing

√
λk in [Z], so we omit it. We conclude

that

N(λ,B∗B) ≤ D

T
b̄λn−1 +O(λn−2) +OT (1), (5.1.6)

where D is a constant depending only on n and the volume of Y . Note that the first
term in (5.1.3) is exactly (2π)−(n−1)b̄λn−1, and all other terms are O(λn−2). Thus fixing
T > (2π)n−1D and then letting λ→∞ in (5.1.6) contradicts (5.1.3).

We have now shown that all geodesics on Y are periodic; as in [Z], we now apply theorem
(0.40) in [Be] to conclude that all the closed geodesics must have a common period, and
therefore that (Y, g) is Zoll. �

Remark 5.1.7. Suppose, on the other hand, that U is a manifold with boundary Y having
the property that the periodic geodesics on Y form a set of measure zero in T ∗Y . Then, as
follows from the results of [DG] (see also [Hö, Chapter 29]), there is a two-term Weyl law
for the Steklov eigenvalues. We may write it as

#(σk ≤ σ) =
a0

(n− 1)!
σn−1 +

a1

(n− 2)!
σn−2 + o(σn−2), (5.1.8)

where a0 and a1 are the heat invariants. Here we have used the Laplace transform to relate
the heat trace and the counting function.

Now we finish the proof of Lemma 5.1.1. We see from (4.3.1) that Ω satisfies the hypothesis
of Proposition 5.1.2. Therefore M must be Zoll; in fact, the same argument holds for
any domain in Rn which is Steklov-isospectral to a ball. Since all connected Zoll surfaces
embedded in R3 are topological spheres [Be], we conclude that M is simply connected. �

On the other hand, since there are large families of Zoll surfaces [Gu], we cannot immedi-
ately conclude that M is a sphere.

5.2. Application of heat invariants. We now use the heat invariants we have computed
to finish the proof of Theorem 1.5.3. Let χ(M) be the Euler characteristic. By (1.4.8), the
Gauss-Bonnet theorem, and Lemma 5.1.1, we know that the second Steklov heat invariant

a2 =
1

16π

∫
M

H2
1 +

1

24
χ(M) =

1

16π

∫
M

H2
1 +

1

12
. (5.2.1)
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Therefore
∫
M
H2

1 =
∫
Sρ
H2

1 . On the other hand, we already know from the first two heat

invariants that Vol(M) and
∫
M
H1 are Steklov spectral invariants, so Vol(M) = Vol(Sρ) and∫

M
H1 =

∫
Sρ
H1. Therefore

√
Vol(M)

(∫
M

H2
1

)1/2

−
∣∣∣∣∫
M

H1

∣∣∣∣ =
√

Vol(Sρ)

(∫
Sρ

H2
1

)1/2

−

∣∣∣∣∣
∫
Sρ

H1

∣∣∣∣∣ = 0. (5.2.2)

By the Cauchy-Schwarz inequality, H1 must be constant on M . However, the only embedded
compact surfaces of constant mean curvature in R3 are round spheres [Al], so we conclude
that M is itself a sphere of radius ρ and therefore Ω is isometric to Bρ. This completes the
proof.

6. Proofs of auxiliary lemmas

The following two proofs are given by lengthy but straightforward computations.

6.1. Proof of Lemma 4.2.6. To analyze the normal integrand (4.2.4), first recall the ex-
pression for r0(P, ξ) given in (4.1.2). Plugging in this expression takes care of the first and
last terms in (4.2.4); it remains only to analyze the middle term 1

2|ξ|∂xn r̂0. Examining the

expression (4.1.1) for r̂0, we notice that the first and third terms (the imaginary part of r̂0)
are odd in ξ, and hence the same is true after applying a normal derivative and dividing by
2|ξ|. Therefore

1

2|ξ|
∂xn r̂0

∼=
1

2|ξ|
∂xn

(
− 1

4|ξ|2
∑
α,β

gαβ,nξαξβ − 1

4

∑
α,β

gαβgαβ,n

)

=
1

8|ξ|5
(
∑
α,β

gαβ,nξαξβ)2 − 1

8|ξ|3
∑
α,β

gαβ,nnξαξβ − 1

8|ξ|
∑
α,β

gαβ,ngαβ,n −
1

8|ξ|
∑
α,β

gαβgαβ,nn

∼=
1

2|ξ|5
∑
α,β

λαλβ(ξα)2(ξβ)2 − 1

8|ξ|3
∑
α

gαα,nn(ξα)2 +
1

2|ξ|
∑
α

λ2
α −

1

8|ξ|
∑
α

gαα,nn.

