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SUMMARY

We introduce a general binomial model for asset prices based on the concept of random maps. The
asymptotic stationary distribution for such model is studied using techniques from dynamical systems. In
particular, we present a technique to construct a general binomial model with a predetermined stationary
distribution. This technique is independent of the chosen distribution making our model potentially useful
in financial applications. We briefly explore the suitability of our construction as an implied binomial tree.
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1. INTRODUCTION

Random dynamical systems are believed to be a useful framework for modelling and analysing
of economic phenomena with stochastic components Schenk-Hoppe [1]. We are interested in
developing techniques in theory of dynamical systems which can be implemented in finance.
Here, we present one possible application that uses the concept of random maps.
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A position-dependent random map is a discrete time random dynamical system consisting of
a collection of transformations that, at each iteration, are selected and applied randomly by
means of position-dependent probabilities. Such a structure could be used as a generalized
binomial model as those discussed in Cox et al. [2], Rubinstein [3] and Derman and Kani [4].

In the early years of modern financial mathematics, Cox et al. [2] proposed a binomial
approximation to option pricing. This binomial approach has become a favourite among
practitioners since it yields approximations for a wide variety of options that cannot be
approached otherwise (see for instance, Cakici and Foster [5] or Hui [6]). Binomial option
pricing models and their convergence to continuous-time models have been extensively studied
eversince. For instance, Rachev and Ruschendorf [7] explore the question of which continuous-
time models arise as limits of generalized binomial models. Hubalek and Schachermayer [8]
explore the conditions needed to ensure that convergence of a general binomial prices imply
convergence of option prices for general binomial models. And Diener and Diener [9] explore
the nature of the convergence of binomial models.

Here, we use dynamical systems techniques to construct a generalized binomial model as
those previously studied in the financial literature (see Hubalek and Schachermayer [8], Nelson
and Ramaswamy [10], Jackwerth [11] and the references therein). One appealing feature of this
model is the existence of an invariant asymptotic density. This mimics the motivation behind the
use of stationary diffusion models in finance. Continuous time diffusion models with stationary
densities have been proposed in the literature as appealing asset returns models, for instance,
Rydberg [12] introduces a family of an ergodic diffusion with a predetermined stationary
distribution. Binomial models as approximations to diffusions have been studied in Nelson and
Ramaswamy [10], in view of which, our model can be naturally interpreted as the discretization
of a diffusion.The novelty of our model lies in the fact that Theorem 6.9 allows us to construct a
binomial tree that has any given desired distribution as its invariant density. Our techniques are
based on the position-dependent random map model and its Perron–Frobenius operator. We
prove our results theoretically and we produce a programme which computes the components of
a binomial model whose stationary density is the desired one. A pedagogical version of this
program, that constructs a stationary binomial model from any desired lognormal distribution,
is available at http://www.mathstat.concordia.ca/pg/Economics200s.zip.

Our construction might be of interest to practitioners as well since our method can be used to
extract an implied binomial tree from a given risk-neutral density previously inferred from
option prices, i.e. our model can produce a stochastic model from a set of option prices
(provided we know how to extract a risk-neutral density from these prices). Implied binomial
trees were introduced in Rubinstein [3], Derman and Kani [4] and Dupire [13] as a mean to
empirically study option prices and to price less-traded options in a market-consistent way. Ever
since, there has been a substantial amount of articles discussing further the construction of
binomial trees from observed option prices. Relevant articles in the late 1990s are by Jackwerth
[14], Derman and Kani [15], Barle and Cakici [16], Dumas et al. [17], Brown and Toft [18] and
Britten-Jones and Neuberger [19]. More recent articles are Jackwerth and Rubinstein [20] and Li
[21]. They all analyse the problem of extracting, from observed option prices, information on the
stochastic process behind the underlying asset. Such implied trees were consistent with the
volatility smile and were risk-neutral at each step. Since our construction starts from any given
density, our model can be very well used to construct an implied binomial tree.

The main purpose of this note is to introduce a novel construction of a binomial tree using
random maps. The key feature of this model is that it can be built to have any desired stationary
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density. As an application, we argue that this construction could be used to produce implied
binomial trees. This paper is organized as follows. In Section 2 we present some preliminaries
from stochastic analysis. In Section 3 we formulate the definition of a position-dependent
random map and introduce its Perron–Frobenius operator. In Section 4 we prove an ergodic
theorem that will be needed in our application. In Section 5, we build a binomial model from a
position-dependent random map and present an illustration. In Section 6, we first address the
inverse problem of the Perron–Frobenius operator of position-dependent random maps. Then
we present a method and a computer program to construct binomial models from any density
suitable for financial applications. In Section 7, we discuss some interesting features of our
construction. We argue that our binomial tree can be considered as an implied binomial tree
since this can be built up from a risk-neutral distribution potentially extracted from option
prices. This would produce a binomial tree that is consistent with the market in an stationary
way. Section 8 presents a method of approximating the invariant density of any given binomial
model. In Section 9, we present an interesting modification to our model using a perturbed
radom map.

2. PRELIMINARIES

In this section we present some definitions and notions that will be needed to construct our
model. In particular, we state the definition of stationary probability for a Markov process.

Definition 2.1
Let ðX ;B; lÞ be a probability space. A function P : X �B! ½0; 1� is called a stochastic
transition function if it has the following properties:

(i) for any A 2 B; Pð�;AÞ : X ! ½0; 1� is a B-measurable function;
(ii) for any x 2 X ; Pðx; �Þ : B! ½0; 1� is a measure.

We can define a Markov process by a transition function P: Let l be a probabilistic measure
on B called initial probability. Then we define all probabilities related to the Markov process
fXngn50 using l and P:

PðX0 2 AÞ ¼ lðAÞ

PðX1 2 AjX0 ¼ xÞ ¼ Pðx;AÞ

PðX1 2 AÞ ¼
Z
X

Pðx;AÞ dlðxÞ ð1Þ

and in general:

PðXnþ1 2 AjXn ¼ xÞ ¼ Pðx;AÞ
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PðXnþ1 2 AÞ ¼
Z
X

� � �
Z
X|fflfflfflfflffl{zfflfflfflfflffl}

ðnþ1Þ-times

dl ðx0ÞPðx0;dx1ÞPðx1;dx2Þ � � �Pðxn�1; dxnÞPðxn;AÞ ð2Þ

The n-step transition probability function Pn is

Pnðx;AÞ ¼PfXn 2 AjX0 ¼ xg

¼
Z
X

� � �
Z
X|fflfflfflfflffl{zfflfflfflfflffl}

ðn�1Þ-times

Pðx0;dx1ÞPðx1; dx2Þ � � �Pðxn�2; dxn�1ÞPðxn�1;AÞ ð3Þ

Equivalently, Markov process can be understood as a measure on the product space Xþ ¼
XN[f0g given by

PðA0 � A1 � � � � � AnÞ ¼ PðX0 2 A0;X1 2 A1; . . . ;Xn 2 AnÞ

for all n51 and A0;A1; . . . ;An 2 B:
The following two notions will be crucial in our application.

Definition 2.2
A measure m on B is called a stationary (or invariant) probability measure for a Markov process
with transition probability function P if

mðAÞ ¼
Z
X

dmðxÞPðx;AÞ ð4Þ

for all A 2 B: Then, obviously mðAÞ ¼
R
X
dmðxÞPnðx;AÞ:

Definition 2.3
A Markov process with stationary density m is ergodic if and only if, when Pðx;AÞ ¼ 1 for all
x 2 A implies mðAÞ ¼ 0 or mðAcÞ ¼ 0:

Definition 2.4
A set A 2 B is ergodic with respect to a stationary measure m of a Markov process if and only if
Pðx;AÞ ¼ 1 for all x 2 A implies mðAÞ ¼ 0 or mðAcÞ ¼ 0:

Now, we state a theorem for Markov processes concerning its stationary distribution. It is
taken from Doob [22] and it requires the following hypothesis.

Hypothesis
There is a finite measure f on B with fðXÞ > 0; an integer j51; and a positive e such that

fðAÞ4e) PðjÞðx;AÞ41� e

for all x 2 X :

Theorem 2.5
If the hypothesis holds, then the limit

mðAÞ ¼ lim
n!1

Pnðx;AÞ
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exists for any A 2 B and is independent of the initial point x: The measure m is a stationary
measure for the Markov process.

Moreover, for any B-measurable function f with

Efjf ðX1Þjg ¼
Z
O
jf ðxÞjmðdxÞ51

the limit

lim
n!1

1

n

Xn
m¼1

f ðXmÞ

exists with probability one. In particular, under the above hypothesis, if there is only one
ergodic set

lim
n!1

1

n

Xn
m¼1

f ðXmÞ ¼
Z
X

f ðxÞmðdxÞ

with probability one.

3. POSITION-DEPENDENT RANDOM MAPS

In this section we define a position-dependent random map as a Markov process and discuss the
existence of its stationary density. This is formulated via the Perron–Frobenius operator of the
random map.

