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INFINITE STAIRCASES AND REFLEXIVE POLYGONS

DAN CRISTOFARO-GARDINER, TARA S. HOLM, ALESSIA MANDINI, AND ANA RITA PIRES
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Sharp Ellipsoid Embeddings and Toric Mutations

ROGER CASALS
RENATO VIANNA

ABSTRACT: This article introduces a new method to construct volume-filling symplectic embeddings

of 4-dimensional ellipsoids by employing polytope mutations in toric and almost-toric varieties. The
construction uniformly recovers the sharp sequences for the Fibonacci Staircase of McDuff-Schlenk,

the Pell Staircase of Frenkel-Miiller and the Cristofaro-Gardiner-Kleinman’s Staircase, and adds new
infinite sequences of sharp ellipsoid embeddings. In addition, we initiate the study of symplectic
tropical curves for almost-toric fibrations and emphasize the connection to quiver combinatorics.

1 Introduction

The central novel contribution of the a
infinite staircases for symplectic ellips
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Special eccentricities of rational
four-dimensional ellipsoids

Dan Cristofaro-Gardiner

April 29, 2020

Abstract

A striking result of McDuff and Schlenk asserts that in determin-
ing when a four-dimensional symplectic ellipsoid can be symplecti-
cally embedded into a four-dimensional symplectic ball, the answer is
governed by an “infinite staircase” determined by the odd-index Fi-
bonacci numbers and the Golden Mean. Here we study embeddings of
one four-dimensional symplectic ellipsoid into another, and we show
that if the target is rational, then the infinite staircase phenomenon
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THE EMBEDDING CAPACITY OF 4-DIMENSIONAL SYMPLECTIC
ELLIPSOIDS

DUSA MCDUFF AND FELIX SCHLENK

ABSTRACT. This paper calculates the function ¢(a) whose value at a is the infimum
of the size of a ball that contains a symplectic image of the ellipsoid E(1.a). (Here
a > 1 is the ratio of the area of the large axis to that of the smaller axis.) The
structure of the graph of ¢la) is surprisingly rich. The volume constraint implies

2010

c(a) := cpa(a) := inf {\|E(1,a) = B*(\)}

A symplectic embedding is a map ¢ : (M7,w;) — (Ms,ws) such that Yv*ws = wy.

E(a17a2) = (Z17Z2) S CQ‘T‘- | <1

BY(\) := E(\ )



Ellipsoid embedding function of the 4-ball cpi(a) = inf {\E(1,a) — B4()\)}2\/5 Volume constraint

N ~_
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Q: Why look at this function?

 Gromov non-squeezing: A ball embeds symplectically into a cylinder if and only if it embeds via inclusion.
 Gromov width of a symplectic manifold M: What is the size of the biggest ball which embeds symplectically into M?
* Packing stability (Biran, Buse-Hind): there is no obstruction beyond volume to embedding a collection of small enough balls into (some) M.

 Hofer conjecture on ellipsoids (McDuff): E(a,b) embeds into E(c,d) if and only if .....(a certain combinatorial relation between a,b,c,d).....

Q: Is this “infinite staircase” behaviour a characteristic of this function or a characteristic of the ball?
» cx(a) =inf{A\|F(1,a) — AX}, where A\(X,w) = (X, \w)

 What does c_X(a) look like for other targets X?

In general, c_X(a) is piecewise linear when not equal to the volume constraint.
We say that it has an infinite staircase if it has infinitely many non-smooth points.

 Does it always an infinite staircase? If yes, WHY? If not, when does it and when does it not, and WHY?