In the final step of this calculation, we used the fact that |ξ|−3ξαξβ ∼= 0 whenever α 6= β.
Combining this calculation with the rest of the integrand completes the proof of the normal
portion of Lemma 4.2.6.

Tangential integrand: initial computations. Now consider the tangential portion. The first
component of bt is −i(1

2
+ 1

2|ξ|)
∑

γ ∂ξγ r̂1∂xγ r̂0. Notice that

(∂ξγ r̂1)(P ) = − 1

2|ξ|
gαβ(δγβξα + δγαξβ) = − ξ

γ

|ξ|
,

which is odd in ξ. Each term in the real part of ∂xγ r̂0 will be a power of |ξ| times a polynomial
of even degree in ξ, so after multiplying by ξγ/|ξ|, it will be equivalent to zero. We therefore
need to consider only the imaginary part of ∂xγ r̂0, and hence only the imaginary part of r̂0

itself. However, from (4.1.1), each term in the imaginary part of r̂0 is multiplied by a first
derivative of the metric or the log of the volume element, which is zero at P . Therefore,
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the ∂xγ derivative must always hit that term, or else the result is zero at P . Relabeling the
dummy variable γ in (4.1.1) as ε, to avoid confusion with ∂xγ , we conclude that

∂xγ r̂0(P ) =

(
− i

8|ξ|3
∑
ε

[
(
∑
α,β

gαβ(δεαξβ + δεβξα))(
∑
α,β

gαβ,εγξαξβ)

]

+
i

2|ξ|
∑
α,β

(
1

2
gαβ

∂2

∂xγ∂xα
log δ + gαβ,αγ)ξβ

)
(P ). (6.1.1)

Now plug in the values of the metric at P , and then multiply by iξγ(1
2

+ 1
2|ξ|). As before, we

also note that any term of the form |ξ|−kξαξβ is equivalent to zero whenever α 6= β. We get
that the first component of bt(P, ξ) is equivalent to:

(
1

8|ξ|5
+

1

8|ξ|4
)
∑
α,β,γ,ε

gαβ,γε(P )ξαξβξγξε − (
1

8|ξ|3
+

1

8|ξ|2
)
∑
α

(
∂2

∂(xα)2
log δ)(P )(ξα)2

− (
1

4|ξ|3
+

1

4|ξ|2
)
∑
α,β

gαβ,αβ(P )(ξβ)2. (6.1.2)

For the remaining terms, we first compute second derivatives of r̃1 in both the x variables
and the ξ variables:

(∂ξγ∂ξε r̃1)(P ) = (
∂ξγq2∂ξεq2

4|ξ|3
− ∂ξγ∂ξεq2

2|ξ|
)(P ) =

ξγξε

|ξ|3
− δγε

|ξ|
;

(∂xγ∂xε r̃1)(P ) = (
∂xγq2∂xεq2

4|ξ|3
− 1

2|ξ|
∂xγ∂xεq2)(P ) = − 1

2|ξ|
∑
α,β

gαβ,γε(P )ξαξβ.

From (4.2.5), the remaining terms in bt(P, ξ) are hence equivalent to

(
1

12|ξ|3
+

1

8|ξ|4
+

1

8|ξ|5
)
∑
α,β,γ,ε

gαβ,γε(P )ξαξβξγξε − (
1

8|ξ|2
+

1

8|ξ|3
)
∑
α,β,γ

gαβ,γγ(P )ξαξβ. (6.1.3)

Curvatures. We now use the well-known Taylor expansion of the metric in Riemannian
normal coordinates (see [Vi], for example) to relate the second derivatives of the metric and
the volume element to the intrinsic curvatures of the boundary M . Let Rijkl be the Riemann
curvature tensor of the boundary M at the point P ; then we have

gαβ(x) = δαβ −
1

3
Rαµβνx

µxν +O(|x|3).

