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ABSTRACT. It is not difficult to estimate the function ¥ (z,y), which counts
integers < z, free of prime factors > y, by “smooth” functions whenevery < logl/ 2z
or y is a fixed power of . This can be extended to y < log?’/4 z, and y > log?t z
under the assumption of the Riemann Hypothesis. The real difficulty lies wheny s a
fixed multiple of log z and, in this paper, we investigate the set of integers < z, free
of prime factors > tlog x, by estimating various functions related to ¥ (z,tlog ).

1. INTRODUCTION.

Define S(z,y) to be the set of positive integers < , composed only of prime factors
< y. The cardinality of this set, ¥(z,y), is called the Dickman-De Bruijn function
and has been extensively investigated by many authors (see [14] for a review). In
this section we will give some well-known results about ¥(z,y) and sketch proofs of

1/2 4 and when y is a fixed power of z.

smooth asymptotic estimates when y < log
3/4
m’

We also indicate how, in the literature, these have been extended to y < log
and toy > log;z’*_e z under the assumption of the Riemann Hypothesis.

It has not yet been possible to get a “smooth” asymptotic estimate for ¥(z,y)
when y is a fixed multiple of log z though, as we shall see, Hildebrand and Tenen-
baum [11] have recently given an estimate in terms of certain functions of prime
numbers; however at y around log z, these functions seem to be very dependant on
the “local” distribution of primes and so probably can’t be estimated by a “smooth”
function. Moreover, as has been noticed by many authors (and as we shall indicate
in this section), the actual behaviour of ¥(z,y) changes quite drastically at y around
log z.

In this paper we will investigate the set S(z,tlog z) for fixed t > 0 as z — oo
by estimating the order of magnitude of various functions related to ¥(z,y). In



Section 2 we introduce these functions and give short proofs of the estimates when
y/log  — 0 or co as £ — oo.

When y = tlog 2 such estimates are more difficult to prove, though by using
a method of Erdds [5] together with some elementary combinatorial arguments we
do this in Sections 3 and 4. Finally, in Section 5, we show that the question of
estimating the order of magnitude of the subset of k-free integers in S(x,tlog z),
for arbitrary ¢ and k, is equivalent to a notoriously difficult problem in entropy
theory.

We start with an argument, due to Ennola [4], for estimating (z,y) when y
is small:

Let py < ps < -++ < pn denote the primes up to y. It is clear that pi* p3* - - pr
< z if and only if a; logpy + azlogps + - -+ + an log pn < logz. Therefore ¥(z,y) is
precisely the number of (integer) lattice points inside the n-dimensional tetrahedron
defined by the bounding hyperplanes:

X1=O, X2=O,...,Xn:0. (1)

and
Xilog p1 + Xaolog p2 + -+ + Xnlog pn = log z. (2a)

Thus ¢(z,y) is the volume of the shape S given by constructing a unit box to
the right and above each such lattice point. It is easy to see that the tetrahedron
defined by (1) and (2a) lies completely inside S, which itself lies completely inside
the tetrahedron defined by (1) and

(X1 ~Dlog ps + -+ + (X, — 1) log p, = log z. (2b)
Thus we have the bounds .
1 log =
1< Y(z,y)/ — == < (149)™W), ' 3
) 1L gy <0 ®

where v = 6(y)/ log = and 6(y) = 3, <, log p, as usual.
Now, by the prime number theorem, (1 4 v)™¥) =1 + O(m) whenever
y < log*/? z; and so, by (3), we have the estimate

log m y?
P(z,y) = 71r(y), H logp m)} (4)
throughout the range
2<y<log/?z. (5)

Unfortunately the bounds in (3) certainly do not give us a good estimate for
y > 10g1/2+z
(4) for y < log

z, though Ennola [4] managed to prove a similar type of formula to

3/4 z, but by a different argument.




