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The systolic ratio of a contact form

Contact form α on closed (2n − 1)-manifold M, i.e. α ∧ dαn−1

volume form.

Volume of (M, α): vol(M, α) :=
∫
M α ∧ dαn−1.

Reeb vector field Rα: ıRαdα = 0, ıRαα = 1.

Systolic ratio of (M, α):

ρsys(M, α) :=
Tmin(α)n

vol(M, α)
,

Tmin(α) := minimum of all periods of closed orbits of Rα.
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Zoll contact forms

The contact form α0 is said to be Zoll if all the orbits of Rα0 are
closed and have the same period.

Boothby & Wang (1958): α0 Zoll on M ⇒ Basis B of circle
bundle π : M → B induced by S1-action of Rα0 has integral
symplectic form ω such that dα0 = Tmin(α0)π∗ω, and hence
ρsys(M, α0) = 1

N , where N := 〈[ω]n−1, [B]〉 ∈ N is the Euler
number.

Main example: S2n−1 with standard contact form α0, whose Reeb
orbits are the fibers of the Hopf fibration π : S2n−1 → CPn−1, and
ρsys(S

2n−1, α0) = 1.

J. C. Álvarez Paiva & F. Balacheff (2014):

• Any contact form that is a local maximizer of ρsys must be
Zoll.
• αt smooth path of contact forms with α0 Zoll. Then either

t 7→ ρsys(M, αt) has a strict local maximum at t = 0, or αt is
tangent up to every order to the space of Zoll contact forms.
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Today’s main theorem

Theorem 1. (A. A. & G. Benedetti) Let α0 be a Zoll contact form
on the closed manifold M. Then α0 has a C 3-neighborhood U in
the space of contact forms on M such that

ρsys(M, α) ≤ ρsys(M, α0) ∀α ∈ U ,

with equality if and only if α is Zoll.

C 3-local maximality of Zoll contact forms in dimension 3: For
M = S3: A. A., B. Bramham, U. Hryniewicz & P. Salomão (2018).
For any closed 3-manifold: G. Benedetti & J. Kang.

The systolic ratio is unbounded from above on the space of
contact forms supporting any given contact structure: closed
3-manifolds (ABHS, 2019), contact manifolds of arbitrary
dimension (M. Săglam).
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Metric systolic geometry, I

The systolic ratio of an n-dimensional closed Riemannian manifold
(W , g) is:

ρsys(W , g) :=
`min(g)n

vol(W , g)
,

where `min(g) is the shortest length of a closed geodesic on (W , g).

See survey of M. Gromov (1996) and book of M. Berger (2003).

The geodesic flow on T 1W is the Reeb flow of a contact form αg

and

Tmin(αg ) = `min(g), vol(T 1W , αg ) = n!ωn vol(W , g).

where ωn is the volume of the Euclidean unit ball in Rn.

ρsys(W , g) = n!ωn ρsys(T
1W , αg ).
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Metric systolic geometry, II

A metric g on W is said to be Zoll if all its geodesics are closed
and have the same length.

Corollary 1. Zoll Riemannian metrics are local maximizers of the
systolic ratio in the C 3-topology.

Case dimW = 2: Zoll metrics exist only on S2 and on RP2.

RP2: up to rescaling there is only one Zoll metric, which is the
global maximizer of the systolic ratio (P. M. Pu, 1952).

S2: infinite dimensional space of Zoll metrics (O. Zoll, 1903, V.
Guillemin, 1976), all local maximizers of ρsys (ABHS, 2017 and
2018), but not global maximizers, although sup

g
ρsys(W , g) < +∞

(C. B. Croke, 1988).

Corollary 1 answers a question of M. Berger (1970).
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A conjecture of Viterbo, I

Conjecture (C. Viterbo, 2000). Let c be a normalized symplectic
capacity on (R2n, ω0). For every convex body K ⊂ R2n we have

c(K )n ≤ vol(K , ωn
0),

with equality if and only of the interior of K is symplectomorphic
to a ball.

EHZ-capacities: λ0 := 1
2

∑n
j=1(xj dyj − yj dxj) primitive of ω0, K

smooth convex body with 0 ∈ int(K ), so that λ0 restricts to a
contact form on ∂K . Then many symplectic capacities c satisfy

c(K ) = Tmin(λ0|∂K ).