« Other work on infinite staircases since then: ¢ X = polydisk D(1)xD(1) Frenkel-Muller
« X=E1,1), E(1,2), E(2,3) Cristofaro-Gardiner—Kleinman
X = certain polydisks D(1)xD(b) Usher
e X = certain Hirzebruch surfaces Bertozzi, Holm, Maw, McDuff, Mwakyoma, P., Weiler

 full embeddings for X = ball, polydisk, and more Casals - Vianna



Theorem: (Cristofaro-Gardiner, Holm, Mandini, P.) [Staircase obstruction theorem]

Let X be a closed toric symplectic manifold (or more generally a convex toric domain with finite blowup

vector).
If the ellipsoid embedding function cx(a) has an infinite staircase then it accumulates at ag, a real solution

of the quadratic equation
2
a2_(per 2>a+1:().

vol

Furthermore, at ag the ellipsoid embedding function touches the volume curve:

Cx\d — —.

(a0) vol

What are convex toric domains and how do they generalize closed toric symplectic manifolds in this context?
Why does the staircase have to accumulate at a finite point (rather than going off to infinity)?

This equation usually has two solutions, what about the other one?

What are per and vol?

o k~ L Db =

What is the “volume curve”?

How good is this as an obstruction to the existence of infinite staircases?



Theorem: (Cristofaro-Gardiner, Holm, Mandini, P.) [Staircase obstruction theorem]

Let X be a closed toric symplectic manifold (or more generally a convex toric domain with finite blowup

vector). . . .
If the ellipsoid embedding function cx (a) has an infinite staircase then it accumulates at ag, a real solution HOW gOOd 1S th IS as an ObStrU Ct|0n 'to
of the quadratic equation _ S _
2 (per2 ) 2) . the existence of infinite staircases?
vol -

Furthermore, at ag the ellipsoid embedding function touches the volume curve:

cx (ag) = \/g
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(1) = ball (1;0.05)



Theorem: (Cristofaro-Gardiner, Holm, Mandini, P.) [Staircase obstruction theorem]

Let X be a closed toric symplectic manifold (or more generally a convex toric domain with finite blowup
vector).
If the ellipsoid embedding function cx (a) has an infinite staircase then it accumulates at ag, a real solution

of the quadratic equation

Furthermore, at ag the ellipsoid embedding function touches the volume curve:

vol

2
a2—<per —2)a+1:o.

cx (ag) = %.
0.50
0.45
0.40
0.35
0.30 ‘ ‘ ‘
- 1.5 2.0 2.5

E4,3)

3.0

25

How good is this as an obstruction to
the existence of infinite staircases?

(1;0.05)



1. What are convex toric domains and how do they generalize closed toric symplectic manifolds?

Let p: C* — R? be given by (21, 22) = 7(|z1]%, |22]?).

Convex toric domain: for a convex region  C R< ), define Xq = =" (9).

4 A A A A

N D | LY

A convex toric domain can be described in terms of a blowup vector: (b; b1, b2, ..... ).

Karshon, Kessler, Pinsonnault: Any closed toric symplectic 4-manifold is symplectomorphic to CP2 or CP1xCP1 blown-up a finite

number of times.

o Symplectomorphic manifolds have the same ellipsoid embedding function.

Theorem: (Cristofaro-Gardiner, Holm, Mandini, P.)

Let  C RZ,, be a convex region that is also a Delzant polygon for a closed toric symplectic manifold M.

Then
E(a,b) - M <= FE(a,b) — Xq.



Theorem: (Cristofaro-Gardiner, Holm, Mandini, P.) [Staircase obstruction theorem] 2. Why does the staircase have to accumulate at a finite

Let X be a closed toric symplectic manifold (or more generally a convex toric domain with finite blowup

vector).
If the ellipsoid embedding function cx (a) has an infinite staircase then it accumulates at ag, a real solution

of the quadratic equation

point (rather than going off to infinity)?

3. A gquadratic equation usually has two solutions, what

2
2 ber _
o — ( ol 2) Bl =10 about the other one?
Furthermore, at ag the ellipsoid embedding function touches the volume curve: 4. What are per and vol?
aop . cc b}
cx(ao) =/ - 5. What is the “volume curve”?
2. McDuff; Cristofaro-Gardiner: for X a convex toric domain, E(l,a) - X < U;B(a;) = X

Bute, Hind, Opshtein: all closed symplectic 4-manifolds have the packing stability property, i.e., there are no obstructions beyond
volume to embedding a collection of sufficiently small balls.

