Statistics for traces of cyclic trigonal curves over finite fields

Matilde N. Lalín

University of Alberta
mlalin@math.ualberta.ca
http://www.math.ualberta.ca/~mlalin

joint with A. Bucur, C. David, B. Feigon

2009 CMS Winter meeting – Number Theory special session

December 6, 2009
Let C be a smooth and projective curve of genus g over \mathbb{F}_q. Let

$$Z_C(T) = \exp \left(\sum_{n=1}^{\infty} N_n(C) \frac{T^n}{n} \right), \quad |T| < 1/q,$$

$$N_n(C) = |C(\mathbb{F}_{q^n})|.$$

Weil conjectures

$$Z_C(T) = \frac{P_C(T)}{(1 - T)(1 - qT)} \quad \text{(Rationality)}$$

$$P_C(T) \in \mathbb{Z}[T], \quad \deg P_C = 2g,$$

and

$$P_C(T) = \prod_{j=1}^{2g} (1 - T \alpha_{j,C}), \quad |\alpha_{j,C}| = \sqrt{q}. \quad \text{(Riemann Hypothesis)}$$
Counting points and the zeroes of $Z_C(T)$

\[Z_C(T) = \exp \left(\sum_{n=1}^{\infty} N_n(C) \frac{T^n}{n} \right) = \frac{\prod_{j=1}^{2g} (1 - T \alpha_j, C)}{(1 - T)(1 - qT)}, \]

Taking logarithms on both sides,

\[N_1(C) = q + 1 - \sum_{j=1}^{2g} \alpha_j, C \]
\[= q + 1 - \text{Tr}(\text{Frob}_C). \]
Writing $\alpha_{j,C} = \sqrt{q} \, e^{2\pi i \theta_{j,C}}$,

$$P_{C}(T) = \prod_{i=1}^{2g} (1 - T \sqrt{q} \, e^{2\pi i \theta_{j,C}}) = \det (I - T \sqrt{q} \Theta_{C})$$

where Θ_{C} is a unitary symplectic matrix in USp($2g$) (defined up to conjugation) with eigenvalues $e^{2\pi i \theta_{j,C}}$.

When g is fixed and $q \rightarrow \infty$, Katz and Sarnak showed that the roots $\theta_{j,C}$ are distributed as the eigenvalues of matrices in USp($2g$).

Then, $\text{Tr}(\text{Frob}_{C})/\sqrt{q}$ is distributed as the trace of a random matrix in USp($2g$) of $2g \times 2g$ as $q \rightarrow \infty$.
Hyperelliptic curves

\[C_F : Y^2 = F(X) \]

\(F(X) \) is a square-free polynomial of degree \(d \geq 3 \).

This is a curve of genus \(g = \left\lfloor \frac{d-1}{2} \right\rfloor \).

We want to study the variation of

\[\text{Tr}(\text{Frob}_{C_F}) = \sum_{i=1}^{2g} \alpha_j, C_F \]

as \(C_F \) varies over the family of hyperelliptic curves where \(F(X) \) has degree \(2g + 1 \) or \(2g + 2 \).
By counting the number of points of $Y^2 = F(X)$ over $\mathbb{P}^1(\mathbb{F}_q)$, we can write

$$N_1(C_F) = q + 1 - \text{Tr}(\text{Frob}_{C_F}) = \sum_{x \in \mathbb{F}_q} [1 + \chi_2(F(x))] + N_\infty(C_F)$$

where χ_2 is the quadratic character of \mathbb{F}_q^*, and

$$N_\infty(C_F) = \begin{cases} 1 & \text{deg } F \text{ odd,} \\ 2 & \text{deg } F \text{ even, leading coeff of } F \in \mathbb{F}^2_q, \\ 0 & \text{deg } F \text{ even, leading coeff of } F \not\in \mathbb{F}^2_q. \end{cases}$$

is the number of points at infinity.
Hyperelliptic Curves

\[- \text{Tr}(\text{Frob}_{C_F}) = \sum_{x \in \mathbb{F}_q} \chi_2(F(x)) + (N_\infty(C_F) - 1) = \sum_{x \in \mathbb{P}^1(\mathbb{F}_q)} \chi_2(F(x)). \]

One can study the variation of

\[S_2(F) = \sum_{x \in \mathbb{F}_q} \chi_2(F(x)) \]

over the family of hyperelliptic curves and translate it into a variation for \(\text{Tr}(\text{Frob}_{C_F}) \).