When y is large compared to = one can approach the question of estimating
¥(z,y) by a totally different method. We sketch a proof of Dickman’s result [3]
that for any fixed u > 0,

$(z,y) ~ep(u)  (ase— o0, y=2'), (6)
where p(u) is the continuous solution of the differential difference equation
up'(u) + p(u —1) =0 (v>1), (7
with initial values
plu) =1 (0<u<l). (8)

We first prove that (6) holds for 0 < u < 2: if u < 1 then +(z,y) = [z] for
y =z'/% For 1 <u <2, we have p(u) =1~ log u by (7) and

Y(z,y) =[z)- Y, [%1
. z2p>y
—s(l= Y )+ O(x(z)
z2p>y
= z(1 — log u) +0(10;’ -)

by the prime number theorem.
Now let U be the set of values of u for which (6) fails and choose u € U within
1/2 of the infimum of U, if U is non-empty. By the “Buchstab identity”,

v N z .
P(z,2*) = d(z,a )+ Y $(=,p) (9)
:1/72P>x1/u p
for v =u — 1, we see that

Pz, ) = o(pv) = Y

xll"2p>z1/'

1 logz
(3 g
p w0gp

=~ D){1+o(1)} (10)

log z/p logz 1 _ .
85 Torp < Tog 217% 1 = v <infimum U.

Now, by using a Riemann-Stieltjes integral we see that

1 [log =z vl

lo -
21/V2p>21/“ g p =u

= /u —-_—-p(t; 1)dt+o(l)

=v




by the prime number theorem,

= p(v) —p(u)+o(1) by (7),

and (6) follows from substituting this into (10).
By replacing (9) with the identity

P(z,y)log z = / ﬂ%ﬁ)'dt'F > ¥(—=,y) log p,
1 " b

Mm<e

Py

Hildebrand [9] has shown that one may extend the estimate (6) in the form

5(o,9) = 2a(0)(1-+ 0,28 Ly, (6)

for the range ¢ > y = «*/* > 2,y > log?*® ¢ where ¢ > 0 is fixed, under the
assumption of the Riemann Hypothesis.

We'’ve seen that it’s possible to obtain good estimates for 1(z,y) by “smooth”
functions whenever y > log?™® z or y < log®/*
do this in the range

z. However, it has proved difficult to

log*tz <y < log*** z, (11)
and it may be impossible (Hildebrand [9] conjectured that (6) does not hold for
y < log?t® ). We review what is known: '

In 1938 Rankin [15) gave the following simple but effective method to find an
upper bound: Fix any o > 0. Then

b < Y, () =2(0) (12)

n>1
P(n)<y

where

(sy)=[Ja-p"

<y

By elementary calculus we can see that in order to minimize the right hand
side of (12) we should pick o = a(z,y) to be the solution of

logmzz log p

a(z,y) -1
r<y 2 1

Actually Hildebrand and Tenenbaum [11] recently gave the estimate

_log(1+y/log )

loglog(1l+y
a(z,y) = e glog(l +y)

log y

{1+0( )b (13)




throughout the range
x>y > 2. (14)

(An estimate given, but not proved, by De Bruijn [1])

In fact Hildebrand and Tenenbaum succeeded in estimating ¥(z,y) throughout
the range (14) though, in terms of functions of prime numbers (such as in the right
hand side of (12)) which are difficult to estimate in terms of smooth functions.
Essentially they showed that one can estimate 1(z,y) asymptotically, by dividing
z%({a,y) through by :

V2mu log(i;ng) when lr — o0
V2ru(l + 1) log(1l+1t) when y=tlogz (15)

V/2my/logy when i-o—ng_: — 0

as ¢ — oo where u = log z/log y . Note how the behaviour of ¢(z,y)/z*((a,y) is
quite different depending on the behaviour of y/logz as £ — oo.