3. The solutions are a0 and 1/a0. There is an involution of c_X(a) about a=1 because E(1,1/a) is essentially a rescaling of E(1,a).
We only consider c_X(a) with a>1.

4. If X has moment image ) and blowup vector (b;bq,...,b,), then
per = affine perimeter of Q = 3b — ) b,
vol = 2 x area of Q = b* — > b?

5. E(1,a) = tX = volume(E(1,a)) < volume(tX) = a < t’vol = t > \/VIOI



A beautiful part of this story is when the blowup sizes are all rational.
More generally / using scaling, we look at X = (b;b1,...,b,) with b,b1,...,b, € N.
CP? /ball CP!' x CP! /polydisk

Theorem: (Cristofaro-Gardiner, Holm, Mandini, P.)

There is an infinite staircase in the ellipsoid embedding function cx (a) for the following convex toric domains:

NN A I A

(3;1) (4;2,2) (4,2,2) (3;,1,1) (3;,1,1)

B N A O A O

(3,1,1,1) (3,1,1,1) (3,1,1,1) (3,1,1,1) (3,1,1,11) (3,1,1,1,1)



A beautiful part of this story is when the blowup sizes are all rational.
More generally / using scaling, we look at X = (b;b1,...,b,) with b,b1,...,b, € N.
CP? /ball CP!' x CP! /polydisk

Theorem: (Cristofaro-Gardiner, Holm, Mandini, P.)

There is an infinite staircase in the ellipsoid embedding function cx (a) for the following convex toric domains:

NN A I A

(3;1) (4;2,2) (4,2,2) (3;,1,1) (3;,1,1)
(3;,1,1,1) (3;,1,1,1) (3;,1,1,1) (3;,1,1,1) (3;,1,1,1,1) (3;,1,1,1,1)

> A g <

(3,1,1,1,1,1) (3,1,1,1,1,1) (311,111 (31,1,1,1,1,1)



A beautiful part of this story is when the blowup sizes are all rational.
More generally / using scaling, we look at X = (b;b1,...,b,) with b,b1,...,b, € N.
CP? /ball CP!' x CP! /polydisk

Theorem: (Cristofaro-Gardiner, Holm, Mandini, P.)

There is an infinite staircase in the ellipsoid embedding function cx (a) for the following convex toric domains:

NN N B A

(3;1) (4;2,2) (4;2,2) (3;1,1) (3;1,1)
(3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1,1) (3;1,1,1,1)
Conjecture: If cx(a) has an infinite staircase, then the moment polygon of X is a reflexive polygon.

In particular, the 12 examples above are the only (rational) ones with infinite staircases (up to scaling).



What do these staircases look like?

7’

E(2,3)

ball
08 ~
07
06
05
T
(3;1,1,1)
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| |
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How does one prove that an infinite staircase exists?

For a convex toric domain with finite blowup vector, the ellipsoid embedding function is:
e continuous
* non-decreasing

» has the following scaling property: cx(ta) <tcx(a) for allt > 1

* equal to the volume curve for a>>1

* piecewise linear when not equal to the volume constraint

2.5+

A |
outer corner: \/ inner corner:
find an obstruction, * find an embegdding,

e.g. using ECH capacities e.g. using almost toric fibrations

1.5+




outer corner: | \/ _
find an obstruction, inner corner.

e.g. using ECH capacities find an embedding,
15 e.g. using almost toric fibrations

[Cristofaro-Gardiner] In the problem of embedding a concave toric domain into a convex toric domain, ECH capacities are sharp.