This amounts to evaluate the probability that a random square-free polynomial \(F(x) \) of degree \(d \) takes a prescribed set of values \(F(x_1) = a_1, \ldots, F(x_{q+1}) = a_{q+1} \) for the distinct elements of \(\mathbb{P}^1(\mathbb{F}_q) \).
When q is fixed and $g \to \infty$, Kurlberg and Rudnick showed that $S_2(F)$ is distributed as a sum of q independent identically distributed (i.i.d.) trinomial variables $\{X_i\}_{i=1}^q$ taking values $0, \pm 1$ with probabilities $1/(q + 1), 1/2(1 + q^{-1})$ and $1/2(1 + q^{-1})$ respectively.

Theorem (Kurlberg and Rudnick)

Let \mathcal{F}_d be the set of monic square-free polynomials of degree d. Then,

$$
\lim_{d \to \infty} \text{Prob} \left(S_2(F) = s \right) = \lim_{d \to \infty} \frac{|\{F \in \mathcal{F}_d : S_2(F) = s\}|}{|\mathcal{F}_d|}
$$

$$
= \text{Prob} \left(X_1 + \cdots + X_q = s \right).
$$
This result may be formulated directly in terms of the genus g.

Theorem

The distribution of the trace of the Frobenius endomorphism associated to C as C ranges over the moduli space \mathcal{H}_g of hyperelliptic curves of genus g defined over \mathbb{F}_q, with q fixed and $g \to \infty$, is that of the sum of X_1, \ldots, X_{q+1}:

$$\frac{\left| \{ C \in \mathcal{H}_g : \text{Tr}(Frob_C) = -s \} \right|'}{|\mathcal{H}_g|'} = \text{Prob} \left(\sum_{i=1}^{q+1} X_i = s \right) \left(1 + O \left(q^{(3q-2-2g)/2} \right) \right)$$
By comparing moments of the previous distributions,

Theorem (Kurlberg and Rudnick)

When \(q, g \) tend to infinity, the limiting distribution of the normalized trace

\[
\text{Tr}(\text{Frob}_C)/\sqrt{q + 1}
\]

is a standard Gaussian with mean zero and variance one.
Let \(q \equiv 1 \pmod{3} \). Consider the family of curves

\[C_F : Y^3 = F(X) \]

where \(F(X) \in \mathbb{F}_q[X] \) is cube-free of degree \(d \).

We write

\[F(X) = aF_1(X)F_2^2(X) \]

where \(F_1 \) and \(F_2 \) are monic square-free polynomials of degree \(d_1 \) and \(d_2 \) respectively, \((F_1, F_2) = 1 \).

Then, \(d = d_1 + 2d_2 \), and the genus is

\[g = \begin{cases}
 d_1 + d_2 - 2 & \text{if } d = d_1 + 2d_2 \equiv 0 \pmod{3}, \\
 d_1 + d_2 - 1 & \text{if } d = d_1 + 2d_2 \not\equiv 0 \pmod{3}.
\end{cases} \]
The moduli space $\mathcal{H}_{g,3}$ of cyclic trigonal curves of genus g parametrizes the cyclic trigonal curves of genus g up to isomorphism.

It splits into irreducible components $\mathcal{H}^{(d_1,d_2)}$ for pairs (d_1, d_2) such that

$$\mathcal{H}_{g,3} = \bigcup_{d_1 + 2d_2 \equiv 0 \pmod{3}, \quad g = d_1 + d_2 - 2} \mathcal{H}^{(d_1,d_2)}.$$

The union is disjoint.
Cyclic Trigonal Curves

By counting the number of points of $C_F : Y^3 = F(X)$ over $\mathbb{P}^1(\mathbb{F}_q)$, we can write

$$q + 1 - \text{Tr}(\text{Frob}_C |_{H^1_{\chi_3}}) - \text{Tr}(\text{Frob}_C |_{H^1_{\chi_3}}) = \sum_{x \in \mathbb{F}_q}[1 + \chi_3(F(x)) + \chi_3(F(x))] + N_{\infty}(C_F)$$