Actually this difference in behaviour, depending on the ratio y/ log z, is easily
seen in the following theorem of De Bruijn [1}, which measures only the order of
magnitude of ¥(z,y):

Theorem A  The estimate

log z y y logz
1 ~ log(1 + ——
holds uniformly in the range
ery>2,  y=atl | (1)

We define, for each ¢ > 0,
‘ F(t) = log(1 +t) +t log(1 +1/t).
Then Theorgm A may be stated as
Theorem 1 The estimate

log ¥(z,y) ~ uF(y/log z) (18)

holds uniformly in the range (17).
This estimate was derived in an elementary way by Erdos and Van Lint [6] who
gave the more aesthetically pleasing formula

bz, y) ~ (u * W(y))m(l) (19)

u




throughout the range (17).

Remark 1: It is important to note that the ratio y/logz ~ n(y)/u as y — oo.
Remark 2: In {14] (pp. 20-21) Norton criticizes both of the results (16) and (19)
given above, suggesting that neither hold for fixed u. Of course this is quite untrue
for (16), and also for (19) if one allows u! = I'(u + 1) for any positive real u.

Hildebrand and Tenenbaum [11] account for the change in behaviour of ¢(z, y)
at y around log @, as follows: If y > y(¢) and ky < (1~ ¢)log = then (J],, )k <
z by the prime number theorem, and so the numbers that do not have a prime
factorization with exceptionally high powers contribute little to (z,y); whilst this
feature does not occur when y/log « is large.

From this it seems logical to expect that the behaviour of the distribution of
(n) (the number of prime factors of n, counting repetitions) in the set S(z,y)
would change as y varies around logz. However, Hildebrand [10] has shown that if
3 < y < exp(log!/?! z) then the distribution of (n) on the set S(z,y) is roughly

. . e 2
Gaussian with mean u and standard deviation V = m(l + 1153)1/2.

(t—u)/V 2
(1e W(;l—_y—) Z 1l =~ —\/]é==‘/ e /ZdS).
) T J—co

mES(=,y)
a(m)<t

This distribution does not display a significant change in character as the ratio
y/ logz grows from 0 to oo, (i.e. the distribution of Q(n) depends more on u than
(y)) and so we must search for other explanations!

2. THE MAIN RESULTS

In this section we examine a number of other functions that count certain aspects of
the set S(z,y). In particular these functions are very “sensitive” as y/log z grows
from 0 to co. Here we shall estimate these functions when y/log z — 0 as £ — oo
and when y/log z — oo as ¢ — oo, and in the next section we investigate them
when y is a fixed multiple of log z.

The first function that we consider is 9(®(z,y) which counts the number of
squarefree integers in S(z,y): Fix e > 0.

vo<y<(l-e)logz (20)

then [] ., p < z by the pfime number theorem, and so, throughout the range (20),

p<y
11,(2)@7 y) = or(y) (21)

By Theorem 1 this gives
¥ (z,y) = $(z,9)°" (22)




uniformly when
z>y>2, y/logz — 0 as z — oo. (23)

For large y it is well known that (?)(z,z) ~ z/{(2) and Ivi¢ and Tenenbaum
[12] have shown that the estimate

(2) _ 1/)(1‘,3/) o
holds uniformly when
z>y>log?z (25)

where o = a(z,y) is given by (13).
We have the trivial bound % (z,y) < 9(z,y) and, when y/logz — oo and
U — 00 as T — 00,

P (z,y) > #{ choices of [u] distinct primes <y} = (“{EZ))

1+4+0(1)
s +u °
> ("WF T ey by 9)
Combining this with (24) for when u is bounded we have the estimate

$O(z,9) = p(zy) W (26)
uniformly in the range
z>y>2, y/logz — 00 as z — oo. (27)

Comparing (22) and (26) in the ranges (23) and (27) respectively we see that the
value of log(y(®(z,tlogz))/ log((z,tlogz)) goes from 0 to 1 (as z — oo) as ¢
ranges from 0 to co. This is precisely the sort of “threshold function” that we have

been looking for!
Define

(2) = 1 log 2 t<2
F(e) = {F(t-l) t>2

‘We shall show

Theorem 2 The estimate

log P (z,y) ~ wFP(y/log z) (28)
holds uniformly in the range (17).