We denote by cEHZ one of them. Viterbos’ conjecture for cEHZ
reads:

Tmin(λ0|∂K )n ≤ vol(∂K , λ0|∂K ), i.e. ρsys(∂K , λ0|∂K ) ≤ 1,

with equality if and only of the interior of K is symplectomorphic
to a ball.
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smooth convex body with 0 ∈ int(K ), so that λ0 restricts to a
contact form on ∂K . Then many symplectic capacities c satisfy

c(K ) = Tmin(λ0|∂K ).
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to a ball.
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A conjecture of Viterbo, II

S. Artstein-Avidan, V. Milman & Y. Ostrover (2008):

c(K )n ≤ C vol(K , ωn
0),

for some constant C which is independent of n.

S. Artstein-Avidan, R. Karasev & Y. Ostrover (2014): Viterbo’s
conjecture for cEHZ implies the Mahler conjecture (1939) in convex
geometry.

Corollary 2. There exists a C 3-neighborhood U of the ball in the
space of smooth convex bodies in R2n such that

cEHZ (K )n ≤ vol(K , ωn
0) ∀K ∈ U ,

with equality if and only if K is symplectotmorphic to a closed ball.

Characterization of the equality: Need to show that if the Reeb
flow on ∂K is Zoll then K is symplectomorphic to a closed ball.



Shadows of symplectic balls, I

Gromov’s non-squeezing theorem (1985): V symplectic 2-plane in
(R2n, ω0), PV symplectic projector onto V , B unit ball in R2n.
Then

area(PVϕ(B), ω0|V ) ≥ π

for any symplectomorphism ϕ : B ↪→ R2n.

A. A. & R. Matveyev (2013): If V is a symplectic 2k-plane with
1 < k < n and ε > 0, then there exists a symplectomorphism
ϕ : B ↪→ R2n such that

vol(PVϕ(B), ωk
0 |V ) < ε.
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Shadows of symplectic balls, II

Linear symplectomorphisms: If Φ : R2n → R2n is a linear
symplectomorphism, then

vol(PV Φ(B), ωk
0 |V ) =

πk

w(Φ−1(V ))
,

where

w(X ) :=
|ωk

0 [u1, u2, . . . , u2k ]|
k!|u1 ∧ u2 ∧ · · · ∧ u2k |

, u1, u2, . . . , u2k basis of X ∈ Gr2k(R2n).

Wirtinger inequality: w(X ) ≤ 1, and = 1 if and only if X is a
complex subspace. Therefore:

vol(PV Φ(B), ωk
0 |V ) ≥ πk ,

for every linear symplectomorphism Φ : R2n → R2n.
Corollary 3. There exists a C 3

loc-neighborhood U of the set of linear
symplectorphisms in the space of all smooth symplectomorphisms
of R2n such that for every symplectic 2k-plane V ⊂ R2n we have

vol(PVϕ(B), ωk
0 |V ) ≥ πk ,

for every ϕ ∈ U .



Shadows of symplectic balls, II
Linear symplectomorphisms: If Φ : R2n → R2n is a linear
symplectomorphism, then

vol(PV Φ(B), ωk
0 |V ) =

πk

w(Φ−1(V ))
,

where

w(X ) :=
|ωk

0 [u1, u2, . . . , u2k ]|
k!|u1 ∧ u2 ∧ · · · ∧ u2k |

, u1, u2, . . . , u2k basis of X ∈ Gr2k(R2n).

Wirtinger inequality: w(X ) ≤ 1, and = 1 if and only if X is a
complex subspace. Therefore:

vol(PV Φ(B), ωk
0 |V ) ≥ πk ,

for every linear symplectomorphism Φ : R2n → R2n.
Corollary 3. There exists a C 3

loc-neighborhood U of the set of linear
symplectorphisms in the space of all smooth symplectomorphisms
of R2n such that for every symplectic 2k-plane V ⊂ R2n we have

vol(PVϕ(B), ωk
0 |V ) ≥ πk ,

for every ϕ ∈ U .



Shadows of symplectic balls, II
Linear symplectomorphisms: If Φ : R2n → R2n is a linear
symplectomorphism, then

vol(PV Φ(B), ωk
0 |V ) =

πk

w(Φ−1(V ))
,

where

w(X ) :=
|ωk

0 [u1, u2, . . . , u2k ]|
k!|u1 ∧ u2 ∧ · · · ∧ u2k |

, u1, u2, . . . , u2k basis of X ∈ Gr2k(R2n).

Wirtinger inequality: w(X ) ≤ 1, and = 1 if and only if X is a
complex subspace.