χ_3 is the cubic character of \mathbb{F}_q^* given by

$$\chi_3(x) \equiv x^{(q-1)/3} \pmod{q}$$

taking values in $\{1, \omega, \omega^2\}$ where ω is a third root of unity, and

$$N_{\infty}(C_F) = \begin{cases} 1 & \text{deg } F \not\equiv 0 \pmod{3}, \\ 0 & \text{deg } F \equiv 0 \pmod{3} \text{ lead coeff } F \not\in \mathbb{F}_q^3, \\ 1 & \text{deg } F \equiv 0 \pmod{3} \text{ lead coeff } F \in \mathbb{F}_q^3 \quad q \equiv -1 \pmod{3}, \\ 3 & \text{deg } F \equiv 0 \pmod{3} \text{ lead coeff } F \in \mathbb{F}_q^3 \quad q \equiv 1 \pmod{3}. \end{cases}$$
Then we study the variation of

$$- \text{Tr}(\text{Frob}_C|_{H^1_{\chi_3}}) = \sum_{x \in \mathbb{P}^1(\mathbb{F}_q)} \chi_3(F(x)),$$

where F runs over a family of irreducible components of the moduli space of cyclic trigonal curves of genus g with the property that $g \to \infty$.
Trace on cyclic trigonal curves

Theorem (BDFL)

If q is fixed and $d_1, d_2 \to \infty$, the distribution of the trace of the Frobenius endomorphism associated to C as C ranges over $\mathcal{H}^{(d_1,d_2)}$ is that of the sum of $q + 1$ i.i.d. random variables X_1, \ldots, X_{q+1}, where each X_i takes the value 0 with probability $2/(q + 2)$ and 1, ω, ω^2 each with probability $q/(3(q + 2))$. More precisely, for any $s \in \mathbb{Z}[\omega] \subset \mathbb{C}$ with $|s| \leq q + 1$, we have for any $1 > \varepsilon > 0$,

$$
\frac{\left| \left\{ C \in \mathcal{H}^{(d_1,d_2)} : \text{Tr}(\text{Frob}_C \mid_{\mathcal{H}_1^{X_3}}) = -s \right\} \right|'}{\left| \mathcal{H}^{(d_1,d_2)} \right|'} = \text{Prob} \left(\sum_{i=1}^{q+1} X_i = s \right) \times \left(1 + O \left(q^{-(1-\varepsilon)d_2+q} + q^{-(d_1-3q)/2} \right) \right).
$$
When $q, d_1, d_2 \to \infty$

Theorem (BDFL)

For any positive integers j and k, let $M_{j,k}(q, (d_1, d_2))$ be the moments

$$
\frac{1}{|\mathcal{H}(d_1, d_2)|'} \sum'_{C \in \mathcal{H}(d_1, d_2)} \left(- \frac{\text{Tr}(\text{Frob}_C |_{H^1_{\chi_3}})}{\sqrt{q+1}} \right)^j \left(- \frac{\text{Tr}(\text{Frob}_C |_{H^1_{\chi_3}})}{\sqrt{q+1}} \right)^k.
$$

Let ε and X_1, \ldots, X_{q+1} be as before. Then

$$
M_{j,k}(q, (d_1, d_2)) = \mathbb{E} \left(\left(\frac{1}{\sqrt{q+1}} \sum_{i=1}^{q+1} X_i \right)^j \left(\frac{1}{\sqrt{q+1}} \sum_{i=1}^{q+1} \overline{X_i} \right)^k \right) \times \left(1 + O \left(q^{-(1-\varepsilon)d_2+\varepsilon(j+k)} + q^{-d_1/2+j+k} \right) \right).
$$
When $q, d_1, d_2 \to \infty$

Corollary (BDFL)

When q, d_1, d_2 tend to infinity, the limiting distribution of the normalized trace

$$\frac{\text{Tr}(\text{Frob}_C |_{H^1_{\chi_3}})}{\sqrt{q + 1}}$$

is a complex Gaussian with mean zero and variance one.
Main step in the proof

\[\mathcal{F}(d_1, d_2) = \{ F = F_1 F_2^2 : F_1, F_2 \text{ monic, square-free and coprime,} \]
\[\deg F_1 = d_1, \deg F_2 = d_2 \} \]