In Figure 1, we give the graph of

FO() _ . log($®? (s, tlogz))
F(t)  s—eo log(d(z, tlogaz))

as t ranges from 0 to oco.




Figure 1l: Y = F(z) (t)/F(t)

In Section 5 we generahze this approach and try to estimate the order of mag-
nitude of the function %) (z,y) (for each k > 2), which counts the number of k-free
integers in S(z,y). It turns out to be very difficult when y is around log z.

The second function that we examine is ¥(z, z', v), which counts the number of
ordered pairs (m, n) of coprime integers where m € S(z,y) and n € S(z',y). This
was introduced by Gunderson [8] in his Ph.D. Thesis, who gave an explicit lower
bound similar to (4). Elsewhere [7] we will show that in the range (5), with z > z'
we have the uniform estimate, for n = 7(y),

n

] og?log™ 3 2'(1+0(

n! Hpsylogp p=

2

i

logz log y

In particular, if = = z' then by (4) we have

W(ero,) ~ (i’fé/y;)w,y) (29)

in the range (5).

Now if the pair (a,b) is counted by ¥(z, z,y) then n = ab € S(z?,y). But any
such integer n can be factored in at most 27(¥) distinct ways into an ordered pair of
coprime integers (a,b), and so ¥(z,z,y) < 27¥h(z?,y). But then, as ¢(z,z,y) >
¥(z,y) we see from Theorem 1 that

d)(xamly) = ¢($,y)l+°(1) (30)




in the range (23).
For large y it is well known that ¢(z,z;z) ~ «*/{(2) as & — oo, and, by
using methods similar to Ivié and Tenenbaum [12], one can show that the estimate

borety) = LEDUED 1 4 o, (L 4 REREUL))
holds uniformly in the range
s> 22,y (ogzloga ),
where a = a(z,y), o =a(z',y).
In particular, taking = = &' we have
#ao) = L2 4o (31)

uniformly in the range (25).
Of course Y(z,z,y) < ¥(z,y)* and

¥(z,z,y) > #{pairs of disjoint subsets A and B of {p1,...,pn} of size [u]}
> (1) (21)
—\2[u]/ \ (v
> (2, y)?t°Y  as 7w(y)/u — 0o and u — oo,
by (19). Combining this with (31) for when u is bounded we have the estimate

¥(z,3,y) = P(z,y)* T (32)

in the range (27) and so the value of log(y(z,z,tlogz))/ log(#(z, tlogz)) (as = —
c0) goes from 1 to 2 as ¢ ranges from 0 to co.
Define '

Fy(t) = log((1 + £2)*/2 + 1) + t log((1 + 1/t*)'/ +1/1).
‘We shall show

Theorem 3 The estimate
log (22,232, y) ~ uFy(y/ log z)
holds uniformly in the range (17).

In Figure 2 we give the graph of

2/ (t/2) i log ¥(z,z,t log )
F(t) =~ 2= log ¢(z,t log x)

as t ranges from 0 to oo.




Figure 2: Y = 2F2(t/2) / F(t)

If we look at the function ¥(z?,y) then we see, from Theorem 1, that (z?,y) ~
$(z,y)*+°1) in the range (23), and $(2?,y) ~ ¥(z,y)*T°() in the range (27), as
¢ — oo and so, from (30) and (32), it makes sense to compare ¥(z,z,y) with
¥(z?, y) rather than with 1(z,y). By Theorems 1 and 3 we see that

P(22,y) ~ P(z,z,y)"°P if y/logz — 0 or o0

and that if

log(1h(z*/2,z'/2, ¢ log ))
log(¢(z,1 log z))

G(t) = lim

then G(t) = F3(t)/F(t). Thus G(1/t) = G(t) and so we get a function that reaches
its maximum at ¢ = 1, which is symmetric about ¢ = 1 (logarithmically). In Figure




3 we present the graph of G(1).