Therefore:

vol(PV Φ(B), ωk
0 |V ) ≥ πk ,

for every linear symplectomorphism Φ : R2n → R2n.
Corollary 3. There exists a C 3

loc-neighborhood U of the set of linear
symplectorphisms in the space of all smooth symplectomorphisms
of R2n such that for every symplectic 2k-plane V ⊂ R2n we have

vol(PVϕ(B), ωk
0 |V ) ≥ πk ,

for every ϕ ∈ U .



Shadows of symplectic balls, II
Linear symplectomorphisms: If Φ : R2n → R2n is a linear
symplectomorphism, then

vol(PV Φ(B), ωk
0 |V ) =

πk

w(Φ−1(V ))
,

where

w(X ) :=
|ωk

0 [u1, u2, . . . , u2k ]|
k!|u1 ∧ u2 ∧ · · · ∧ u2k |

, u1, u2, . . . , u2k basis of X ∈ Gr2k(R2n).

Wirtinger inequality: w(X ) ≤ 1, and = 1 if and only if X is a
complex subspace. Therefore:

vol(PV Φ(B), ωk
0 |V ) ≥ πk ,

for every linear symplectomorphism Φ : R2n → R2n.

Corollary 3. There exists a C 3
loc-neighborhood U of the set of linear

symplectorphisms in the space of all smooth symplectomorphisms
of R2n such that for every symplectic 2k-plane V ⊂ R2n we have

vol(PVϕ(B), ωk
0 |V ) ≥ πk ,

for every ϕ ∈ U .



Shadows of symplectic balls, II
Linear symplectomorphisms: If Φ : R2n → R2n is a linear
symplectomorphism, then

vol(PV Φ(B), ωk
0 |V ) =

πk

w(Φ−1(V ))
,

where

w(X ) :=
|ωk

0 [u1, u2, . . . , u2k ]|
k!|u1 ∧ u2 ∧ · · · ∧ u2k |

, u1, u2, . . . , u2k basis of X ∈ Gr2k(R2n).

Wirtinger inequality: w(X ) ≤ 1, and = 1 if and only if X is a
complex subspace. Therefore:

vol(PV Φ(B), ωk
0 |V ) ≥ πk ,

for every linear symplectomorphism Φ : R2n → R2n.
Corollary 3. There exists a C 3

loc-neighborhood U of the set of linear
symplectorphisms in the space of all smooth symplectomorphisms
of R2n such that for every symplectic 2k-plane V ⊂ R2n we have

vol(PVϕ(B), ωk
0 |V ) ≥ πk ,

for every ϕ ∈ U .



Proof of Theorem 1 in a simple case

M closed (2n− 1)-dimensional manifold with Zoll contact form α0.
Normalization: Tmin(α0) = 1.

Assume that the contact form α of M has the form

α = Sα0,

where S : M → (0,+∞) is a function that is constant on the
orbits of Rα0 .

Since dα = dS ∧ α0 + Sdα0, every closed orbit γ of Rα0 consisting
of critical points of S is a closed orbit of Rα of period S(γ)

.

Therefore:

vol(M, α)

=

∫
M
Sn α0 ∧ dαn−1

0 ≥ (minS)n
∫
M
α0 ∧ dαn−1

0

= (minS)nvol(M, α0) ≥ Tmin(α)nvol(M, α0),

and hence ρsys(M, α) = Tmin(alpha)
n

vol(M,α) ≤
1

vol(M,α0)
= ρsys(M, α0). �
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A normal form for contact forms close to Zoll ones

Theorem 2. If α is C 2-close to the Zoll contact form α0 then there
is a diffeomorphism u : M → M such that

u∗α = Sα0 + η + df ,

where:

(i) S : M → (0,+∞) is constant on the orbits of Rα0 ;

(ii) f : M → R;

(iii) η is a one-form such that ıRα0
η = 0;

(iv) ıRα0
dη = F [dS ], where F : T ∗M → T ∗M is an endomorphism

lifting the identity.

Moreover, u is close to the identity and S − 1, f , η, F are small for
α− α0 small, in suitable norms.

Key fact: Any orbit γ of Rα0 consisting of critical points of S is a
closed orbit of Ru∗α of period S(γ)Tmin(α0).
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The volume formula

Proposition. β = Sα0 + η + df with S , η, f as before. Then

vol(M, β) =

∫
M
p(x ,S(x))α0 ∧ dαn−1

0 ,

where p : M × R→ R is polynomial in its second variable,

p(x , s) = sn +
n−1∑
j=1

pj(x)s j ,

with coefficients pj : M → R satisfying∫
M
pj α0 ∧ dαn−1

0 = 0, ∀j = 1, 2, . . . , n − 1.