Therefore: E(l,a) — A X <— (} (E(l,a)) < (g ()\X) for all k € N

Ck (E(17 CL))
= A> for all K € N
— Ok (X)
o Cr(FE(1,a)) /easy
Therefore: cx(a) = supyen Cr(X)

T hard



3.0

2.5

outer corner: ’ \/ :
find an obstruction, | Inner corner.

e.g. using ECH capacities find an embedding,
15 e.g. using almost toric fibrations

[Cristofaro-Gardiner] In the problem of embedding a concave ¢

Theretore: E(l, a) > AX <— (} (E(l, CL)) < C} (A
Ck (E(L,a))
= A > for
- Ok (X)
. — Cr(E(1,a)) —
Therefore: cx (@) = Supyey Cr (X) (3:1,1,1,1)

T hard bt




outer corner: ’

find an obstruction,
e.g. using ECH capacities

inner corner:
find an embedding,
e.g. using almost toric fibrations

(Note that E(1,a) = AX <= 1E(1l,a) — X.)

"
5/13—

13/5

5 13\ _ b5 169
E(137 5)_1_3E(172_5)

3 5
E(2,3) = 2E(1, 3) E(3,5) =

Must start with closed
toric symplectic manifolds!




Short proof of location of a0, using the following assumptions: ¢ the interior corners of the infinite staircase are given by ATF’s,
* the accumulation point a0 is irrational,
* E(1,a0) gives a full filling.

(in the limit)

" N\ N\ N\ N\ \

1 E(l,ao)

cx (ag)

This iterative process does not change the area and affine perimeter of the shapes, so:

2
g _ 1
vol = (CX((IO)) (1 X Cl()) FCX(azO) _ %
< 1 < 2 er?
Lper = (cby ) (1+ a0) ad— (22 —2)ag+1=0



A beautiful part of this story is when the blowup sizes are all rational.
More generally / using scaling, we look at X = (b;b1,...,b,) with b,b1,...,b, € N.
CP? /ball CP!' x CP! /polydisk

Theorem: (Cristofaro-Gardiner, Holm, Mandini, P.)

There is an infinite staircase in the ellipsoid embedding function cx (a) for the following convex toric domains:

NN N B A

(3;1) (4;2,2) (4;2,2) (3;1,1) (3;1,1)
(3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1,1) (3;1,1,1,1)
Conjecture: If cx(a) has an infinite staircase, then the moment polygon of X is a reflexive polygon.

In particular, the 12 examples above are the only (rational) ones with infinite staircases (up to scaling).



There are infinitely many infinite staircases for irrational convex toric domains!

INFINITE STAIRCASES IN THE SYMPLECTIC EMBEDDING PROBLEM
FOR FOUR-DIMENSIONAL ELLIPSOIDS INTO POLYDISKS

MICHAEL USHER

ABSTRACT. We study the symplectic embedding capacity function C, for el-

lipsoids E(1,a) ¢ R* into dilates of polydisks P(1,$) as both « and § vary
through [1,00). For f# = 1 results of [FM15] show that C, has an infinite
staircase accumulating at a = 3+2+/2, while for integer f = 2 [CFS17] found
that no infinite staircase arises. We show that, for arbitrary f € (1, 00), the
restriction of Cy to [1,3 + 2v/2] is determined entirely by the obstructions

from [FM15], leading Cz on this interval to have a finite staircase with the
number of steps tending to oo as § — 1. On the other hand, in contrast to

[CFS17], for a certain doubly-indexed sequence of irrational numbers L, , we
find that C;,  has an infinite staircase; these L_; include both numbers that

are arbitrarily large and numbers that are arbitrarily close to 1, with the cor-

Polydisks

th.SG] 21 Jan 2018

[Br28] Brahmagupta’s Brahmasphutasiddhanta (628), edited by Acharyavara Ram Swarup
Sharma, Indian Institute of Astronomical and Sanskrit Research, New Dehli, 1965, vol.