Figure 3: ¥ = G(t)

Evidently this graph is very interesting as the main “difference” between
P(z/?,21/%,y) and (z,y) seems to occur abt y = log z. To interpret this we
may write .

Pla,y)= ., 1

neS(z,y)

and

'¢(m1/2,$1/2,y)= Z #{ab=n: (a,b):landa,bs.z'l/z}.

n€S(z,y)

The graph in Figure 3 tells us that for an ‘average’ element n of S(z,y), the
number of pairs of coprime divisors of n, both less than z1/2, is significant when
compared to the cardinality of S(z,y), only when y is a multiple of log z; most
significant when y = log =.




Iz

Given this interpretation it seems logical to investigate

$*z,y) =, #{ab=n:(sb)=1}

n€S(z,y)
= Y ovn,
n€S(z,y)
Now
P(z,y) < 9™(z,y) < 2°Y(z,y)
where 1
w = nerrsx?z)fy) w(n) < min{w(y), (1 + O(l))ﬁ—;—;}

by the prime number theorem; and so 2 = (z,y)°(*) by Theorem 1. Therefore
¥*(z,y) = P(z,y)*°*) in the ranges (23) and (27), and we shall show

Theorem 4 The estimate

log ¢*(z,y) ~ uF3(y/log @)
holds uniformly in the range (17).

Together with Theorem 3 this gives

log y(z'/,2'/2,y) ~ log ¥*(z,y)

throughout (17); a result which is not too surprising given the respective definitions :
of these functions. The final function that we consider is the next step up from :

¥*(z,y), namely
P (z,y) = Z #{ab=n}

n€S(z,y)

= Z 7(n)

n€S(z,y)
where 7(n) is the divisor function. In this case we have
P(z,y) < T (z,y) < 7¢(z,v)
where

v = max r(n) < minfy(z,y), 20Ok,
n z,Y




The second of the bounds is due to Wigert [16] and implies that ¥ (z,y) =
zb(m,y)l““"(l) in the range (27); the first comes from observing that any divisor
of an element of S(z,y) must itself be an element of S(z,y). We thus have

¥ (z,y) < P(z,9)° (33)

in the range (23); and so, as

(@)= Y. #lab=n:q,b <}

n€S(z,y)
< yt(z,y),

we have, from Theorem 1, that

¥ (2,y) = (e, y)" 0
in the range (23). We shall prove

Theorem 5 The estimate

log ¢t (z,y) ~ uF(2y/ log z)

holds uniformly in the range (17).

The pairs of functions %% (z,y) and ¥(z*/?,y)?, and ¢*(z,y) and
P(z1/2,21/2 y) have been seen to be closely related. We make the following:

Conjecture We have

+
1< M<Iog

1+40(1)
R CAN ) ?

and -
*(z,y 140(1)
1= b2, 2172 ) < log =

uniformly throughout (17).

Note that the lower bounds are both trivial, and that an upper bound of
0(log z) is obtained when y = z. It seems plausible that the first of these two may
succumb to the saddle point method employed in [11], though the second seems to
be much more difficult.




1

3. THE METHOD OF PROOF WHEN y IS A FIXED MULTIPLE OF
log z.

We generalize a method of proof, used by Erdds in 5], when he first estimated
log(z,y) for y a fixed multiple of logz. Let R(z,y) represent ¥ (z,y), H ) (z,y),
z/)(:cl/z,:cl/z,y), P*(z,y) or ¥*(z,y), according to which theorem we're proving!
Fix y = tlogz, z = y/logy and v = log z/loglog . We define R(«,(z,y]) as
the function we had before, but only summing over integers composed of prime
factors from the interval (z,y}. We have the inequality

R(z,y) < R(z,z) R(z,(2,9]). (34)
Now define
M(v,n) = Z 1,
ay+-tap<v
M®(y.n) = Z 1,
agttan<y
cach a;<1
v v
M(z,5.m) = ) L
SEdenSi aibi=0 for all i
ACEOIE D DR A
aygttan<v
and
M*tw,n) = Y, (a+D+1)...(an+1),
ait-tan <v

where in each sum the a;’s are non-negative integers.