An easy inverse argument using Taylor series gives:

gαβ(x) = δαβ +
1

3
Rαµβνx

µxν +O(|x|3),

and hence

gαβ,γε(P ) =
1

3
(Rαγβε +Rαεβγ). (6.1.4)

As for the volume element, we have from [Vi]:

δ(x) = 1− 1

3
Rµνx

µxν +O(|x|3),
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so by elementary Taylor series arguments

log δ(x) = −1

3
Rµνx

µxν +O(|x|3),

and therefore

(∂ξγ∂ξε log δ)(P ) = −1

3
(Rγε +Rεγ) = −2

3
Rγε. (6.1.5)

Combining these observations with (6.1.2) and (6.1.3), and also removing the α 6= β part
of the last term of (6.1.3) (which is equivalent to zero), we get:

bt(P, ξ) ∼= (
1

36|ξ|3
+

1

12|ξ|4
+

1

12|ξ|5
)
∑
α,β,γ,ε

(Rαγβε +Rαεβγ)ξ
αξβξγξε

+(
1

12|ξ|3
+

1

12|ξ|2
)
∑
α

Rαα(ξα)2 − (
1

12|ξ|3
+

1

12|ξ|2
)
∑
α,β

(Rααββ +Rαββα)(ξβ)2

− (
1

12|ξ|2
+

1

12|ξ|3
)
∑
α,γ

Rαγαγ(ξ
α)2. (6.1.6)

Final simplification. To simplify (6.1.6) further, we use the symmetries of the curvature
tensor:

Rijkl = −Rjikl = −Rijlk = Rklij.

From these symmetries, we immediately conclude that Rααββ = 0 for all α and β, and also
that Rαββα = −Rαβαβ. Hence the third and fourth terms of (6.1.6) cancel. Moreover:

Proposition 6.1.7. For any k ≥ −3− n (so that the integral over the tangent space makes
sense),

|ξ|k
∑
α,β,γ,ε

(Rαγβε +Rαεβγ)ξ
αξβξγξε ∼= 0.

Proof. Integration of a multiple of ξαξβξγξε against an even function of ξ vanishes unless
the four indices pair off into groups of two. On the other hand, if all four are the same, the
curvature coefficients are zero. We may therefore consider each possible pairing separately
without worrying about double counting; for example, if α = β and γ = ε, the sum becomes

2
∑
α,γ

Rαγαγ(ξ
α)2(ξγ)2.

Relabeling and adding up the possibilities, using the symmetries of the curvature tensor, the
first sum becomes ∑

α,β

(2Rαβαβ +Rαββα +Rαββα)(ξα)2(ξβ)2 = 0,

which completes the proof of the proposition. �

As a consequence of the proposition and the preceding remarks, the first term in (6.1.6)
is equivalent to zero, and we are left with

bt(P, ξ) ∼= (
1

12|ξ|3
+

1

12|ξ|2
)
∑
α

Rαα(ξα)2.

This completes the proof of Lemma 4.2.6.
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6.2. Proof of Lemma 4.2.10. The proof is by computation of the scalar curvature RΩ. At
the point P , using Einstein notation, we have

RΩ = Γcaa,c − Γcac,a + ΓdaaΓ
c
cd − ΓdacΓ

c
ad. (6.2.1)

Moreover, if the sums are taken only over the indices from 1 to n − 1, rather than from 1
to n, we obtain the scalar curvature of the boundary. So RΩ equals RM plus the terms in
(6.2.1) where at least one of a, c, or d is n. On the other hand, the Christoffel symbols are
given by

Γkij =
1

2

∑
m

(gjm,i + gmi,j − gij,,m)gkm.

Recall that gαn and gαn are identically zero in a neighborhood of P ⊂ Ω for any α ≤ n− 1,
and gnn and gnn are identically 1. As a consequence, whenever two or more of i, j, and k
are equal to n, the Christoffel symbol Γkij is zero in a neighborhood of P .

We first analyze the first two terms in (6.2.1) where at least one index is n. Using the
observation above on the vanishing of the Christoffel symbols, we obtain that at P ,

n−1∑
a=1

Γnaa,n −
n−1∑
c=1

Γcnc,n =
n−1∑
α=1

Γnαα,n −
n−1∑
α=1

Γαnα,n

=
1

2

n−1∑
α=1

∂xn(
∑
m

(gαm,α + gmα,α − gαα,m)gnm) +
1

2

n−1∑
γ=1

∂xn(
∑
m

(gαm,n + gmn,α − gnα,n)gαm)

=
1

2

n−1∑
α=1

(−gαα,nn)− 1

2

n−1∑
α=1

∂xn(
n−1∑
m=1

gαm,ng
αm) = −

n−1∑
α=1

gαα,nn + 2
n−1∑
α=1

λ2
α.

