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Introduction

Notations

» (M,w): a closed monotone symplectic manifold.

» H:[0,1] x M — R: a (time-dependent) Hamiltonian on
(M,w).

» Ham(M,w): the group of Hamiltonian diffeomorphisms of
(M, w).

Major theme in symplectic topology

What can we say about the algebraic and topological properties of
Ham(M, w)?



Topological side of Ham(M, w)

» What topology do we consider? Let ¢, ¢’ € Ham(M,w).
1. Hofer metric:

1
E(H) = /0 (fg,pw Hi(x) — Xlenlf/, H:(x))dt.

dHof(I'd,(b) = inf{S(H) : ¢)H = (b}
dhor (¢, ') = dror(id, ).
2. C%-topology:

deo(9,¢') == max du (¢(x), ¢'(x))

where dy, is the natural distance on M.



Why do we care about C°-topology?

» It seems that C-topology DOES have something to do with
the symplectic structure even though symplectic geometry is
smooth geometry.

e.g.
Theorem (Eliashberg-Gromov)
Let ¢, € Symp(M,w) be a sequence of symplectomorphisms.

Assume .
b0 < ¢ € Diffeo(M).

Then, ¢ € Symp(M,w).
» The relation between the Hofer metric and C°-topology on
Ham(M,w) is not fully understood.



Algebraic side of Ham(M, w)

Theorem (Banyaga '78)
Ham(M,w) is a simple group.

Corollary
There exist no non-trivial homomorphisms

Ham(M,w) — R.

» However, there exist quasimorphisms on Ham(M,w) for some
(M, w)!



Quasimorphisms (“almost homomorphisms" )

> A homogeneous quasimorphism on a group G is a map
w:G—>R

which satisfies
1. 3C > 0st. Vf,g € G,

lu(f - g) — u(f) — u(g)l < C.

2. Yk € Z,Nf € G,
p(f) = k- u(f).
» Homogeneous quasimorphisms are useful to study algebraic

and topological properties (in case G is a topological group)
of G.



Quasimorphisms in symplectic topology

» Entov-Polterovich constructed homogeneous quasimorphisms
Ce : Hom(M,w) — R

via spectral invariants (which are certain Floer theoretic
invariants) for symplectic manifolds that meet a certain
condition.

Remark

» Condition posed on the structure of the quantum cohomology
ring.

» Entov-Polterovich type homogeneous quasimorphisms are
Hofer Lipschitz continuous but not C°-continuous.



Motivating question

Question of Entov-Polterovich-Py
1. Does there exist a non-trivial homogeneous quasimorphism
i Ham(S?) — R

that is CO-continuous?

2. If yes, is it Hofer Lipschitz continuous?



New Question
Does there exist a closed symplectic manifold (M, w) which admits
a non-trivial homogeneous quasimorphism

w: Ham(M,w) — R
that is C%-continuous? If yes, is 1 Hofer Lipschitz continuous?

» Some results related to this question:
> For D27(1) C R?", Iy that are C° and Hofer Lipschitz
continuous. (Entov-Polterovich-Py)
» For closed surfaces ¥, g > 1, Ju that are C°continuous but
not Hofer continuous. (Gambaudo-Ghys, Khanevsky)

» No example of a closed symplectic manifold for which there
exists v that is C° and Hofer Lipschitz continuous.



Main result

Notation
We denote the monotone n-quadric by Q":
Qui={(z0:z1: :zpy1) ECP"™ 1 B+ 22+ + 22, =0}

Theorem (K '20)

There exist non-trivial homogeneous quasimorphisms
w: Ham(Q") — R

where n = 2, 4 that are C° and Hofer Lipschitz continuous.



Key of the proof - quantum cohomology rings with
different coefficient fields

» classical quantum cohomology ring (Floer, Oh):

QH*(M;C) := H*(M;C) &c C[t %, ]
where C[t~1, t|] is the field of Laurent series
Clttl] :=={)_ axt": ko € Z,a € C}
k>ko
(t satisfies w(t) = Ao, ci(t) = Npy.)
» modern quantum cohomology ring (Fukaya-Oh-Ohta-Ono):
QH*(M; A) := H*(M; C) ®c A
where A is the universal Novikov field

A= {Z by Tk - b € C, )\ €R, kli)rroo A = +OO}.
k=1



Classical and modern quantum cohomology rings:
Difference 1

Classical and modern QH have different algebraic structures!
Example
> QH*(CP?;C) is a field.
> QH*(CP?;A) is semi-simple and splits into a direct sum of
three fields:

QH*(CPZN) = Q1@ Q@ Q3

where @1, @>, Q3 are fields.



Classical and modern quantum cohomology rings:
Difference 2

They have different advantages!

» With the classical QH, we can do more with spectral
invariants!
e.g. The Z-grading of the classical QH brings the info of both
the action and the index to spectral invariants.

» With the modern QH, we can do more with Lagrangian Floer
theory!
e.g. With A-coefficients, we have a very rich Lagrangian Floer
theory (FOOO). Especially, superpotential techniques are
useful to find Lagrangian submanifolds with non-trivial HF.



Outline of the proof of the main theorem

Part 1
We use the advantage of classical QH QH*(M; C):

» For Q", there are two Entov-Polterovich type homogeneous
quasimorphisms (4, (.

» Define
w: Ham(Q") - R

po= Gy — G-

» Prove 11 is CO-continuous by using a result on the C%-control
of spectral invariants ([K19]) which uses the information of
the action and the index of spectral invariants in the proof
(Z-grading plays an essential role).



We need to say that p is non-trivial i.e. (4 # (_!

Part 2
We use the advantage of modern QH QH*(M; A\):

» In the sprit of Entov-Polterovich’s (super)heavy theory, we
want to find two disjoint Lagrangian submanifolds with
non-trivial HF!

» Such Lagrangians are found for Q", n = 2,4 by superpotential
techniques!

(n = 2 case, due to Fukaya-Oh-Ohta-Ono, n = 4 case, due to
Nishinou-Nohara-Ueda.)

» We conclude that (4 # (_.
DONE!



Extra Remark

» The proof benefited from the different advantages of classical
and modern QH.

» This idea of combining the two has other applications.
e.g. Question of Polterovich-Wu, Lagrangian intersection etc.



Thanks for your attention!!!