]
Hirzebruch surfaces

WiSCon Project 9:
Morgan Weiler, Maria Bertozzi, Dusa McDuff, Ana Rita Pires, Tara Holm, Emily Maw, Grace Mwakyoma



There are infinitely many infinite staircases for irrational convex toric domains!

ascending infinite staircases

blocked intervals

0.0 0.2 0.4 0.6 0.8 1.0

b=0 b=1

]
Hirzebruch surfaces

WiSCon Project 9:
Morgan Weiler, Maria Bertozzi, Dusa McDuff, Ana Rita Pires, Tara Holm, Emily Maw, Grace Mwakyoma



A beautiful part of this story is when the blowup sizes are all rational.
More generally / using scaling, we look at X = (b;b1,...,b,) with b,b1,...,b, € N.
CP? /ball CP!' x CP! /polydisk

Theorem: (Cristofaro-Gardiner, Holm, Mandini, P.)

There is an infinite staircase in the ellipsoid embedding function cx (a) for the following convex toric domains:

NN N B A

(3;1) (4;2,2) (4;2,2) (3;1,1) (3;1,1)
(3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1,1) (3;1,1,1,1)
Conjecture: If cx(a) has an infinite staircase, then the moment polygon of X is a reflexive polygon.

In particular, the 12 examples above are the only (rational) ones with infinite staircases (up to scaling).



A .
X = Xq with integral blowup vector (b;b1,...,b,). (Assume ag ¢ Q.)

If X has an infinite staircase then F(1,aq) < /33X

<— Cr(E(ug,v9)) < Cp(X) for all k € N (up = /¥ and vy = /2%

0 VOI)
< CaPp(uy .y (L) = capx(T) for all T € N (capp,(T) := #A4k|Cr(M) < T})
< ehrp, , (T) = capx(T) for all T € N (ehra, (T) =#{Z°NT Ay })
— T4+ PET 4+ d(T) > oT? 4+ 2T+ Ty for all T € N (T'=r(T) (mod vol))

< d(T) > Fr(T) for all T'e N

Hardy and Littlewood (1920) showed that for certain ag’s, d(x) = d,,(x) is “optimally +O(logx)” for z € R.

Experimentally we observe that d, (7') is either periodic or “optimally +O(logT')” for T € N.

SN

if €2 is a scaling of otherwise
a reflexive polygon

a )
O(log x) plus

3 constant K and increasing sequences x;, z; such that
Ldao (x;) > Klog(z;) and d,, (z;) < —Klog(x,).

_J




Experimentally we observe that d, (7') is either periodic or “optimally £O(logT")” for T' € N.

if {2 is a scaling of otherwise
a reflexive polygon

1 1 2
lattice polygon that is a lattice polygon that is not a not a lattice polygon
scaling of a reflexive polygon scaling of a reflexive polygon (one of Usher’s infinite staircases)

d(T) =0



A .
X = Xq with integral blowup vector (b;b1,...,b,). (Assume ag ¢ Q.)

If X has an infinite staircase then ehra, (T) > capy (T) for all T € N (ehra, , (T) = # {ZQ NT - Au,v})

= -T2 | QPfJIT—F d(T) > #OITQ -2 T—FFT(T) for all 7' € N

2vol 2vol

Cristofaro-Gardiner, Li, Stanley on ehra, , (T') for T'€ N and > ¢ Q:

Even though this is not the case in general, for exactly certain u,v’s the function ehra, , (7) is a quasipolynomial!

L4+ 2 and (u+v)(++ <) €N

L _J . _J
-~

___ per
-~ vol

Now: € is lattice polygon = scaling ) = >~ - Q is also a lattice polygon. So can use Pick’s Theorem on Q:

# boundary lattice points 1

area = # interior lattice points A

I~

— VTOI — # interior lattice points + 5~ — 1

o X _ per2)
<= # Interior lattice points = 1 (per = vol = 55



(3,1,1,1)

(3,1)

(3,1,1,1)

(3,1,1,1,1,1)

(3,1,1,1)

(3,1,1,1,1,1)

@
@)

EIEN .

