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Introduction

Notations

▶ (M, ω): a closed monotone symplectic manifold.

▶ H : [0, 1]×M → R: a (time-dependent) Hamiltonian on
(M, ω).

▶ Ham(M, ω): the group of Hamiltonian diffeomorphisms of
(M, ω).

Major theme in symplectic topology

What can we say about the algebraic and topological properties of
Ham(M, ω)?



Topological side of Ham(M , ω)

▶ What topology do we consider? Let ϕ, ϕ′ ∈ Ham(M, ω).

1. Hofer metric:

E(H) :=

∫ 1

0

( sup
x∈M

Ht(x)− inf
x∈M

Ht(x))dt.

dHof (id , ϕ) := inf{E(H) : ϕH = ϕ}.

dHof (ϕ, ϕ
′) := dHof (id , ϕ

−1ϕ′).

2. C 0-topology:

dC 0(ϕ, ϕ′) := max
x∈M

dM(ϕ(x), ϕ′(x))

where dM is the natural distance on M.



Why do we care about C 0-topology?

▶ It seems that C 0-topology DOES have something to do with
the symplectic structure even though symplectic geometry is
smooth geometry.
e.g.

Theorem (Eliashberg-Gromov)

Let ϕn ∈ Symp(M, ω) be a sequence of symplectomorphisms.
Assume

ϕn
C0

−→ ϕ ∈ Diffeo(M).

Then, ϕ ∈ Symp(M, ω).

▶ The relation between the Hofer metric and C 0-topology on
Ham(M, ω) is not fully understood.



Algebraic side of Ham(M , ω)

Theorem (Banyaga ’78)

Ham(M, ω) is a simple group.

Corollary

There exist no non-trivial homomorphisms

Ham(M, ω) → R.

▶ However, there exist quasimorphisms on Ham(M, ω) for some
(M, ω)!



Quasimorphisms (“almost homomorphisms”)

▶ A homogeneous quasimorphism on a group G is a map

µ : G → R

which satisfies

1. ∃C > 0 s.t. ∀f , g ∈ G ,

|µ(f · g)− µ(f )− µ(g)| ⩽ C .

2. ∀k ∈ Z,∀f ∈ G ,
µ(f k) = k · µ(f ).

▶ Homogeneous quasimorphisms are useful to study algebraic
and topological properties (in case G is a topological group)
of G .



Quasimorphisms in symplectic topology

▶ Entov-Polterovich constructed homogeneous quasimorphisms

ζe : Ham(M, ω) → R

via spectral invariants (which are certain Floer theoretic
invariants) for symplectic manifolds that meet a certain
condition.

Remark

▶ Condition posed on the structure of the quantum cohomology
ring.

▶ Entov-Polterovich type homogeneous quasimorphisms are
Hofer Lipschitz continuous but not C 0-continuous.



Motivating question

Question of Entov-Polterovich-Py

1. Does there exist a non-trivial homogeneous quasimorphism

µ : Ham(S2) → R

that is C 0-continuous?

2. If yes, is it Hofer Lipschitz continuous?



New Question
Does there exist a closed symplectic manifold (M, ω) which admits
a non-trivial homogeneous quasimorphism

µ : Ham(M, ω) → R

that is C 0-continuous? If yes, is µ Hofer Lipschitz continuous?

▶ Some results related to this question:
▶ For D2n(1) ⊂ R2n, ∃µ that are C 0 and Hofer Lipschitz

continuous. (Entov-Polterovich-Py)
▶ For closed surfaces Σg , g ⩾ 1, ∃µ that are C 0-continuous but

not Hofer continuous. (Gambaudo-Ghys, Khanevsky)

▶ No example of a closed symplectic manifold for which there
exists µ that is C 0 and Hofer Lipschitz continuous.



Main result

Notation
We denote the monotone n-quadric by Qn:
Qn := {(z0 : z1 : · · · : zn+1) ∈ CPn+1 : z20 + z21 + · · ·+ z2n+1 = 0}.

Theorem (K ’20)

There exist non-trivial homogeneous quasimorphisms

µ : Ham(Qn) → R

where n = 2, 4 that are C 0 and Hofer Lipschitz continuous.



Key of the proof - quantum cohomology rings with
different coefficient fields

▶ classical quantum cohomology ring (Floer, Oh):

QH∗(M;C) := H∗(M;C)⊗C C[t−1, t|]
where C[t−1, t|] is the field of Laurent series

C[t−1, t|] := {
∑
k⩾k0

akt
k : k0 ∈ Z, ak ∈ C}

(t satisfies ω(t) = λ0, c1(t) = NM .)

▶ modern quantum cohomology ring (Fukaya-Oh-Ohta-Ono):

QH∗(M; Λ) := H∗(M;C)⊗C Λ

where Λ is the universal Novikov field

Λ := {
∞∑
k=1

bkT
λk : bk ∈ C, λk ∈ R, lim

k→+∞
λk = +∞}.



Classical and modern quantum cohomology rings:
Difference 1

Classical and modern QH have different algebraic structures!

Example

▶ QH∗(CP2;C) is a field.

▶ QH∗(CP2; Λ) is semi-simple and splits into a direct sum of
three fields:

QH∗(CP2; Λ) = Q1 ⊕ Q2 ⊕ Q3

where Q1,Q2,Q3 are fields.



Classical and modern quantum cohomology rings:
Difference 2

They have different advantages!

▶ With the classical QH, we can do more with spectral
invariants!
e.g. The Z-grading of the classical QH brings the info of both
the action and the index to spectral invariants.

▶ With the modern QH, we can do more with Lagrangian Floer
theory!
e.g. With Λ-coefficients, we have a very rich Lagrangian Floer
theory (FOOO). Especially, superpotential techniques are
useful to find Lagrangian submanifolds with non-trivial HF.



Outline of the proof of the main theorem

Part 1
We use the advantage of classical QH QH∗(M;C):

▶ For Qn, there are two Entov-Polterovich type homogeneous
quasimorphisms ζ+, ζ−.

▶ Define
µ : Ham(Qn) → R

µ := ζ+ − ζ−.

▶ Prove µ is C 0-continuous by using a result on the C 0-control
of spectral invariants ([K19]) which uses the information of
the action and the index of spectral invariants in the proof
(Z-grading plays an essential role).



We need to say that µ is non-trivial i.e. ζ+ ̸= ζ−!

Part 2
We use the advantage of modern QH QH∗(M; Λ):

▶ In the sprit of Entov-Polterovich’s (super)heavy theory, we
want to find two disjoint Lagrangian submanifolds with
non-trivial HF!

▶ Such Lagrangians are found for Qn, n = 2, 4 by superpotential
techniques!
(n = 2 case, due to Fukaya-Oh-Ohta-Ono, n = 4 case, due to
Nishinou-Nohara-Ueda.)

▶ We conclude that ζ+ ̸= ζ−.

DONE!



Extra Remark

▶ The proof benefited from the different advantages of classical
and modern QH.

▶ This idea of combining the two has other applications.
e.g. Question of Polterovich-Wu, Lagrangian intersection etc.



Thanks for your attention!!!