Let tk : X ! X ; k ¼ 1; . . . ;K ; be piecewise one-to-one, non-singular transformations on a
common partition P of X : P ¼ fI1; . . . ; Iqg and let tki ¼ tkjIi ; i ¼ 1; . . . ; q; k ¼ 1; . . . ;K be
their restrictions to the sets I1; . . . ; Iq:

Definition 3.1
We define the position-dependent random map

T ¼ ft1; . . . ; tk; p1ðxÞ; . . . ; pkðxÞg

as Markov process fTngn50 with transition function

Pðx;AÞ ¼
XK
k¼1

pkðxÞwAðtkðxÞÞ ð5Þ

where A is any measurable set and fpkðxÞg
K
k¼1 is a set of position-dependent measurable

probabilities, i.e.
PK

k¼1 pkðxÞ ¼ 1; pkðxÞ50; for any x 2 X and wA denotes the characteristic
function of the set A:

The structure of such defined Markov process fTngn50 can be understood from its state
probabilities.

PðT0 2 AÞ ¼ lðAÞ

PðT1 ¼ tkðxÞjT0 ¼ xÞ ¼ Pðx; tkðxÞÞ ¼ pkðxÞ; k ¼ 1; . . . ;K ð6Þ
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and in general:

PðTnþ1 ¼ tkðxÞjTn ¼ xÞ ¼ Pðx; tkðxÞÞ ¼ pkðxÞ; k ¼ 1; . . . ;K ð7Þ

At each step nþ 1 and given a previous state Tn ¼ x; the process Tnþ1 can take K different
possible states t1ðxÞ; . . . ; tK ðxÞ with probabilities p1ðxÞ; . . . ; pK ðxÞ respectively. Note that the
states as well as the probabilities depend on the previous state x through the functions tk and pk:
In other words, they are position dependent.

After n steps and given an initial value T0 ¼ x; the Marvov process can take one of the Kn

possible different ordered ways in which K transformations can be iterated n times. We denote
by TnðxÞ ¼ tkn8tkn�18 � � � 8tk1 ðxÞ one of such n-order iterations. Then, the n-step transition
probability function Pn of the random map is

Pnðx;TnðxÞÞ ¼PfTn ¼ TnðxÞjT0 ¼ xg

¼ pknðT
n�1ðxÞÞ � pkn�1 ðT

n�2ðxÞÞ � � � pk2ðT
1ðxÞÞ � pk1ðxÞ ð8Þ

In other words, at each step we are defining TðxÞ ¼ tkðxÞ with probability pkðxÞ: The steps of
size n are defined as TnðxÞ ¼ tkn8tkn�18 � � � 8tk1 ðxÞ with probability pkn ðtkn�18 � � � 8tk1 ðxÞÞ � pkn�1 �
ðtkn�28 � � � 8tk1 ðxÞÞ � � � pk1ðxÞ:

The transition function P induces an operator P
*
on measures on ðX ;BÞ defined by

P
*
mðAÞ ¼

Z
Pðx;AÞ dmðxÞ

¼
XK
k¼1

Z
pkðxÞwAðtkðxÞÞ dmðxÞ

¼
XK
k¼1

Xq
i¼1

Z
t�1
ki
ðAÞ

pkðxÞ dmðxÞ ð9Þ

The standard notion of a measure invariant (stationary) for a Markov process gives the
following definition of the T-invariant measure.

Definition 3.2
T preserves a measure m if and only if

mðAÞ ¼
XK
k¼1

Z
t�1
k
ðAÞ

pkðxÞ dm

for any A 2 B:

If m has density f with respect to l; the P
*
m has also a density which we denote by PTf : By

change of variables, we obtainZ
A

PTf ðxÞ dlðxÞ ¼
XK
k¼1

Xq
i¼1

Z
t�1
ki
ðAÞ

pkðxÞ f ðxÞ dlðxÞ

¼
XK
k¼1

Xq
i¼1

Z
A

pkðt�1ki
xÞf ðt�1ki

xÞ
1

Jki ðt
�1
ki
Þ
dlðxÞ ð10Þ
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where Jki is the Jacobian of tki with respect to l: Since this holds for any measurable set A we
obtain an a.e. equality:

ðPTf ÞðxÞ ¼
XK
k¼1

Xq
i¼1

pkðt�1ki
xÞf ðt�1ki

xÞ
1

Jki ðt
�1
ki
Þ
wtkðIiÞðxÞ ð11Þ

or

ðPTf ÞðxÞ ¼
XK
k¼1

Ptkðpkf ÞðxÞ ð12Þ

where Ptk is the Perron–Frobenius operator corresponding to the transformation tk Boyarsky
and Góra [23]. We call PT the Perron–Frobenius operator of the random map T : The properties
of PT resemble the properties of the traditional Perron–Frobenius operator. Obviously, PTf

n ¼
f n if and only if f nl is T-invariant. In particular, m ¼ f nl is unique if and only if f n is the unique
fixed point of PT :

4. ERGODIC THEOREM

In this section X ¼ ½a; b�: To prove that T admits a finite number (at least one) of ergodic
absolutely continuous invariant measure on ½a; b�; it is enough to prove that for any f 2 BVðXÞ
there exist an n 2 N; and real numbers A;B such that

jjPn
Tf jjBV4Ajjf jjBV þ Bjjf jj1 ð13Þ

where 05A51 and 05B51 (see Boyarsky and Góra [23] for (13) and Dunford and Schwartz
[24] for BV).

Following Elton [25], let

O ¼ K1 ¼ fðk1; k2; . . .Þ : 14kj4K and kj is an integer for each jg

Let A be the s-algebra generated by the cylinders in O: For each x 2 X ; let Px be the probability
measure on A defined on cylinders by

Pxððk1; k2; . . . ; knÞÞ ¼ pkn ðtkn�18 � � � 8tk1ðxÞÞ � pkn�1ðtkn�28 � � � 8tk1 ðxÞÞ � � � pk1 ðxÞ

This is the probability measure for realizations of the Markov process starting at x: For
instance, if we consider a Markov process fZn; n ¼ 0; 1; . . .g with state space X and transition
probability P as defined above, then

PððZ0;Z1; . . .Þ 2 BjZ0 ¼ xÞ ¼ Pxfðk1; k2; . . .Þ : ðx; tk1 ðxÞ; tk2 ðtk1 ðxÞÞ; . . .Þ 2 Bg

for any B 2 B:

Theorem 4.1
If m is T-invariant, m is absolutely continuous and unique among absolutely continuous
invariant measures, PT satisfies (13), then for almost every m point x with probability 1

1

n

Xn�1
i¼0

f ðTiðxÞÞ ! mðf Þ

for any f 2 L1ðX ;mÞ:
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Proof
Let fZng be the Markov process with transition probability P such that Z0 has distribution m:
Then the process is stationary since m is an invariant measure and it is ergodic by (13). Let
f 2 L1ðX ; lÞ: Define

L ¼ ðx0; x1; . . .Þ 2 X1 :
1

n

Xn�1
j¼0

f ðxjÞ !
Z

f dm

( )

By Theorem 2.5,

PððZ0;Z1; . . .Þ 2 LÞ ¼ 1 ð14Þ

Observe that

PððZ0;Z1; . . .Þ 2 LÞ ¼
Z

PððZ0;Z1; . . .Þ 2 LjZ0 ¼ xÞ dmðxÞ

¼
Z

Pxððk1; k2; . . .Þ : ðx; tk1 ðxÞ; tk2 ðtk1 ðxÞÞ; . . .Þ 2 LÞ dmðxÞ ð15Þ

Then by (14) and (15) we have

Px0 ððk1; k2; . . .Þ : ðx0; tk1 ðx0Þ; tk2 ðtk1 ðx0ÞÞ; . . .Þ 2 LÞ ¼ 1

for some x0 2 X :
Let H ¼ fððk1; k2; . . .Þ : ðx0; tk2 ðtk1 ðx0ÞÞ; . . .Þ 2 LÞg: Thus, Px0 ðHÞ ¼ 1 and for ðk1; k2; . . .Þ 2 H;

1

n

Xn�1
j¼0

f ðtkj 8 � � � 8tk1 ðx0ÞÞ !
Z

f dm

Thus, for almost every m point x with probability 1

1

n

Xn�1
i¼0

f ðTiðxÞÞ ! mðf Þ

for any f 2 L1ðX ;mÞ: &

5. GENERALIZED BINOMIAL MODELS

In a now classical paper, Cox et al. [2] proposed a binomial model for asset prices that has played
an important role in modern mathematical finance. The binomial model is a simple yet very
important model for the price of a single risky security, it is easy to implement and it can be used
to price options in a very straight-forward manner. It has been largely studied in the context of
option pricing (He [26], Hubalek and Schachermayer [8], Rachev and Ruschendorf [7], Jackwerth
[11] and references therein). Its simple structure makes it suitable to approximate option prices
when other methods are not available. In this section, we present a generalized binomial model
that has not been explored before in the literature. We use the concept of random maps to
introduce position-dependent jumps and probabilities. The generalization discussed in this section
stems from our previous discussion on random maps. At each step, our binomial model will
branch out to new states, that depend on the current position, with probabilities that also depend
on the current position. In other words, the probability of our price going down (or up) in the next
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period, is price dependent. This also applies to the price changes, prices decrease (or increase) at
each period at different rates that depend on the current price. This is an interesting feature, one
would expect that as information becomes available the sizes and chances of certain up- or down-
movements change from one instant to another. As an extra feature, this model has asymptotic
properties that could be of interest in financial applications.

