
Real Lagrangian Tori in toric symplectic manifolds
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Université de Neuchâtel

5 May, 2020
Symplectic Zoominar
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Real Lagrangians

Let (M, ω) be a symplectic manifold.

Definition:

σ : M → M is an antisymplectic involution if

σ ◦ σ = id ;

σ∗ω = −ω.

Its fixed point set Fixσ is Lagrangian (whenever non-empty).
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Real Lagrangians

Definition:

A Lagrangian L ⊂ (M, ω) is called real if there is an antisymplectic
involution σ such that Fixσ = L.

If L = Fixσ and ϕ ∈ Symp(M, ω) then ϕ(L) = Fix(ϕσϕ−1). The
notion is invariant under symplectomorphisms.
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Real Lagrangians

Let L ⊂ (M, ω) be a Lagrangian.

Main Question:

Is L real?
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Examples

1) In (Cn, ω0):

L = Rn is real.
Product tori L = T (a1, . . . , an) are not real.

2) The zero section in (T ∗Q, ω = dλ) is real.

3) Real projective space RPn in (CPn, ωFS) is real.

(This
example generalizes to all toric manifolds.)
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Examples

The equator in (S2, ω) is real. Other circles of constant height are
not real.

In general: If (M, ω) is monotone and L is real, then L is
monotone.
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Toric fibres

From now on: (M2n, ω) toric monotone symplectic manifold, i.e.
there is a moment map µ : M → Rn which generates an effective
Hamiltonian T n-action on M.

Toric fibres Tx = µ−1(x) for
x ∈ int ∆ are Lagrangian.
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Toric fibres

Technical assumption: We will assume that ∆ has property FS :

Every facet F of ∆ contains a lattice point xF such that −xF is
also contained in ∆.
Conjecturally,

M monotone ⇒ ∆ has property FS .

Has been checked for n 6 9 by M. Øbro and A. Paffenholz.
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Toric fibres
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Toric fibres

Theorem: (P. A. Smith ’39)

Let F ⊂ M be the fixed point set of a smooth involution, then

1) χ(F ) ≡ χ(M) (mod 2)

2) dimH∗(F ,Z2) 6 dimH∗(M,Z2)

This excludes CP2 and CP2#2CP2 from having real tori already
at the topological level.
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Toric fibres

Theorem A: (B.)

If the central fibre T0 is real, then ∆ is centrally symmetric, i.e.
∆ = −∆.

The converse is also true! Joint work with J. Kim and J. Moon.
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Exotic tori

What about exotic tori?

Theorem: (J. Kim ’19)

The Chekanov torus in S2 × S2 is not real.

Theorem: (J. Kim ’20)

If T ⊂ S2 × S2 is real, then it is Hamiltonian isotopic to the
Clifford torus.

Theorem B: (B. ’20)

There is an exotic Chekanov torus in every toric monotone
symplectic manifold and it is not real.

Whenever ∆ = −∆, then the Chekanov tori are, however, the fixed
point set of a smooth involution.
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Sketch of proof

Method: Versal deformations (Chekanov ’96; Chekanov–Schlenk
’10/’15) Elementary in the sense that the only ”hard” result used
is the computation of displacement energy of product tori in Cn.

1) Determine the displacement energy of toric fibres. (Using
Property FS, McDuff’s probes and Symplectic reduction)

e(Tx) = dist(x , ∂∆)

Joé Brendel Real Lagrangian Tori in toric Symplectic Manifolds



Sketch of proof

Method: Versal deformations (Chekanov ’96; Chekanov–Schlenk
’10/’15) Elementary in the sense that the only ”hard” result used
is the computation of displacement energy of product tori in Cn.

1) Determine the displacement energy of toric fibres. (Using
Property FS, McDuff’s probes and Symplectic reduction)

e(Tx) = dist(x , ∂∆)
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Sketch of proof

2) Look at the displacement energy of fibres near to the central
fibre.

 Versal deformation

ST0 : U → R ∪ {∞}; x 7→ e(Tx)
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Sketch of proof

3) Antisymplectic involutions preserve displacement energy and
hence obtain

Lemma:

If L is real, then its displacement energy germ satisfies

SL ◦ (−id) = SL.

⇒ Theorem A

4) Many Lagrangian neighbours of exotic tori are toric fibres ⇒
Theorem B. (One can also distinguish Vianna tori in this way
(B.–Chekanov–Schlenk) and prove that they are not real.)
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Thank you!
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Displacement energy

Definition:

Let A ⊂ (M, ω) be a subset. The displacement energy of A is
defined by

e(A) = inf
{
‖H‖ | H Hamiltonian with ϕ1

H(A) ∩ A = ∅
}
,

where ‖ · ‖ is the Hofer norm defined by

‖H‖ =

∫ 1

0

(
max
p∈M

Ht(p)− min
p∈M

Ht(p)

)
dt

Example: Let S1(a) ⊂ C be the circle enclosing area a, then

e(S1(a)) = a.
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