Moreover, pj is C 0-small when η and F are small in suitable norms.



The volume formula

Proposition. β = Sα0 + η + df with S , η, f as before.

Then

vol(M, β) =

∫
M
p(x ,S(x))α0 ∧ dαn−1

0 ,

where p : M × R→ R is polynomial in its second variable,

p(x , s) = sn +
n−1∑
j=1

pj(x)s j ,

with coefficients pj : M → R satisfying∫
M
pj α0 ∧ dαn−1

0 = 0, ∀j = 1, 2, . . . , n − 1.

Moreover, pj is C 0-small when η and F are small in suitable norms.



The volume formula

Proposition. β = Sα0 + η + df with S , η, f as before. Then

vol(M, β) =

∫
M
p(x , S(x))α0 ∧ dαn−1

0 ,

where p : M × R→ R is polynomial in its second variable,

p(x , s) = sn +
n−1∑
j=1

pj(x)s j ,

with coefficients pj : M → R satisfying∫
M
pj α0 ∧ dαn−1

0 = 0, ∀j = 1, 2, . . . , n − 1.

Moreover, pj is C 0-small when η and F are small in suitable norms.



The volume formula

Proposition. β = Sα0 + η + df with S , η, f as before. Then

vol(M, β) =

∫
M
p(x , S(x))α0 ∧ dαn−1

0 ,

where p : M × R→ R is polynomial in its second variable,

p(x , s) = sn +
n−1∑
j=1

pj(x)s j ,

with coefficients pj : M → R satisfying∫
M
pj α0 ∧ dαn−1

0 = 0, ∀j = 1, 2, . . . , n − 1.

Moreover, pj is C 0-small when η and F are small in suitable norms.



The volume formula

Proposition. β = Sα0 + η + df with S , η, f as before. Then

vol(M, β) =

∫
M
p(x , S(x))α0 ∧ dαn−1

0 ,

where p : M × R→ R is polynomial in its second variable,

p(x , s) = sn +
n−1∑
j=1

pj(x)s j ,

with coefficients pj : M → R satisfying∫
M
pj α0 ∧ dαn−1

0 = 0, ∀j = 1, 2, . . . , n − 1.

Moreover, pj is C 0-small when η and F are small in suitable norms.



Proof of Theorem 1

Normalization Tmin(α0) = 1. By Theorem 2, we can put α in
normal form: u∗α = Sα0 + η + df . By the Proposition, we have

vol(M, α) = vol(M, u∗α) =

∫
M
p(x ,S(x))α0 ∧ dαn−1

0 .

By the form of the polynomial function p and the bounds on its
coefficients, s 7→ p(x , s) is strictly increasing for s close to 1.
Therefore:∫

M
p(x , S(x))α0 ∧ dαn−1

0 ≥
∫
M
p(x ,minS)α0 ∧ dαn−1

0 .

Since all the coefficients pj of p have integral zero, except for the
coefficient of sn, which is 1,∫

M
p(x ,minS)α0 ∧ dαn−1

0 = (minS)nvol(M, α0)

≥ Tmin(α)nvol(M, α0),

and we conclude as in the simple case treated before. �
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Important ingredient in the proof of Theorem 2

Theorem (Bottkol, 1980). X0 smooth vector field on a closed
manifold M all of whose orbits are closed with the same minimal
period. If the vector field X is C 1-close to X0 then there is a
diffeomorphism u : M → M such that

h u∗X = X0 − Q[V ]

where:

(i) h : M → R is constant on the orbits of X0;

(ii) V is a vector field on M with [V ,X0] = 0;

(iii) V is orthogonal to X0;

(iv) Q : TM → TM is a linear automorphism lifting the identity.

Moreover, u is close to the identity and h − 1, V , Q − id are small
if X − X0 is small, in suitable norms.

[Our proof uses ideas of E. Kerman (1999)]
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Open problems

How much convexity is needed in order to have global upper
bounds for the systolic ratio?

• Is the contact systolic ratio of dynamically convex contact
forms on spheres bounded from above?

• Is the metric systolic ratio of Riemannian metrics on S3 or
S2 × S1 bounded from above?

HAPPY MAY 1st !
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