The classical binomial model studies one risky security price s1: At each period there are two
possibilities: the security price may go up by a factor u or it may go down by a factor d; i.e.
s1ðnÞ ¼ u � s1ðn� 1Þ or s1ðnÞ ¼ d � s1ðn� 1Þ; n ¼ 1; 2; . . . is the time. The probability of an up
move during a period is equal to the parameter %pu; and the probability of going down is %pd ¼
1� %pu: The random maps discussed in previous sections lead to a natural extension of this model.

We define a multiperiod multinomial model as follows:

1. tþ 1 trading dates: n ¼ 0; 1; . . . ; t; T ¼ f0; 1; . . . ; tg; where the trading horizon t is treated
as the terminal date of the economic activity being modelled.

2. A finite probability space O with K51 elements:

O ¼ fo1;o2; . . . ;oKg

3. A probability measure %P on O with a %PðoÞ > 0 for all o 2 O:
4. A bank account (or riskless asset) process B ¼ fBn; n ¼ 0; . . . ; tg; where B is a stochastic

process with B0 ¼ 1; BnðoÞ > 0 for all n and Bn is the value of the bank account at time n:
The quantity rn � ðBn � Bn�1Þ=Bn�150; n ¼ 1; . . . ; t is the interest rate in the interval
ðn� 1; nÞ: We suppose that the interest rate is constant over time and in some situations,
without loss of generality, we suppose it is equal to 1.

5. A risky security process s ¼ ðs1ðnÞ . . . ; sLðnÞÞ; n ¼ 0; 1; . . . ; t; where sl is a Markov process for
l ¼ 1; . . . ;L: slðnÞ is the price of the risky security l at time n: For example, sl is the price of
one share of common stock of a particular corporation. In our discussion, we deal with L ¼ 1:

6. Let F ¼ fFn; n ¼ 0; . . . ; tg be a filtration defined on ½0; 1�; with the Lebesgue measurable
sets B; where Fn is the smallest sub-s-algebra generated by

ðs1ð0Þ; . . . ; s1ðnÞÞ

The measure we consider is the invariant measure for the transition function of Markov
process s1:

We assume that the price of the sl risky security is an adapted, i.e. s1ðnÞ is Fn measurable,
stochastic process. Thus, the investors will have full knowledge of the past and present prices.
For instance, at time n slðnÞ will be known.

The prices of the securities are assumed to be smaller than a finite number (see Remark 5.1);
i.e. the prices have an upper bound M 2 R; 05M51; such that 05slðnÞ5M:We normalize the
prices over M so that

05slðnÞ51

for 14l4L and n ¼ 0; . . . ; t:

Remark 5.1
Discrete time models are used to estimate continuous-time models over a finite period of time.
Thus, the above assumption is natural.
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Without loss of generality, we focus our attention on the one-asset binomial model. Now, we
start to depart from the classical approach, we assume that the factors u and d are functions of
the prices, uðxÞ : ð0; 1Þ ! ð1;1Þ and dðxÞ : ð0; 1Þ ! ð0; 1Þ; i.e. at time n; u and d depend on the
price of the risky security s1 at time n� 1: The examples of u and d are: u and d are constant
over subsets of ð0; 1Þ; u and d are piecewise linear or piecewise non-linear over ð0; 1Þ: Similarly,
the probabilities %pu and %pd can be constant or price dependent. Price-dependent probabilities are
more general and, perhaps, more realistic. One can argue that the probability of an actual asset
price going up or down in a trading market is not constant in time and may depend on current
price. This could be explained by the fact that, as market prices unfold, certain up- or down-
movements become more likely than others.

Another interesting feature of this model is that the functions u; d; and the probabilities %pu
and %pd can be explicitly obtained from any stationary density we specify for the model. In other
words, if we know (or assume) the stationary density that our asset price should have, then we
can recuperate the correct functions and probabilities. This feature makes our model somehow
similar to those ergodic diffusion processes proposed in the literature as asset models (see
Rydberg [12]). This is discussed in Section 7.

Given the functions uðxÞ; dðxÞ and the probabilities %pu and %pd at time n ¼ 0; we can construct
the random map T which consists of the transformations tu; td and the position-dependent
probabilities pu and pd : The subscript u for tu illustrates that the transformation tu is the law
which moves the price up and the subscript d for td illustrates that the transformation td is the
law which moves the price down. The construction of the random map T is straightforward. At
time nþ 1; consider the up price to be tuðs1ðnÞÞ and the down price to be td ðs1ðnÞÞ: Also
s1ðnþ 1Þ ¼ uðs1ðnÞÞ � s1ðnÞ or s1ðnÞ ¼ dðs1ðnÞÞ � s1ðnÞ: Therefore, the transformations tu and td
are given by the following formulas:

tuðxÞ ¼ uðxÞ � x and tdðxÞ ¼ dðxÞ � x ð16Þ

Moreover, we extend tu and td from ð0; 1Þ to the closed interval ½0; 1� continuously. For the
probabilities, we assume %pu ¼ pu and %pd ¼ pd :

We now give a first example to help illustrate the structure of our model. One interesting
property of our construction is that the functions u and d are defined piecewise. This could be
used to mimic features actually observed in asset prices like the negative correlation between
stock returns and volatility. For instance, in our toy example we choose the functions u and d;
which are the derivatives of tu and td ; in such a way that when the price increases the variability
decreases and vice versa. The full consequence of this choice can be observed in Figure 1 where
the stationary density is depicted. Recall that prices are set to lie in the interval ½0; 1�: In Figure 2
we show one possible trajectory of the binomial tree in this example.

Example 5.2
Suppose uðxÞ; dðxÞ; %pu and %pd are given

uðxÞ ¼

2; 05x5
1

2

5

4
þ

1

10x
;

1

2
4x4

2

3

3

4
þ

1

4x
;

2

3
5x51

8>>>>>>><
>>>>>>>:

ð17Þ
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dðxÞ ¼

1

2
; 05x5

1

2

3

4
�

1

8x
;

1

2
4x4

2

3

3

2
�

1

2x
;

2

3
5x51

8>>>>>>><
>>>>>>>:

ð18Þ

and

%puðxÞ ¼

0:8; 04x5
1

2

0:725;
1

2
4x4

2

3

0:4;
2

3
5x41

8>>>>>>><
>>>>>>>:

ð19Þ

Figure 1. The invariant density of T in Example 5.2, histogram after 2 000 000 iterations.

Figure 2. One trajectory of the binomial tree in Example 5.2.
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%pdðxÞ ¼ 1� puðxÞ

Observe that uðxÞ51 and dðxÞ41: From uðxÞ; dðxÞ; %puðxÞ and %pdðxÞ; we construct a random
map T ¼ ftuðxÞ; tdðxÞ; puðxÞ; pd ðxÞg

tuðxÞ ¼

2x; 04x5
1

2

5

4
xþ

1

10
;

1

2
4x4

2

3

3

4
xþ

1

4
;

2

3
5x41

8>>>>>>><
>>>>>>>:

ð20Þ

tdðxÞ ¼

1

2
x; 04x5

1

2

3

4
x�

1

8
;

1

2
4x4

2

3

3

2
x�

1

2
;

2

3
5x41

8>>>>>>><
>>>>>>>:

ð21Þ

puðxÞ ¼ %puðxÞ and pdðxÞ ¼ %pdðxÞ: For example, if the price of the risky security at time n ¼ 0 is
0.25, then the orbit of the price at times n ¼ 1; 2 is given by

�!
pu¼0:725; u¼1:45

tuð0:5Þ ¼ 0:725

%

�!
pu¼0:8; u¼2

tuð0:25Þ ¼ 0:5

% &

�!
pd¼0:275; d¼0:5

tdð0:5Þ ¼ 0:25

s1ð0Þ ¼ 0:25

�!
pu¼0:8; u¼2

tuð0:125Þ ¼ 0:25

& %

�!
pd¼0:2; d¼0:5

tdð0:25Þ ¼ 0:125

&

�!
pd¼0:2; d¼0:5

tdð0:125Þ ¼ 0:0625

ð22Þ

Note that for each starting value we have one binomial tree as the one shown in (22). Given a
starting value x; this tree describes all the possible paths the asset price might take in very much
the same way as the classical binomial model does. Unlike the classical model, these trees
expand or contract as the starting value changes (the structure of the tree remains unchanged for
all starting values in the classical binomial model). The classical model can be obtained by
setting all functions u; d and p to be constant.
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What makes this model interesting is the fact that it accepts a stationary density. The
following theorem is the existence theorem of Bahsoun and Góra [27].

Theorem 5.3
Let T be as above. If

PK
k¼1 pkðxÞ=jt0kj4a51; and pkðxÞ=jt0kj 2 BVðIÞ (BVðIÞ is the space of

functions of bounded variation, see Dunford and Schwartz [24] for details) then T admits a
finite number (at least one) of ergodic absolutely continuous invariant measure.

Remark 5.4
The condition

PK
k¼1 pkðxÞ=jt0kj4a51; in Theorem 5.3 simply requires that the tree expands in

average as it branches out and it does not concentrate in a single point. This is a natural
condition to ask from a financial binomial tree.

