Regulators and computations of Mahler measures

Matilde N. Lalín

University of Alberta
mlalin@math.ualberta.ca
http://www.math.ualberta.ca/~mlalin

Mahler measures conference – Tokyo Institute of Technology
December 2007

Mahler measure of multivariable polynomials

 $P \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, the (logarithmic) Mahler measure is :

$$m(P) = \int_0^1 \dots \int_0^1 \log |P(e^{2\pi i\theta_1}, \dots, e^{2\pi i\theta_n})| d\theta_1 \dots d\theta_n$$
$$= \frac{1}{(2\pi i)^n} \int_{\mathbb{T}^n} \log |P(x_1, \dots, x_n)| \frac{dx_1}{x_1} \dots \frac{dx_n}{x_n}$$

Smyth (1981)

$$m(1+x+y) = \frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2) = L'(\chi_{-3},-1)$$

$$L(\chi_{-3},s) = \sum_{n=1}^{\infty} \frac{\chi_{-3}(n)}{n^s} \qquad \chi_{-3}(n) = \begin{cases} 1 & n \equiv 1 \mod 3 \\ -1 & n \equiv -1 \mod 3 \\ 0 & n \equiv 0 \mod 3 \end{cases}$$

Polylogarithms

The kth polylogarithm is

$$\mathrm{Li}_k(x) := \sum_{n=1}^{\infty} \frac{x^n}{n^k} \qquad x \in \mathbb{C}, \quad |x| < 1$$

It has an analytic continuation to $\mathbb{C} \setminus [1, \infty)$.

Zagier:

$$\widehat{\mathcal{L}_k}(x) := \widehat{\operatorname{Re}_k} \left(\sum_{j=0}^{k-1} \frac{2^j B_j}{j!} (\log |x|)^j \operatorname{Li}_{k-j}(x) \right)$$

 B_i is jth Bernoulli number

 $\widehat{\operatorname{Re}}_k = \operatorname{Re} \text{ or i Im if } k \text{ is odd or even.}$

One-valued, real analytic in $\mathbb{P}^1(\mathbb{C})\setminus\{0,1,\infty\}$, continuous in $\mathbb{P}^1(\mathbb{C})$.

Polylogarithms

The kth polylogarithm is

$$\operatorname{Li}_k(x) := \sum_{n=1}^{\infty} \frac{x^n}{n^k} \quad x \in \mathbb{C}, \quad |x| < 1$$

It has an analytic continuation to $\mathbb{C}\setminus [1,\infty)$.

Zagier:

$$\widehat{\mathcal{L}}_k(x) := \widehat{\operatorname{Re}}_k \left(\sum_{j=0}^{k-1} \frac{2^j B_j}{j!} (\log |x|)^j \operatorname{Li}_{k-j}(x) \right)$$

 B_i is jth Bernoulli number

 $\widehat{\operatorname{Re}_k} = \operatorname{Re} \text{ or i Im if } k \text{ is odd or even.}$

One-valued, real analytic in $\mathbb{P}^1(\mathbb{C})\setminus\{0,1,\infty\}$, continuous in $\mathbb{P}^1(\mathbb{C})$.

 $\widehat{\mathcal{L}_k}$ satisfies lots of functional equations

$$\widehat{\mathcal{L}}_k\left(\frac{1}{x}\right) = (-1)^{k-1}\widehat{\mathcal{L}}_k(x) \qquad \widehat{\mathcal{L}}_k(\bar{x}) = (-1)^{k-1}\widehat{\mathcal{L}}_k(x)$$

Bloch–Wigner dilogarithm (k = 2)

$$D(x) := \operatorname{Im}(\operatorname{Li}_2(x)) + \operatorname{arg}(1-x)\log|x|$$

Five-term relation

$$D(x) + D(1 - xy) + D(y) + D\left(\frac{1 - y}{1 - xy}\right) + D\left(\frac{1 - x}{1 - xy}\right) = 0$$

The relation with regulators

Deninger (1997)

$$m(P) = m(P^*) + \frac{1}{(-2i\pi)^{n-1}} \int_{\Gamma} \eta_n(n)(x_1, \dots, x_n)$$

where

$$\Gamma = \{P(x_1, \dots, x_n) = 0\} \cap \{|x_1| = \dots = |x_{n-1}| = 1, |x_n| \ge 1\}$$

 $\eta_n(n)(x_1,\ldots,x_n)$ is a $\mathbb{R}(n-1)$ -valued smooth n-1-form in $X(\mathbb{C})$.