If p; < --- < p,, are primes then it is clear that
G Tar+-+a. < if)—‘;% then pi*py? - - pir < x;
and
(1) IEpft---pin <z thenay+:++a, < Tlogngl—.
If we let S(v,n) represent M(v,n), M@ (v,n), M(v/2,v/2,n), M*(v,n),
M (v,n) respectively, then, from (i), we have the lower bound

R(z,y) 2 S(u,7(y)) (35)
and from (ii), the upper bound

T

Rz, (s3]) < s<§§;, #(y) — (=) (36)




In Proposition 2 we shall estimate each of the functions S and see that, for y

and z as given,
log x o
S 7))y S(iep 7) = 7(2) = S, (@) (37)

and that log S(v,7(y)) >¢ u.

From the results in Sections 1 and 2, we have estimated R(z,z) in each case
(as iz — Oas e — o0) and seen that R(z,z) = exp(o(u)).

Putting together this estimate of R(z,z) with (34), (35), (36), (37) and the
results in Proposition 2, we get the proofs of Theorems 2,3,4 and 5.

4. SOME COMBINATORICS

Proposition 1  For given positive integers v and n we have

(i My = (1)

n

(i) M®(v,n) = Z <”)

j=0 N

min(v/2,n)

! —
(#i1) If v is an even integer then M(g, 12_)’ n) = nl(v/2 4+ n — j)!

IR =) (v/2 = 5)!

3=0

(iv) M*(v,n) = "":V-:("-”) (n+v—j)!

’ = Mv=n-5)

+ 2n
Mt = (Y .

) em=("1")
Proofs: We write “c. of X%” to mean “coeflicient of X*”.
(3) M(v,n)= > c of X®in(1+X+X*+..)"

u=0

_ s 1 _fvtn
= c. of X 1-11(1—_){—)”—4_—1-—(”>




/b

(i1) M@ (v,n) = ic. of X* in (1 + X)" = Z (Z)

u=0 u=0
v/2 v/2
(i) M(3,2m)= DD e of X*¥¥in (L4 X+ Y+ X2 477+
u=0 w=0
1 X Y &
= o o X i Ty (1 TiTx 1 —Y>
_ Z ( n ><v/2) (v/Z)
irirhan \0I RS\ k
SO E
=0 (;)( i) SNk k
-2 ()
=0 J J v/2
(2v) M*(v,n) = Zc. of X* in (142X +2X%+..)"
u=0
= c. of X¥ in é%?
S CETEY)
2 =D -5)
(v) Mt(v,n) = Z c.of X*in (1 +2X +3X*+-.)"
- u=0 )
v . 1 2n 4+ v
= c. of X" in ———————-——-(1_X)2n+1 :—_( ” )

We shall now estimate these functions in each case, taking 7 & n/v.

Proposition 2. Suppose that n and v are given positive integers such that
n = 1v{l + o(1)} as v — co. Then we have the uniform estimates

(2) log M(v,n) = vF(r){1+0(1)}




(4%) log M@ (v,n) = vF®(){1+0(1)}
(42) log A{(E’ E,n) = vFp(r){1+ o(1)}
(1v) log M*(v,n) = vFy(r){1+o(1)}
(v) log Mt (v,n) = vF(27){1+ o(1)}

Proofs: (i) and (v) are immediate from the corresponding parts of Proposition 1.
In each of the remaining parts, the sums in Proposition 1 have at most n terms;

and so by estimating the largest term in each sum we bring in an error of O(log n)

which is acceptable.