Now, observe that

sup
x

puðxÞ
jt0uðxÞj

þ sup
x

pdðxÞ
jt0d ðxÞj

¼ 0:58þ 0:4 ¼ 0:9851

Remark 5.5
The random map T of Example 5.2 satisfies the assumptions of Theorem 5.3. Thus, it admits an
absolutely continuous invariant measure. In Figure 1, the histogram approximating the
invariant density of T is shown after 2 000 000 iterations of random map T : The invariant
density allows us to find the following probability: mfx : TðxÞ 2 ðd1; d2Þg ¼ mðd1; d2Þ; where m ¼
f nl; f n is the invariant density. Note that it is concentrated towards relatively large values but
small values are still fairly possible. In other words, our price process will more likely have an
upward trend but if and when it goes down, it can do so by a significant percentage.

One key feature of our model is that it can be constructed from any given discretized density
as we will see in the next section.

6. CONSTRUCTING BINOMIAL MODELS WITH A PREDETERMINED
STATIONARY DENSITY

Binomial trees have always played an important role in financial modelling. In the early days,
Cox et al. [2] showed how binomial trees provided a simple way of understanding the Black–
Scholes option pricing model. Later, Rubinstein [3], Derman and Kani [4] and Dupire [13]
showed how an implied binomial tree could be extracted from actual option prices. Under
certain assumptions, a large set of option prices would contain all information on the stochastic
process driving the underlying. Implied binomial trees can be seen as a discrete version of the
stochastic process behind the behaviour of the underlying asset price. Recovering such a random
process from actual option prices seems to be a recurrent topic in the financial literature.
Jackwerth and Rubinstein [28] and Li [21] are some recent examples.

One important problem in the literature is the search for a model that can explain the
relationship among option prices of different strikes and maturities as described by the implied
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volatility surface. Among all existing models capable of doing that, binomial trees seem to
occupy an important place because of their simplicity (empirical studies can be found in Dumas
et al. [17] and Jackwerth and Rubinstein [28]). In this context, the search for an algorithm for
constructing an implied binomial is highly desirable. Since our model can be easily constructed
from any given density, we believe that it can be of interest.

In the following we assume that we have a suitable density for our asset price and from which
we can recover one binomial tree having that density as its stationary law. As we will see, this
density could be chosen to be a suitable distribution within a parametric model (Rydberg [12]
for instance). It can also be chosen to be a risk-neutral probability density obtained from option
prices. The problem of extracting risk-neutral densities from option prices has also been a
subject of study in the recent years. Jackwerth and Rubinstein [20], Bahra [29], Ait-Sahalia and
Lo [30] and Constantinides et al. [31] are some examples.

We first address the inverse problem of the Perron–Frobenius operator of position-dependent
random maps. Then we introduce the notion of @-band random map and explain how these are
related to our problem. Using these matrices we produce a computer program which
approximates the binomial model of a given probability density function. As discussed before,
this is relevant for our model since it will allow us to construct a binomial model (through the
specification of the functions t and p) with a predetermined stationary density.

Let P ¼ fI1; . . . ; INg be a partition of I ¼ ½a; b� ¼ ½0; 1� into intervals. We put ½a; b� ¼ ½0; 1� to
unify the notation in our exposition.

Definition 6.1
A transformation t : I ! I is called P-Markov if, for any i ¼ 1; . . . ;N; tjIi is monotonic and
tðIiÞ is a union of intervals of P:

In the following result we characterize the shape of all possible invariant densities
of our random map binomial model. It turns out that the invariant density for our
model are piecewise constant functions. This is a nice feature since it will allow us to easily
approximate any continuous density with the invariant density of a random map binomial
model.

Theorem 6.2
Let T ¼ ft1; . . . ; tK ; p1ðxÞ; . . . ; pK ðxÞg: Suppose that tk is P-Markov and piecewise linear, pk is
piecewise constant over P; k ¼ 1 . . .K : We also assume that

XK
k¼1

sup
x

pkðxÞ
jt0kðxÞj

4a51

Then any T-invariant density is constant on intervals of P:

Proof
By the existence result of Bahsoun and Góra [27], there exists a T-invariant density f ; i.e.
PTf ¼ f ; and it is of bounded variation on I : Moreover,

PTf ðxÞ ¼
XK
k1¼1

XN
i¼1

f ðt�1k1;i
ðxÞÞ

pkðt�1k1;i
ðxÞÞ

jtk1;i0 j
wtk1 ;iðIiÞðxÞ ¼ f ðxÞ
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Note that jt0k1;ij and pk1 are constants on Ii; pk1;i ¼ pk1jIi ; and that f is identically zero outside the
range of tk1 ; k1 ¼ 1; . . . ;K : Let Iq 2 P: Then Iq � tk1 ðIiÞ; with i depending on k1: Let x; y 2 Iq be
distinct points. Then wtk1 ;iðIiÞðxÞ ¼ wtk1 ;iðIiÞðyÞ for all i: Thus,

f ðxÞ � f ðyÞ ¼PTf ðxÞ � PTf ðyÞ

¼
XK
k1¼1

XN
i¼1

pk1;i

jt0k1;ij
½f ðt�1k1;i

ðxÞÞ � f ðt�1k1;i
ðyÞÞ�wtk1 ;iðIiÞðxÞ

¼
XK
k1¼1

X
i1ðk1Þ

pk1;i1ðk1Þ

jt0k1;i1ðk1Þj
½f ðt�1k1;i1ðk1ÞðxÞÞ � f ðt�1k1;i1ðk1ÞðyÞÞ�

4
XK
k1¼1

sup
x

pk1
jt0k1 j

X
i1ðk1Þ

½f ðt�1k1;i1ðk1ÞðxÞÞ � f ðt�1k1;i1ðk1ÞðyÞÞ� ð23Þ

where for notational convenience, we let the index i1ðk1Þ run through all the integers
i 2 f1; . . . ;Ng such that x 2 tk1;iðIiÞ: Similarly, for each i1ðk1Þ;

½f ðt�1k1;i1ðk1ÞðxÞÞ � f ðt�1k1;i1ðk1ÞðyÞÞ�

¼
XK
k2¼1

X
i2ðk2Þ

pk2;i2ðk2Þ

jt0k2;i2ðk2Þj
½f ðt�1k2;i2ðk2Þt

�1
k1;i1ðk1ÞðxÞÞ � f ðt�1k2;i2ðk2Þt

�1
k1;i1ðk1ÞðyÞÞ� ð24Þ

and so on. Therefore,

jf ðxÞ � f ðyÞj4
XK
k1¼1

sup
x

pk1
jt0k1 j

X
i1ðk1Þ

½f ðt�1k1;i1ðk1ÞðxÞÞ � f ðt�1k1;i1ðk1ÞðyÞÞ�

4
XK
k1¼1

XK
k2¼1

sup
x

pk1
jt0k1 j

sup
x

pk2
jt0k2 j

X
i1ðk1Þ

X
i2ðk2Þ

½f ðt�1k2;i2ðk2Þt
�1
k1;i1ðk1ÞðxÞÞ

� f ðt�1k2;i2ðk2Þt
�1
k1;i1ðk1ÞðyÞÞ�

..

.

4
XK
k1¼1

� � �
XK
kn¼1

sup
x

pk1
jt0k1 j
� � � sup

x

pkn
jt0kn j

X
i1ðk1Þ

� � �
X
inðknÞ

½f ðt�1kn;inðknÞ . . . t
�1
k1;i1ðk1ÞðxÞÞ

� f ðt�1kn;inðknÞ . . . t
�1
k1;i1ðk1ÞðyÞÞ� ð25Þ

Now, since all tk’s are piecewise monotonic on the same partition, for each fixed sequence
ðk1; . . . ; knÞ

ft�1kn;inðknÞ . . . t
�1
k1;i1ðk1ÞðxÞ; t

�1
kn;inðknÞ . . . t

�1
k1;i1ðk1ÞðyÞg
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is a finite collection of at most Nn non-overlapping intervals for each n: Therefore,
each multiple sum over in inðknÞ; . . . ; i1ðk1Þ in (25) is bounded above by variation of f ; VIf :
Thus,

jf ðxÞ � f ðyÞj4
XK
k1¼1

� � �
XK
kn¼1

sup
x

pk1
jt0k1 j
� � � sup

x

pkn
jt0kn j

VIf4an � VIf5e ð26Þ

for n large enough. Therefore, f ðxÞ ¼ f ðyÞ; and f is constant on Iq: &

Now we define the class of P-semi-Markov transformations.

Definition 6.3
A transformation t : I ! I is called P-semi-Markov if there exist disjoint intervals Q

ðiÞ
j ; such

that for any i ¼ 1; . . . ;N; we have Ii ¼
SqðiÞ

j¼1 Q
ðiÞ
j ; tjQðiÞj

is monotonic and tðQðjÞj Þ 2 P:

It is easy to see that any P-Markov transformation is P-semi-Markov and that there exist
P-semi-Markov transformations that are not P-Markov.