Philosophy of Beilinson's conjectures

Global information from local information through L-functions

- Arithmetic-geometric object X (for instance, $X = \mathcal{O}_F$, F a number field)
- L-function ($L_F = \zeta_F$)
- ullet Finitely-generated abelian group K $(K=\mathcal{O}_F^*)$
- Regulator map reg : $K \to \mathbb{R} \ (\text{reg} = \log |\cdot|)$

$$(K \operatorname{\mathsf{rank}} 1) \qquad \mathrm{L}_X'(0) \sim_{\mathbb{Q}^*} \operatorname{\mathsf{reg}}(\xi)$$

(Dirichlet class number formula, for F real quadratic, $\zeta_F'(0)\sim_{\mathbb{Q}^*}\log|\epsilon|$, $\epsilon\in\mathcal{O}_F^*$)

Example:

$$\eta_2(2)(x,y) = \log |x| \operatorname{di} \arg y - \log |y| \operatorname{di} \arg x$$

Smyth (1981)

$$m(1+x+y) = \frac{1}{(2\pi i)^2} \int_{\mathbb{T}^2} \log|1+x+y| \frac{dx}{x} \frac{dy}{y}$$

by Jensen's equality

$$= \frac{1}{2\pi i} \int_{\mathbb{T}^1} \log^+ |1 + x| \frac{\mathrm{d}x}{x}$$

$$= \frac{1}{2\pi i} \int_{\Gamma} \log|y| \frac{\mathrm{d}x}{x} = -\frac{1}{2\pi i} \int_{\Gamma} \eta_2(2)(x,y)$$

where

$$\Gamma = \{1 + x + y = 0\} \cap \{|x| = 1, |y| \ge 1\}$$

Example:

$$\eta_2(2)(x,y) = \log |x| \operatorname{di} \arg y - \log |y| \operatorname{di} \arg x$$

Smyth (1981)

$$m(1+x+y) = \frac{1}{(2\pi i)^2} \int_{\mathbb{T}^2} \log|1+x+y| \frac{dx}{x} \frac{dy}{y}$$

by Jensen's equality:

$$=\frac{1}{2\pi\mathrm{i}}\int_{\mathbb{T}^1}\log^+|1+x|\frac{\mathrm{d}x}{x}$$

$$=\frac{1}{2\pi \mathrm{i}}\int_{\Gamma}\log|y|\frac{\mathrm{d}x}{x}=-\frac{1}{2\pi \mathrm{i}}\int_{\Gamma}\eta_{2}(2)(x,y)$$

where

$$\Gamma = \{1 + x + y = 0\} \cap \{|x| = 1, |y| \ge 1\}$$

but

$$\eta_2(2)(x,1-x)=\mathrm{d}D(x)$$

and

$$m(1+x+y) = -\frac{1}{2\pi i} \int_{\Gamma} \eta_2(2)(x,y)$$
 $1+x+y=0$

Use Stokes Theorem:

$$m(P) = -\frac{1}{2\pi}D(\partial\gamma)$$

$$2\pi m(x+y+1) = D(\xi_6) - D(\bar{\xi_6}) = \frac{3\sqrt{3}}{2}L(\chi_{-3},2)$$

Properties of $\eta_n(n)(x_1,\ldots,x_n)$

• Multiplicative in each variable, anti-symmetric. $\eta_n(n)$ is a function on $\bigwedge^n(\mathbb{C}(X)^*)_{\mathbb{Q}}$

•
$$d\eta_n(n)(x_1,\ldots,x_n) = \widehat{\operatorname{Re}}_n\left(\frac{dx_1}{x_1}\wedge\cdots\wedge\frac{dx_n}{x_n}\right)$$

•
$$\eta_n(n)(x, 1-x, x_1, \dots, x_{n-2}) = d\eta_{n-1}(n)(x, x_1, \dots, x_{n-2})$$

Properties of $\eta_n(n)(x_1,\ldots,x_n)$

• Multiplicative in each variable, anti-symmetric. $\eta_n(n)$ is a function on $\bigwedge^n(\mathbb{C}(X)^*)_{\mathbb{Q}}$

•
$$d\eta_n(n)(x_1,\ldots,x_n) = \widehat{\operatorname{Re}_n}\left(\frac{dx_1}{x_1}\wedge\cdots\wedge\frac{dx_n}{x_n}\right)$$

•
$$\eta_n(n)(x, 1-x, x_1, \dots, x_{n-2}) = d\eta_{n-1}(n)(x, x_1, \dots, x_{n-2})$$

Properties of $\eta_n(n)(x_1,\ldots,x_n)$

Multiplicative in each variable, anti-symmetric. $\eta_n(n)$ is a function on $\bigwedge^n(\mathbb{C}(X)^*)_{\mathbb{O}}$