Now consider the final two terms of (6.2.1). Since there are no derivatives of the Christoffel
symbols involved in these terms, we can plug in the metric at P and write

Γkij(P ) =
1

2
(gjk,i + gki,j − gij,k)(P ).

If more than one of i, j, or k is n, then Γkij vanishes; on the other hand, for α, β 6= n, we
compute

Γnαβ(P ) = λαδαβ; Γβαn = Γαβn = −λαδαβ.
If more than one of a, c, or d is equal to n, the final two terms of (6.2.1) vanish; if none are

n, then we get part of the scalar curvature RM . If one is n, then there are three possibilities:

• Suppose a = n, c 6= n, d 6= n. Then the third term of (6.2.1) is zero; the last term is

n−1∑
c,d=1

−(−λcδcd)2 = −
n−1∑
α=1

λ2
α.

• Suppose a 6= n, c = n, d 6= n; the third term is again zero, and the last term is
n−1∑
a,d=1

−(−λaδad)(λaδad) =
n−1∑
α=1

λ2
α.

• Finally, suppose a 6= n, c 6= n, d = n. Then we get:
n−1∑
a,c=1

λa(−λc) +
∑
a,c

−(−λaδac)(λaδac) = −(n− 1)2H2
1 +

∑
α

λ2
α.
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Combining these three computations with the first two terms of (6.2.1) yields

RΩ = RM + 3
∑
α

λ2
α −

∑
α

gαα,nn − (n− 1)2H2
1 .

Rearranging and using (4.2.9) completes the proof.

6.3. Auxiliary Integrals.

Lemma 6.3.1. Let α and β be any two distinct integers between 1 and n− 1. Moreover, let
Vn = Vol(Sn−2). For any real k such that the following integrals converge, we have∫

Rn−1

e−|ξ||ξ|k dξ = VnΓ(k + n− 1); (6.3.2)

∫
Rn−1

e−|ξ||ξ|k−2(ξα)2 dξ =
Vn
n− 1

Γ(k + n− 1); (6.3.3)∫
Rn−1

e−|ξ||ξ|k−4(ξα)4dξ =
3Vn
n2 − 1

Γ(k + n− 1); (6.3.4)∫
Rn−1

e−|ξ||ξ|k−4(ξα)2(ξβ)2dξ =
Vn

n2 − 1
Γ(k + n− 1). (6.3.5)

The first integral may be evaluated directly, and by summing over α and using symmetry
we see that the second integral is the first integral times 1/(n− 1).

For the third and fourth integrals, one uses n-dimensional spherical coordinates to reduce
the problem to trigonometric integrals. We first perform the third integral: by symmetry we
may let α = 1. Use the coordinates (r, θi) given by

|ξ| = r, ξ1 = |ξ| cos θ1, ξk = |ξ| cos θk

k−1∏
i=1

sin θi (for 2 ≤ k ≤ n− 2), ξn−1 = |ξ|
n−2∏
i=1

sin θi.

Here θn−2 ∈ [0, 2π) and θk ∈ [0, π) for all other k. The integral in r may be performed
explicitly and yields Γ(k + n− 1); the rest of the integral (6.3.4) is∫

Sn−2

cos4 θ1 sinn−3 θ1 sinn−4 θ2 . . . sin θn−3 dθ1 . . . dθn−2.

However, since

Vn =

∫
Sn−2

sinn−3 θ1 sinn−4 θ2 . . . sin θn−3 dθ1 . . . dθn−2,

we see that (6.3.4) is Γ(k + n− 1) times Vn times

Ln :=

∫ π
0

cos4 θ1 sinn−3 θ1 dθ1∫ π
0

sinn−3 θ1 dθ1

.

We then use [GR, formula 3.621] and some identities for the Gamma function to show that
Ln = 3

n2−1
.

Finally we see by writing out |ξ|4 = (ξ2
1 + . . . + ξ2

n−1)2 and using symmetry that (n − 1)
times (6.3.4) plus (n− 1)(n− 2) times (6.3.5) equals (6.3.2), which enables us to determine
(6.3.5) as well.
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