The following theorem generalizes Theorem 6.2:

Theorem 6.4
Let T ¼ ft1; . . . ; tK ; p1ðxÞ; . . . ; pK ðxÞg: Suppose that tk is P-semi-Markov and piecewise linear
on Q

ðiÞ
j ; such that for any i ¼ 1; . . . ;N; pk is piecewise constant over P; k ¼ 1 . . .K : We also

assume that XK
k¼1

sup
x

pkðxÞ
jt0kðxÞj

4a51

Then any T-invariant density is constant on intervals of P:

Proof
It is easy to see that tk’s are Q-Markov, where Q ¼ fQðiÞj : 14j4qðiÞ; 14i4Ng: Let f be a
T-invariant density. By Theorem 6.2, f is constant on intervals Q

ðiÞ
j : Let f

ðiÞ
j be the value of f

on Q
ðiÞ
j :

Let us fix 14i04N; and let 14j1; j24rði0Þ:
The Frobenius–Perron equations for a t-invariant density yield

f
ði0Þ
j1
¼
XK
k¼1

X
ði;jÞ

pkðt
ðiÞ
k;jÞ
�1jðtðiÞk;jÞ

0j�1f ðiÞj

f
ði0Þ
j2
¼
XK
k¼1

X
ði;jÞ

pkðt
ðiÞ
k;jÞ
�1jðtðiÞk;jÞ

0j�1f ðiÞj

where tðiÞk;j ¼ tkjQðiÞj
; and the sums are over all pairs ði; jÞ such that tkðQ

ðiÞ
j Þ ¼ Pi0 : Since both sums

on the right-hand side of the equations are equal, f
ði0Þ
j1
¼ f

ði0Þ
j2
: &
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Now we define a Frobenius–Perron matrix associated with a random map. As we mentioned
before, this will allow us to estimate the stationary density for our binomial model and later to
solve the inverse problem of finding a random map with a predetermined stationary density.

Definition 6.5
Let tk be a P-semi-Markov piecewise linear transformation. We define the Frobenius–Perron
matrix associated with tk by Mtk ¼ ða

k
ijÞ14i;j4N ; where

akij ¼
jðtðiÞk;qÞ

0j�1 if tðQðiÞq Þ ¼ Ij

0 otherwise

8<
: ð27Þ

Mtk can be identified with the Frobenius–Perron operator Ptk of tk; restricted to the space of
functions constant on intervals of P: The Frobenius–Perron operator PT of T is then
represented by

MT ¼
XK
k¼1

PkMtk ð28Þ

where Pk is the diagonal matrix of pkðxÞ:

Proposition 6.6
Let P be an N �N stochastic matrix. Let R be a partition of I ¼ ½a; b� into N equal intervals.
Then there exists a random map T whose transformations are R-semi-Markov transformations
and their associated probabilities are piecewise constant over R; and such that MT ¼ P:

Proof
Let P ¼ ðpijÞ14i;j4N : Let e

ðiÞ
0 ¼ aþ ðði � 1Þ=NÞðb� aÞ; and let Ri ¼ ½e

ðiÞ
0 ; e

ðiþ1Þ
0 �; i ¼ 1; . . . ;N: Fix

14i4N: We will construct tkjRi
: Let pij1 ; . . . ; pijq > 0; pij1 þ � � � þ pijq ¼ 1; with

pij1 þ � � � þ pijq ¼ p1;iða1ij1 þ � � � þ a1ijq Þ þ � � � þ pK ;iðaKij1 þ � � � þ aKijq Þ

where akij and pk;i are as defined above. Let

eðiÞs ¼ aþ
ði � 1Þ þ pij1 þ � � � þ pijs

N
ðb� aÞ

for s ¼ 1; . . . ; q:We define QðiÞs ¼ ½e
ðiÞ
s�1; e

ðiÞ
s � and tkjQðiÞs ðxÞ ¼ ð1=a

k
ijs
Þðx� e

ðiÞ
s�1Þ þ e

ðjsÞ
0 : It is easy to see

that tk is an R-semi-Markov, piecewise linear, the random map T is expanding on average, and
that MT ¼ P: &

6.1. @-band matrices

Definition 6.7.
An @-semi-Markov piecewise linear transformation is said to be a @-band transformation,
@ ¼ 2sþ 1; s4N � 1; if its Frobenius–Perron matrix Mt ¼ ðpijÞ satisfies the condition: pij ¼ 0 if
ji � jj > s; 14i; j4N: We call a position dependent random map @-band random map if its
transformations are @-band and the probabilities associated with them are piecewise constant
on R:
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Having characterized random maps in terms of its associated Frobenius–Perron matrix we
now need the concept of @-band transformation in order to construct a random map with a
stationary density described by a vector f : The following theorem and the algorithm
immediately below describe how this construction can be achieved.

Theorem 6.8
Let T be a @-band transformation on an N-element uniform partition R; @ ¼ 2sþ 1; with
Frobenius–Perron matrix Mt ¼ ðpijÞ:

Let f ¼ ðf1; . . . ; fNÞ be any probabilistic vector with fi > 0; i ¼ 1; . . . ;N:
If

fipi;j ¼ fjpj;i ð29Þ

for any 14i; j4N; then the density corresponding to the vector f is T-invariant.

Proof
It is enough to show that fM ¼ f ; or

f1p1;j þ f2p2;j þ � � � þ fNpN;j ¼ fj

14j4N: By equalities (29) this is equivalent to

fjpj;1 þ fjpj;2 þ � � � þ fjpj;N ¼ fj

which holds by stochasticity of matrix M: &

Below we present one of many possible constructions of an @-band matrix, @ ¼ 2sþ 1;
s4N � 1; preserving a given vector f ¼ ðf1; . . . ; fNÞ with fi > 0; i ¼ 1; . . . ;N:

Let @ ¼ 2sþ 1; s4N � 1: Let us fix s non-negative constants c1; c2; . . . ; cs such that c1 þ
c2 þ � � � þ cs41 and other s constants d1; d2; . . . ; ds such that 05di51; 14i4s: In the whole
construction, all elements with indices larger than N should be ignored.

We start by the construction of the first row and the first column of the matrix.

* If c1=ðf2=f1Þ51; then we set p1;2 ¼ c1; else we set p1;2 ¼ d1ðf2=f1Þ: Note that in either case
p1;24c1:

* For each 14i4s; if ci=ðf1þi=f1Þ51; then we set p1;1þi ¼ ci; else we set p1;1þi ¼ diðf1þi=f1Þ:
Note that we always have that p1;1þi4ci:

* Now, we define p1;1 ¼ 1� ðp1;2 þ � � � þ p1;1þsÞ and p1þi;1 ¼ p1;1þi=ðf1þi=f1Þ; i ¼ 1; . . . ; s:
Note that 04p1þi;141; i ¼ 0; . . . ; s:

* We set p1;j ¼ 0 and pj;1 ¼ 0 for j > 1þ s:

Now, we construct the second row and the second column of the matrix.

* The element p2;1 has already been defined.
* As for the elements p2;2þi for i ¼ 1; 2; . . . ; s� 1 if cið1� p2;1Þ=ðf2þi=f2Þ51� p2þi;1; then we

set p2;2þi ¼ cið1� p2;1Þ; else we set p2;2þi ¼ diðf2þi=f2Þð1� p2þi;1Þ: Note that p2;2þi4
cið1� p2;1Þ for considered i’s.

* Now, we define p2;2þs: if csð1� p2;1Þ=ðf2þs=f2Þ51; then we set p2;2þs ¼ c2ð1� p2;1Þ; else
p2;2þs ¼ dsðf2þs=f2Þ: Again, p2;2þs4csð1� p2;1Þ:

* Now, we define p2;2 ¼ 1� ðp2;1 þ p2;3 þ � � � þ p2;2þsÞ and p2þi;2 ¼ p2;2þi=ðf2þi=f2Þ; i ¼ 1; . . .
; s: Note that again 04p2þi;241; i ¼ 0; . . . ; s:
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* We set p2;j ¼ 0 and pj;2 ¼ 0 for j > 2þ s:
Let us assume that the rows and the columns with indices 4k� 1 have been defined.
Now we construct the kth row and the kth column of the matrix.

* The elements pk;j has already been defined for j5k:
* As for the elements pk;kþi for i ¼ 1; 2; . . . ; s if cið1�

Pk�1
j¼1 pk;jÞ=ðfkþi=fkÞ51�

Pk�1
j¼1 pkþi;j ;

then we set pk;kþi ¼ cið1�
Pk�1

j¼1 pk;jÞ: Else, we set pk;kþi ¼ diðfkþi=fkÞð1�
Pk�1

j¼1 pkþi;jÞ:

Note that pk;kþi4cið1�
Pk�1

j¼1 pk;jÞ for i ¼ 1; 2; . . . ; s:

* Note, we define pk;k ¼ 1�
Pkþs

j¼1
j=k

pk;j and pkþi;k ¼ pk;kþi=ðfkþi=fkÞ; i ¼ 1; . . . ; s: Note that

again 04pkþi;k41; i ¼ 0; . . . ; s:
* We set pk;j ¼ 0 and pj;k ¼ 0 for j > kþ s:

This construction inN steps creates an@-band probabilistic matrix satisfying conditions (29). In other
words, given a piecewise density f, this algorithm gives a way to construct an @-band probabilistic
matrix that preserves f. In the following theorem we link this up to a random map binomial model.