Proposition

Let \(0 \leq \ell \leq q \), let \(x_1, \ldots, x_\ell \) be distinct elements of \(\mathbb{F}_q \), and \(a_1, \ldots, a_\ell \in \mathbb{F}_q^* \). Then for any \(1 > \varepsilon > 0 \), we have

\[\left| \{ F \in \mathcal{F}(d_1, d_2) : F(x_i) = a_i, 1 \leq i \leq \ell \} \right| = \frac{K q^{d_1+d_2}}{\zeta_q(2)^2} \left(\frac{q}{(q+2)(q-1)} \right)^\ell \]

\[\times \left(1 + O \left(q^{-(1-\varepsilon)d_2+\varepsilon\ell} + q^{-d_1/2+\ell} \right) \right) + O \left(q^{-d_1/2+\ell} \right) \]

\[K = \prod_{P \text{ monic irreducible}} \left(1 - \frac{1}{(|P|+1)^2} \right). \]
We prove

\[\left| \{ F \in \mathcal{F}_{(d_1,d_2)} : F(x_i) = a_i, \ 1 \leq i \leq \ell \} \right| = \frac{q^{d_1-\ell}}{\zeta_q(2)(1 - q^{-2})^\ell} \sum_{\deg F = d_2} b(F) + O \left(q^{d_2+d_1/2} \right), \]

where for any polynomial \(F \),

\[
b(F) = \begin{cases}
\mu^2(F) \prod_{P \mid F} (1 + |P|^{-1})^{-1} & F(x_i) \neq 0, 1 \leq i \leq \ell. \\
0 & \text{otherwise.}
\end{cases}
\]
To evaluate $\sum_{\deg F = d_2} b(F)$, we consider the Dirichlet series

$$G(s) = \sum_F \frac{b(F)}{|F|^s} = \prod_P \left(1 + \frac{1}{|P|^s} \cdot \frac{|P|}{|P| + 1} \right)$$

$$= \frac{\zeta_q(s)}{\zeta_q(2s)} H(s) \left(1 + \frac{1}{q^{s-1}(q+1)} \right)^{-\ell},$$

where

$$H(s) = \prod_P \left(1 - \frac{1}{(|P|^s + 1)(|P| + 1)} \right).$$

and apply a function field version of the Wiener-Ikehara Tauberian Theorem, we get that

$$\sum_{\deg F = d_2} b(F) = \frac{K}{\zeta_q(2)} \left(\frac{q + 1}{q + 2} \right)^\ell q^{d_2} + O(q^{\varepsilon(d_2 + \ell)}).$$
General result for p-fold covers of $\mathbb{P}^1(F_q)$.

$$Y^p = F(X)$$

Theorem (BDFL)

Let X_1, \ldots, X_{q+1} be complex i.i.d. random variables taking the value 0 with probability $(p - 1)/(q + p - 1)$ and each of the p-th roots of unity in \mathbb{C} with probability $q/(p(q + p - 1))$. As $d_1, \ldots, d_{p-1} \to \infty$,

$$\left| \left\{ C \in \mathcal{H}(d_1, \ldots, d_{p-1}) : \operatorname{Tr}(\operatorname{Frob}_C|_{H^1_{X_p}}) = -s \right\} \right|' \frac{|\mathcal{H}(d_1, \ldots, d_{p-1})|'}{|\mathcal{H}(d_1, \ldots, d_{p-1})|'} = \operatorname{Prob} \left(\sum_{i=1}^{q+1} X_i = s \right)$$

$$\times \left(1 + O \left(q^{\epsilon(d_2 + \cdots + d_{p-1}) + q (q^{-d_2} + \cdots + q^{-d_{p-1}}) + q^{-(d_1-3q)/2} \right) \right)$$

for any $s \in \mathbb{C}$, $|s| \leq q + 1$ and $0 > \epsilon > 1$.
Theorem (BDFL)

As $q, d_1, \ldots, d_{p-1} \to \infty$,

$$\text{Tr}(\text{Frob}_C|_{H^1_{\chi_p}})/\sqrt{q+1}$$

has a complex Gaussian distribution with mean 0 and variance 1 as C varies in $\mathcal{H}^{(d_1, \ldots, d_{p-1})}(\mathbb{F}_q)$.