(4;2,2) (3,1,1)

} A ©

(3,1,1,1) (3,1,1,1,1) (3,1,1,1,1)

7 <

311,111  (31,1LL11)

(3;1,1)

The end.

If you don’t have any other questions,
ask me about this!

The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.
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(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: septa
Displaying 1-1 of 1 result found. page 1
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A007826 Numbered stops on the Market-Frankford rapid transit (SEPTA) railway line in Philadelphia. PA '12
USA.
2, 5, 8, 11, 13, 15, 30, 34, 40, 46, 52, 56, 60, 63, 69 (list; graph: refs: listen: history; text; internal format)
OFFSET 1,1

COMMENTS Formally abbreviated as The Blue Line (and known informally as 'The El'),
the Market-Frankford Line extends East to West from slightly to the east
of 2nd Street through the city line to the western suburbs at 63rd Street
and then on to 69th Street Transportation Center, lined up almost entirely
with the major dividing thoroughfare Market Street. It is actually a
subway at the eastern end of this portion and through to beyond the 40th
Street stop (a(l)-a(9) represent subway stops), passing under the
Schuylkill River (along with trolley lines 10, 11, 13, 34 and 36) closer
to 30th than to 15th Street. The only non-numbered stop on this end is
suburban Milbourne between 63rd and 69th. The 'Frankford end’' runs in a
somewhat northeasterly direction and has all stops only with non-number
names (and is entirely above ground). The semi-express A and B versions
of the train both skip certain stops at peak travel times, and the only
regular trains are unmarked or one of these two versions. The train is
substituted for with bus service during overnight hours. - James G.
Merickel, Mar 19 2014

REFERENCES Ayshe Ozbekhan, Letter to N. J. A. Sloane, Oct 04, 1994.

LINKS Table of n, a(n) for n«1..15.
Brady Haran and N. J. A. Sloane, What Number Comes Next? (2018), Numberphile
video
Wikipedia, Market-Frankford Line
FORMULA a(n) = 2 + 3 n - binomial(n, 4) + 3 binomial(n, 5) + 7 binomial(n, 6) - 66

binomial(n, 7) + 248 binomial(n, 8) - 679 binomial(n, 9) + 1554
binomial(n, 10) - 3158 binomial(n, 11) + 5897 binomial(n, 12) - 10352
binomial(n, 13) + 17384 binomial(n, 14).

CROSSREFS Cf. AODOO53, AODD054, AOO10459.
KEYWORD nonn,fini, full
AUTHOR N. J. A. Sloane

STATUS approved




For CP; #@f J = 2 but the manifold is not toric. We begin by using Vianna's trick
141, §3.2] to ﬁnd an appropriate ATF on this manifold. Specifically, we begin with the ATF

on CP; #3CP1 given in Figure B.4(e). This ATF has a smooth toric corner at the origin
where we may perform a toric blowup of symplectic size 1. In terms of the base diagram,

this corresponds to chopping off a 1 X 1 triangle at the ongm This results in a quadrilateral

with two nodal rays representing an ATF on CP; #4CP1, shown in Figure B.5(b). There is
then a sequence of ATF moves that achieves a triangle with two nodal rays. See Figure B.5.

(a) (b)

NN

Figure B.5. In (a), we see the base diagram for an ATF on CP; #3CP1. From (a)
to (b), we have applied a toric blowup of size 1 at the origin, resulting in an almost

toric fibration on CP; #4@?. From (b) to (c), we apply one nodal trade. From (c)
to (d), we apply mutation, with resulting base diagram a quadrilateral with three
nodal rays. Finally, from (d) to (e), we perform a second mutation, with resulting
base diagram the desired triangle with two nodal rays. In (e), one of the nodal rays

has one singular fiber and the other has five singular fibers.