Theorem 6.9
Let f ¼ ðf1; . . . ; fNÞ be a piecewise constant density on a partition R of I ¼ ½a; b� into N equal
intervals. Then there exists an @-band random map T ¼ ftu; td ; puðxÞ; pdðxÞg such that

sup
x

puðxÞ
jt0uðxÞj

þ sup
x

pdðxÞ
jt0d ðxÞj

4a51 ð30Þ

with tuðxÞ5x; tdðxÞ4x and f being T-invariant.

Proof
Let M ¼ ðpi;jÞ14i;j4N be an @-band matrix preserving the vector f.

It is enough to construct non-negative vectors pu; pd ; pdðiÞ ¼ 1� puðiÞ; i ¼ 1; . . . ;N; upper triangu-
lar @-band probabilistic matrix Mu and lower triangular @-band probabilistic matrix Md such that

M ¼ DiagðpuÞMu þDiagðpdÞMd ð31Þ

where DiagðvÞ is a diagonal matrix with the elements of the vector v on the diagonal.
Let us introduce numbers mþðiÞ ¼

Piþs
j¼iþ1 pi;j and m�ðiÞ ¼

Pi�1
j¼1 pi;j ; i ¼ 1; . . . ;N (the sum

over an empty set is equal to 0). Since M is a probabilistic matrix the intervals ½mþðiÞ; 1�m�ðiÞ�
are all non-empty.

Let us define vector pu in such a way that

puðiÞ 2 ½mþðiÞ; 1�m�ðiÞ� ð32Þ

and set pd ðiÞ ¼ 1� puðiÞ; i ¼ 1; . . . ;N: Note that pdðiÞ5m�ðiÞ; for all i’s. Now, for any 14i4N
we define

Muði; jÞ ¼
pi;j=puðiÞ for j > i

0 for j5i

(

and Muði; iÞ ¼ 1�
P

j=i Muði; jÞ: Similarly

Mdði; jÞ ¼
pi;j=pdðiÞ for j > i

0 for j5i

(
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and Mdði; iÞ ¼ 1�
P

j=i Mdði; jÞ: In view of conditions (32) both matrices are probabilistic.
Condition (31) holds by construction. The condition (30) is satisfied since the matrices Mu and
Md are probabilistic, thus the piecewise linear maps corresponding to them are piecewise
expanding on average. &

Now, Theorem 6.9 allows us to construct a random map with a pre-determined stationary
density f. Recall that stationary densities for these random map binomial models are piecewise
constant so they can be described by a vector f. Using our construction we can produce matrices
M, Mu;Md and the vectors pu; pd for any given vector f. In order to produce a random map, we
need to extract the functions tu and td :

Let Mu ¼ ðaijÞ; i ¼ 1; . . . ; q; j ¼ 1; . . . ; q be a stochastic matrix representing the Frobenius–
Perron operator of a piecewise linear Markov transformation tu : ½0; 1� ! ½0; 1� with respect to a
partition of disjoint open intervals I1; . . . ; Iq: We construct tu by using the non-zero entries of
Mu: If aij=0 then

aij ¼ jðtu; iÞ
0j�1 and tuðIiÞ ¼ Ij

Of course the above construction does not produce a unique tu: However, our algorithm
provides a matrix Mu which produces a particular class of transformations

tuðxÞ5x 8x 2 ½0; 1�

Moreover, our algorithm may produce a continuous tu:
The construction of td from Md is done in the same way with the algorithm providing us with

a matrix Md which produces a transformation

tdðxÞ4x 8x 2 ½0; 1�

We provide a Maple program which produces matricesM;Mu;Md and the vectors pu; pd for any
given vector f. The program is posted at: http://www.mathstat.concordia.ca/pg/nband.zip.

Note that in the above described algorithm we can freely choose the constants s4N � 1;
c1; c2; . . . ; cs such that c1 þ c2 þ � � � þ cs41 and d1; d2; . . . ; ds such that 05di51; 14i4s: These
constants have a direct effect on the resulting tree. Constant s is the number of adjacent intervals
that can be reached from any given position in either direction in one step. The larger it is, the larger
the jumps that can be obtained in one step. Constants c’s and d’s are related to the probabilities of
jumping across intervals from any given position. So, small values of c’s and d’s imply lower
probabilities of reaching a faraway interval in one step. Then, small value s along with small values
of c’s and d’s make for less variable trajectories, whereas large values s; c’s and d’s make for more
fluctuation in the trajectories. We have produced a program that allows to empirically see these
effects. It is posted at http://www.mathstat.concordia.ca/pg/Economics200s.zip.

6.2. The starting density

In this section we have assumed as given the initial density from which we build up our model.
The choice of such density could be done in a parametric or in a non-parametric way.

Within a parametric framework, in the recent financial literature continuous-time stochastic
processes are used to model asset prices. A benchmark model is described in terms of the
following stochastic differential equation:

dSt ¼ mðSt; tÞSt dtþ sðSt; tÞSt dWt; t50 ð33Þ
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where St is the asset price at time t;m is the instantaneous drift function, s is the local volatility
function and Wt is a Wiener process. Models described by (33) can be approximated by a
binomial tree (see Nelson and Ramaswamy [10]). In view of this, our binomial tree can be used
to approximate stationary models of the form (33) where the asymptotic stationary density has
been predetermined. In this sense, our model is one of many possible discrete processes that
have the desired stationary density.

Among recent popular choices distributions, that seem to better capture many features of
market rate of returns, we find members of the generalized hyperbolic family (for instance,
Barndorff-Nielsen [32], Eberlein and Keller [33] and Eberlein [34]). We can envision constructing
a random map having approximately a stationary generalized hyperbolic density. We can
always discretize the desired density over a finite interval and produce a piecewise constant
density f for which Theorem 6.9 applies. The algorithm described in this section would produce
a random map with a stationary density that can be arbitrarily close (in the L1 distance) to a
generalized hyperbolic density or to any continuous density for that matter. The resulting tree is,
in a stationary sense, an approximation to a generalized hyperbolic diffusion process, or to any
stationary process of the form (33) depending on the chosen density.

Within a non-parametric setting, we could find our starting density from actual option prices.
Our model would then be a stationary implied binomial tree whose stationary density is the one
implied in a set of option prices. The problem of extracting risk-neutral probability densities
from option prices has been studied in the last decade (see for instance Jackwerth and
Rubinstein [20]). A recent discussion of this type of constructions can be found in Jackwerth and
Rubinstein [35]. In these studies, such a risk-neutral density is then used to construct a binomial
tree to recover a market-consistent stochastic process for the underlying (see Cakici and Foster
[5] and Skiadopoulos [40]). Since our binomial tree can easily be constructed from this implied
risk-neutral density, our model provides a way of constructing an implied binomial tree having
the risk-neutral probability density as its stationary distribution. We call it an implied binomial
tree in the sense that it is consistent with a set of option prices through the inferred stationary
risk-neutral density. It remains yet to be explored if our construction can lead to a binomial tree
consistent with the implied volatility surface. In other words, it seems to be desirable to have a
binomial tree that not only has the risk-neutral density as its stationary distribution, but that is
also consistent with the volatility smile. This would be the topic of further research.

6.3. Example

We have shown that our binomial tree can be constructed from any given discrete density. Here,
we give an illustration of such a construction. We had briefly discussed that this starting density
could be either a parametric density, chosen because of certain desirable features, or it could be
a risk-neutral density extracted from actual option prices. The second choice deserves a more
detailed study that would include the ability of our construction to produce trees consistent with
the volatility smile and not only with a terminal stationary risk-neutral density. This will be the
object of further research.

Instead, in our example we assume that a parametric density is given. We have chosen a
lognormal density since it is a benchmark model for financial prices. We start with a lognormal
density (parameters for illustrative purposes are: m ¼ ln 10 and s ¼ 1) which is then discretized
over a finite interval ½0; 20�: We then apply our algorithm that produces a set of tu; td and
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pu functions. We show empirically how such a tree follows a discrete stationary density close to
the original desired lognormal.

In Figure 3 we have the original lognormal and its discretized version with 20, a 100 and 200
intervals. Note that already a hundred intervals is very close to the continuous density. For 200
intervals the discretization coincides with the continuous plot in the picture.

Our algorithm is then applied producing the functions depicted in Figure 4. These graphs
show the up- and down-maps over a small interval and not over the whole domain. Recall that
these functions are piecewise with as many pieces as intervals in the discretization, this means
that in order to have a meaningful picture we need to zoom in into a small interval. In Figure 3,
this interval is chosen to be ½0; 0:03�:

Figure 3. Lognormal density (m ¼ ln10 and s ¼ 1) and its discretizations. 20, 100 and 200 intervals.

Figure 4. Down- and up-functions over the interval ½0; 0:03�:
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Some trajectories of this implied binomial tree are shown in Figure 5. We can see how this
trajectories resemble those of a stationary lognormal diffusion of the form (33).

An empirical distribution after 100 000 iterations is shown in Figure 6. We can see how the
empirical distribution is very close to the original lognormal.

These graphs can be obtained with our program posted at http://www.mathstat.concordia.ca/
pg/Economics200s.zip.