(i) If v > n/2 (i.e. 752) then the term (n72) is the largest, giving the value
exp(rvlog 2{1+0(1)}). If v < n/2 (i.e. 7X2) then the term (7) is the largest,
giving rise to exp(vF®(7){1 + o(1)}).

(i) and (iv) By comparing successive terms it is easy to show that in both cases
the mazetamum term occurs where

L 14+t—A

5 and A =(1+)Y2

7
v

In both cases this gives rise to a term of size exp(v(log(t+A)+1 log(2£2)){1 +

o(1)})-

5. K-FREE INTEGERS.

Suppose k is a fixed integer, with k£ > 2, and define »*)(z,y) to be the number of
k-free integers in S(z,y). In this section we show how difficult it is to estimate such
functions when y is a fixed multiple of log =.
fyo <y < (335 —¢)log = then Hp<ypk_1 < z by the prime number theorem
and so -
¥ Bz, y) = k.

Thus we have ¥ (z,y) = ¥(z,y)°D in the range (23).
Of course it is well known that

¢(k)(m> z) ~ ¥(z, :I:)/C(k)

and, by again imitéting the methods of Ivi¢ and Tenenbaum [12] it is possible to

show that if y > log"/ "% ¢ then ¢*)(z,y) ~ ¥(z,y)/((ka) where o = a(z,y)
is given by (13).




Actually, simply by noting the trivial inequality Pp®(z,y) < z/)(k)(x,y) <
¥(z,y) we can derive, from Theorems 1 and 2, that »*)(z,y) = (z,y) o) in
the range (27).

So we are now only interested in the case where y = t log = for some fixed
value of t. Let p; < pz < - < px be the primes up to y, and u = log z/log y.

Fix €, 1 > € > 0. For any k-free integer pi* - - - pi~ in S(z,y) we have a1 +az +
-+ 4 an < u(l +€) by the prime number theorem for any z > z.. Therefore

v ®(e,tlogz) < D > 1. (38)

aytagtetax=m
LSC ) tach 4,-5).:1

Also, if a +ag + -+ axr < u then pi* - pi~ <y* =z and so

(2, tlog z) > Y > 1. (39)

m<uy e1teztrtax=m
= each aj<h—1

In (38) and (39) we are summing over less than 2u values of m and so by
estimating the largest term in each sum we bring in an error of 0(log u) in the order
of magnitude, which is negligible. Now Y a;+es+--4ex=m 1 is the coefficient of X™

each a;<h-1
gl=D)

in (14X 4+ X?+---+ X*1)™, which gets larger as m gets closer to
Therefore if u > f—(—kz:l—) (i.e. tS¢2y) then we can take m = ﬁ%—_l) (to find the
largest term) which gives

log v (z,t log z) = tu log k{1 + o(1)}. (40)
Henceforth we assume that t2 gZ; and so we take m = u{14 o(1)} which gives
log ¥ (z,t log z) = log A(k,m,u){1+0(1)} (41)
where A(k, 7, u), the coefficient of X* in (1 +X 4 ---+ X*1)" equals

( ) )
ULPRED PERRER L) T |

nydangtoet(hm1)ng _g=u
notnytedngog=w

This has < ©F~! terms, and so to determine the order of magnitude we again need
only estimate the largest term in the sum.

Suppose that in the largest term we have n; = ajw for j = 0,1,2,...,k—1, so
k—1 k—1 .
that 3°. "o aj=1land } ;"5 joj =%~ i
Then

k-1
T
= (no,nl,. 5 .,nk_1> = —WZO‘J‘ 108041'_{1 +o(1)}.

j=0

e



Thus the question that we have to answer is essentially:

k—1
minimize g aj loga;
7=0

subject to each a; = 0,

k=1 k-1 1
Zaj=1 and Zjaj=¥.
7=0

j=0

This is a classical problem in the theory of entropy which is notoriously difficult
to solve in general.
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