Figure 5. Trajectories of the binomial tree in Example 6.3.

Figure 6. Empirical distribution of the binomial tree in Example 6.3 after 100 000 iterations.
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This program also illustrates the effect of the parameters s, c’s and d’s in the resulting
trajectories.

In the following section we discuss further some relevant features of our model that make it
potentially useful in financial applications.

7. APPLICATIONS: IMPLIED BINOMIAL TREES

One important feature to be considered when looking at potential models for asset prices is its
suitability to be used in option pricing. In this section we explore the conditions needed for our
model s1 to be arbitrage free, which implies the existence of an equivalent martingale measure,
so that derivatives on this asset can be priced. We also discuss informally, and as a motivation
for further study, some features of our model that make it an implied binomial tree in the sense
of Rubinstein [3], Derman and Kani [4] and Dupire [13].

Let ðB; sÞ be the finite market defined on the filtered probability space ðO;Ft; %P; F;TÞ as
defined in Section 5.

We define a trading strategy H ¼ ðH0;H1; . . . ;HLÞ as a vector of stochastic processes
Hl ¼ fHlðnÞ; n ¼ 0; . . . ; tg; l ¼ 0; 1; . . . ;L: HlðnÞ; l ¼ 1; . . . ;L; is the number of units of
security with price sl that the investors owns from time n� 1 to time n, whereas H0ðnÞBn�1 is
the amount of money invested in the bank account at time n� 1: Negative values indicate short
positions. We also define a value process associated with a trading strategy H by V ¼ fVn; n ¼
0; . . . ; tg

V0 ¼ H0ð1ÞB0 þ
XL
l¼1

Hlð1Þslð0Þ ð34Þ

Vn ¼ H0ðnÞBn þ
XL
l¼1

HlðnÞslðnÞ; n51 ð35Þ

A trading strategy H is said to be self-financing if

Vn ¼ H0ðnþ 1ÞBn þ
XL
l¼1

Hlðnþ 1ÞslðnÞ; n ¼ 1; . . . ; t� 1

i.e. the time n values of the portfolio just before and just after any time n transactions are equal.
Intuitively, if no money is added to or withdraw from the portfolio between times n ¼ 0
and time t; then any change in the portfolio’s value must be due to a gain or loss in the
investments.

Definition 7.1
An arbitrage opportunity in the case of a multiperiod securities market is some trading self-
financing strategy H such that its associated value process V satisfies

(1) V0 ¼ 0; a.s.
(2) Vs50; for all s 2 T; a.s.
(3) E½Vt� > 0; a.s.
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Definition 7.2
A risk-neutral (or equivalent martingale) probability measure is a probability measure Q on
ðO;Ft; FÞ such that the discounted price process

snl ðnÞ �
slðnÞ
Bn

; n ¼ 0; . . . ; t; l ¼ 0; . . . ;L

is a F-martingale with respect to Q for every l ¼ 0; . . . ;L:

In other words, a risk-neutral probability measure Q satisfies

EQ½snl ðnþ tÞjFn� ¼ snl ðnÞ; n50; t51 ð36Þ

One of the principal results in finance is the first fundamental asset pricing theorem (see Elliot
and Kopp [36] or Pliska [37]).

Theorem 7.3
In a finite market model ðB; slÞ; there are no arbitrage opportunities if and only if there exists an
equivalent martingale measure Q for sl :

In our case, there are no arbitrage opportunities if and only if the process s1 satisfy

EQ
s1ðnþ 1Þ

Bn

����Fn

� �
¼

s1ðnÞ
Bn

; n50 ð37Þ

If we suppose that the interest rate, r; is constant over time, then by using (16) and (37) we
obtain

qðxÞ
uðxÞ � 1� r

1þ r

� �
þ ð1� qðxÞÞ

dðxÞ � 1� r

1þ r

� �
¼ 0 ð38Þ

for all x:
Following Cox et al. [2] we can easily see that the one-step equivalent martingale measure at k

is given by

qkðs1ðkÞÞ ¼
1þ r� dðs1ðkÞÞ

uðs1ðkÞÞ � dðs1ðkÞÞ
; k ¼ 0; 1; 2; . . . ; t� 1

Observe that the probabilities qk depend on s1ðkÞ because the functions u and d depend on the
price as well.

Since q’s are probabilities, it is easy to see that

uðxÞ > 1þ r > dðxÞ for all x ð39Þ

Thus, as long as uðxÞ and dðxÞ satisfy (39) there is a unique equivalent martingale measure
under which sn1ðnÞ is a martingale and s1 is an arbitrage free price.

If the interest rate changes with the time, we require the functions u and d to satisfy a more
general condition:

uðxÞ > 1þ rn > dðxÞ for all x and n ¼ 0; . . . ; t ð40Þ
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As far as the existence of equivalent martingale measure is concerned, our random map
behaves in very much the same way as the classical binomial model. Option prices can then be
computed for our random map binomial model.

7.1. Implied binomial trees

Rubinstein [3], Derman and Kani [4] and Dupire [13] introduced implied binomial trees
in order to study option prices as quoted in the market. Given a discretized density
function for the asset returns they give a backward construction of a binomial model
that is price dependent. Their construction extracts a risk-neutral density from actual option
prices. Such a discretized density can be obtained in an involved way from actual market quotes
for a set of options with similar strike prices and maturities [5, 20, 29, 35]. Some of the features
that these implied binomial trees posses are: risk-neutral steps and price-dependent local
volatilities (we refer to Dumas et al. [17] for an empirical study of this latter feature). We will
briefly discuss how our binomial model behaves in very much the same way as an implied
binomial tree.

An implied binomial model constructed as in Rubinstein [3] is a finite market model ðB; s1Þ on
a probability space ðO;Ft; %P;F;TÞ: It is constructed in a backward fashion such that the asset
price s1ðkÞ remains risk-neutral with respect to the up- and down-probabilities and the local
volatilities are fitted to reproduce the volatility smile. Our model has these two features by
construction.

From the expression for the one-step equivalent martingale probability, we can see that at
each step

1þ r ¼ ½qkðs1ðkÞÞ�uðs1ðkÞÞ þ ½1� qkðs1ðkÞÞ�dðs1ðkÞÞ; k ¼ 0; 1; . . . ; t� 1

and our implied binomial tree is risk neutral at each branch in the sense of Rubinstein [3] when
the up- and down-probabilities are set to be qk and 1� qk:

As for the local volatility at the kth step, this is defined as

s2ðkÞ ¼ ½qkðs1ðkÞÞ�½ln uðs1ðkÞÞ � ðmðkÞÞ
2�

þ ½1� qkðs1ðkÞÞ�½ln dðs1ðkÞÞ � ðmðkÞÞ
2�; k ¼ 0; 1; . . . ; t� 1

where

mðkÞ ¼ ½qkðs1ðkÞÞ� ln uðs1ðkÞÞ þ ½1� qkðs1ðkÞÞ� ln dðs1ðkÞÞ

We can see that this local volatility depends on the current price s1ðkÞ and our implied binomial
tree has state-dependent volatilities in the sense of Rubinstein [3].

In summary, our construction produces a binomial tree from an input distribution.
If this distribution is a somehow inferred risk-neutral distribution, then the resulting
tree could be thought of as an implied binomial tree consistent with the market smile in a
stationary way. This consistency can be seen as inherited from the original risk-neutral
distribution and the stationarity of the process. In other words, our binomial tree
follows the desired distribution after a large number of steps. Therefore, if the time
window in question is long enough, we can consider the tree to be in the stationary
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state and in consequence risk neutral for sufficiently long time windows. It remains
to explore the question of whether the tree can constructed in such a way that it is
consistent with the volatility smile at each branch. This is, we would like that all
(or most) local volatilities are consistent with a given volatility smile. This is subject of future
research.

8. APPROXIMATION OF THE INVARIANT DENSITY

In this section we look at the problem of finding the stationary density of a given random map.
This could be useful to find estimates of stationary densities in the classical binomial model and
its generalizations, in particular, those in Nelson and Ramaswamy [10]. For this purpose,
uðxÞ; dðxÞ; puðxÞ and pdðxÞ are assumed to be given, however, the invariant density f n is
unknown. We present a method for approximating f n: This will endow us with a way of
estimating probabilities of the form mfx;TðxÞ 2 ða; bÞg for any interval. Note that, if the
transformations tu and td are Markov, and the probabilities pu and pd are piecewise constant,
we can find the exact unique invariant density f n using the methods of Boyarsky and Góra [23].
When the transformations are not Markov, the invariant density can be approximated by using
invariant vectors of matrix operators Góra and Boyarsky [38]. Example 5.2 is one such
transformation. Now, we are going to approximate the invariant density of T in Example 5.2.
First, we find two Markov transformations tum and tdm which approximate tu and td ;
respectively. Let

tum ðxÞ ¼

2x for 04x50:5

2x� 0:3 for 0:54x50:6

xþ 0:1 for 0:64x50:7

x for 0:74x41

8>>>>><
>>>>>:

ð41Þ

and

tdm ðxÞ ¼

x for 04x50:1

x� 0:1 for 0:14x50:3

x� 0:2 for 0:34x50:5

2x� 0:9 for 0:74x50:9

2x� 0:1 for 0:94x41

8>>>>>>>><
>>>>>>>>:

ð42Þ

Observe that tum and tdm are Markov transformations on the common partition
½ði=10; ði þ 1Þ=10Þ9i¼0�: The Perron–Frobenius operator of a Markov transformation can be
represented by a matrix [38]. Also, the Perron–Frobenius operator of the random map TM ;
TM ¼ ftum ; tdm ; pu; pdg; is represented by the following matrix:

M ¼ PuMu þPdMd ð43Þ
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where Mu;Md are the matrices of Ptum and Ptdm ; respectively, and Pu;Pd are the diagonal
matrices of puðxÞ and pdðxÞ; respectively. We have

Mu ¼

1=2 1=2 0 0 0 0 0 0 0 0

0 0 1=2 1=2 0 0 0 0 0 0

0 0 0 0 1=2 1=2 0 0 0 0

0 0 0 0 0 0 1=2 1=2 0 0

0 0 0 0 0 0 0 0 1=2 1=2

0 0 0 0 0 0 0 1=2 1=2 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

Md ¼

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1=2 1=2 0 0 0

0 0 0 0 0 0 0 1=2 1=2 0

0 0 0 0 0 0 0 0 1=2 1=2

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

and

M ¼

0:6 0:2 0 0 0 0 0 0 0 0

0:4 0 0:2 0:2 0 0 0 0 0 0

0 0:4 0 0 0:2 0:275 0 0 0 0

0 0:4 0 0 0 0 0:275 0 0 0

0 0 0:4 0 0 0 0 0 0 0

0 0 0:4 0 0 0 0 0:3 0 0

0 0 0 0:4 0 0 0 0:3 0 0

0 0 0 0:4 0 0:3625 0:725 0:4 0:3 0

0 0 0 0 0:4 0:3625 0 0 0:7 0:3

0 0 0 0 0:4 0 0 0 0 0:7

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA
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where

pu ¼ ð0:8; 0:8; 0:8; 0:8; 0:8; 0:725; 0:725; 0:4; 0:4; 0:4Þ; pd ¼ 1� pu: The invariant density of TM is

f ¼ ðf1; f2; f3; f4; f5; f6; f7; f8; f9; f10Þ; fi ¼ fjIi ; i ¼ 1; 2; . . . ; 9 ð44Þ

normalized by

f1 þ f2 þ f3 þ f4 þ f5 þ f6 þ f7 þ f8 þ f9 þ f10 ¼ 10 ð45Þ

and satisfying equation fM ¼ f : Then,

f1 ¼ 0:11591; f2 ¼ 0:23183; f3 ¼ 0:48548; f4 ¼ 0:44184; f5 ¼ 0:19419

f6 ¼ 1:28694; f7 ¼ 1:26949; f8 ¼ 3:64250; f9 ¼ 2:07290; f10 ¼ 0:25892

The TM-invariant density is shown on the right-hand side of Figure 7.
Comparing left and right parts of Figure 7, we see that the invariant density of TM

approximates the invariant density of T in Example 5.2. Note that, had we used Markov
transformations on a finer partition than that in the above construction, we would have
obtained a better approximation for the invariant density of T in Example 5.2.

9. PERTURBED RANDOM MAPS

Finally, in this last section, we discuss a perturbed random map that might not be arbitrage-free.
It turns out that if we perturbed our random tree as it branches out, under certain conditions, it
still has a stationary density. Since this new feature is not compatible with option pricing we do
not advance at this point any possible application of this perturbed model. We simply present it
here as an interesting extension of our position-dependent binomial model.

We define our multiperiod model as in Section 5, the prices will then be driven by the random
map TG which is a perturbation of the random map T. We will see that (39) is not always
satisfied as a result of the perturbations.

Figure 7. On the left: the histogram of invariant density of T of Example 5.2. On the right: the
density of Markov random map TM :
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Let G be a family of functions g that are piecewise C2 on the partition P; gðxÞ : ½0; 1� ! ½0; 1�:
We further assume that G is endowed with a regular probability measure Z: Usually G will be a
family of functions with parameter in a bounded region of Rd having normalized Lebesgue
measure. At each iteration, to the map tk we add a function gk from G chosen at random. This
function will account for other sources of randomness that might exist in the absence of a perfect
flow of information in the market. Thus, at each iteration, with probability pkðxÞ; the next map is

tk;gðxÞ ¼ tkðxÞ þ gðxÞ ðmod 1Þ

where each g is chosen from G according to the probability Z: The perturbed random map is
denoted by Tg if the perturbing maps fgkg are fixed and by TG if fgg’s are chosen at random from
G. The iteration of the random map TG is performed as follows:

Tn
GðxÞ ¼ tkn;g 8 tkn�1;g 8 � � � 8 tk1;g ðxÞ

with probability

pkn ðtkn�1;g 8 � � � 8 tk1;gðxÞÞ � pkn�1 ðtkn�2;g 8 � � � 8 tk1;gðxÞÞ � � � pk1ðxÞ

where the perturbations are chosen in dependently at each step. TG can be viewed as a Markov
process with the transition function

Pðx;AÞ ¼
XK
k¼1

pkðxÞ
Z
G

wAðtk;gðxÞÞ dZðgÞ

where A is a measurable set and wA denotes the characteristic function of the set A.
We say that a measure m is TG-invariant if it is invariant for the above Markov process.
Thus, the price of stock l at time n will be given by

slðnÞ ¼ TGðslðn� 1ÞÞ

where n ¼ 1; . . . ; t:
In this model, the g’s can create the arbitrage opportunities since condition (39) does not

always hold. There might be steps where the value g will violate this condition creating an
arbitrage opportunity. Hence, the prices will be really driven by the random map TG; associated
with the random map T ¼ ftu; tp; puðxÞ; pd ðxÞg: The g’s can be considered as small perturbations
which are unknown to the investor. Moreover, since in our model we assume tu;gðxÞ > x and
td;gðxÞ5x for all x, and we want the same properties of the perturbed maps, the perturbation TG

is slightly modified. Assume tu is increasing. For tu we define tu;gðxÞ as follows. Let x 2 ðai; aiþ1�

tu;gðxÞ ¼

tuðxÞ þ gðxÞ; x5tuðxÞ þ gðxÞ41

tuðxÞ þ gðxÞ � ðtuðaiþ1Þ þ gðaiþ1ÞÞ; tuðxÞ þ gðxÞ > 1

tuðxÞ þ gðxÞ � ðtuðaiÞ þ gðaiÞÞ; tuðxÞ þ gðxÞ5x

8>><
>>: ð46Þ

The definitions for decreasing tu and for td are similar. All perturbation results from Bahsoun
et al. [39] hold for this model as well.

The following results were proved in Bahsoun et al. [39].

Theorem 9.1
Let TG ¼ ftu;g; td ;g; puðxÞ; pdðxÞg; where tu;g is defined as in Equation (46), then PTG

admits an
invariant density.
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Theorem 9.2
Let g;G; Z;TG and T be as above. Let us consider a family of sets G : fGege>0 such that supg2Ge

supx jgðxÞj4e: Let fe be an invariant density of PTGe
: Then, the family ff ge50 is precompact in

L1 and any weak limit point f n of invariant densities fe as e! 0 is an invariant density of T :

10. CONCLUSIONS

In this note, we develop techniques in theory of dynamical systems which can be applied in
finance. We discuss the concept of position-dependent random maps and some of their
properties. We believe that these objects have properties that make them of interest in
mathematical finance. We argue how these random maps can be implemented as generalized
binomial models in ways that had not been explored before in the financial literature. The
motivation behind our presentation lies on the fact that the proposed random maps accept a
stationary density. In this respect, our model parallels the proposal of ergodic stationary
diffusions in finance. We provide a very simple example that illustrates the model.

A second important feature of our generalized binomial models is that it can be constructed
from a given stationary density. We explore in this note the inverse problem of finding a
generalized binomial model having a predetermined invariant density. We present an algorithm
for such a construction and a program that carries it out. As it turns out, our generalized
binomial model has piecewise stationary densities. This suggests that we can approximate any
desired continuous density with a piecewise constant. This would endow us with a way of
constructing a random map with a piecewise constant density that can be as close as needed to
any continuous density. This could be applied to popular choices for densities of price returns
yielding a discrete stationary model of returns. As an illustration, we produce a program that
constructs a binomial tree from a lognormal distribution. This program is available at: http://
www.mathstat.concordia.ca/pg/Economics200s.zip.

Our construction could also find applications as an implied binomial trees. Implied binomial
trees are constructed from historical data and then used to less price liquid options. These trees
are grown to be consistent with the market volatility smile at every step. If the initial distribution
is a risk-neutral density inferred from option prices then our construction yields an implied
binomial tree. This tree is consistent with the market in a stationary way, i.e. after a long time,
our tree follows the risk-neutral density previously inferred from option prices. It remains yet to
be investigated if our construction can produce implied binomial trees consistent with a
volatility smile at every step. Our model could be studied further in these type of applications.

We also discuss the problem of approximating the stationary density of a given random map.
This could be used to approximate stationary densities for some simple discrete models.

Finally, we briefly discuss a perturbed random map that still has a stationary density.
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