•
$$d\eta_n(n)(x_1,\ldots,x_n) = \widehat{\operatorname{Re}_n}\left(\frac{dx_1}{x_1}\wedge\cdots\wedge\frac{dx_n}{x_n}\right)$$

•
$$\eta_n(n)(x, 1-x, x_1, \dots, x_{n-2}) = d\eta_{n-1}(n)(x, x_1, \dots, x_{n-2})$$

Examples

$$\eta_2(2)(x,1-x)=\mathrm{d}\widehat{D}(x)$$

$$\eta_3(3)(x,y,z) = \log|x| \left(\frac{1}{3}d\log|y| \wedge d\log|z| + \operatorname{di}\operatorname{arg} y \wedge \operatorname{di}\operatorname{arg} z\right)$$

$$+ \log|y| \left(\frac{1}{3}d\log|z| \wedge d\log|x| + \operatorname{di}\operatorname{arg} z \wedge \operatorname{di}\operatorname{arg} x\right)$$

$$+ \log|z| \left(\frac{1}{3}d\log|x| \wedge d\log|y| + \operatorname{di}\operatorname{arg} x \wedge \operatorname{di}\operatorname{arg} y\right)$$

$$\eta_3(3)(x,1-x,y) = d\eta_3(2)(x,y)$$

$$\eta_3(2)(x,y)$$

Examples

$$\eta_2(2)(x,1-x)=\mathrm{d}\widehat{D}(x)$$

$$\eta_3(3)(x,y,z) = \log|x| \left(\frac{1}{3}d\log|y| \wedge d\log|z| + \operatorname{di}\operatorname{arg} y \wedge \operatorname{di}\operatorname{arg} z\right)$$

$$+ \log|y| \left(\frac{1}{3}d\log|z| \wedge d\log|x| + \operatorname{di}\operatorname{arg} z \wedge \operatorname{di}\operatorname{arg} x\right)$$

$$+ \log|z| \left(\frac{1}{3}d\log|x| \wedge d\log|y| + \operatorname{di}\operatorname{arg} x \wedge \operatorname{di}\operatorname{arg} y\right)$$

$$\eta_3(3)(x,1-x,y) = d\eta_3(2)(x,y)$$

First variable in $\eta_n(n-1)$ behaves like the five-term relation

$$[x] + [y] + [1 - xy] + \left[\frac{1 - x}{1 - xy}\right] + \left[\frac{1 - x}{1 - xy}\right]$$

Nov

$$\eta_n(n-1)(x,x,x_1,\ldots,x_{n-3}) = d\eta_n(n-2)(x,x_1,\ldots,x_{n-3})$$

First variable in $\eta_n(n-2)$ behaves like rational functional equations of \mathcal{L}_3

. . .

$$\eta_n(2)(x,x) = \mathrm{d}\eta_n(1)(x)$$

and

$$\eta_n(1)(x) = \widehat{\mathcal{L}_n}(x)$$

First variable in $\eta_n(n-1)$ behaves like the five-term relation

$$[x] + [y] + [1 - xy] + \left[\frac{1 - x}{1 - xy}\right] + \left[\frac{1 - x}{1 - xy}\right]$$

Now

$$\eta_n(n-1)(x,x,x_1,\ldots,x_{n-3}) = d\eta_n(n-2)(x,x_1,\ldots,x_{n-3})$$

First variable in $\eta_n(n-2)$ behaves like rational functional equations of \mathcal{L}_3 .

. . .

$$\eta_n(2)(x,x) = \mathrm{d}\eta_n(1)(x)$$

and

$$\eta_n(1)(x) = \widehat{\mathcal{L}_n}(x)$$

First variable in $\eta_n(n-1)$ behaves like the five-term relation

$$[x] + [y] + [1 - xy] + \left[\frac{1 - x}{1 - xy}\right] + \left[\frac{1 - x}{1 - xy}\right]$$

Now

$$\eta_n(n-1)(x,x,x_1,\ldots,x_{n-3}) = d\eta_n(n-2)(x,x_1,\ldots,x_{n-3})$$

First variable in $\eta_n(n-2)$ behaves like rational functional equations of \mathcal{L}_3 .

. . .

$$\eta_n(2)(x,x) = \mathrm{d}\eta_n(1)(x)$$

and

$$\eta_n(1)(x) = \widehat{\mathcal{L}_n}(x)$$

Example in three variables

Smyth (1981)
$$m(1-x+(1-y)z) = \frac{7}{2\pi^2}\zeta(3)$$

$$m(P) = m(1-y) - \frac{1}{(2\pi)^2} \int_{\Gamma} \eta_3(3)(x,y,z).$$

$$x \wedge y \wedge z = -x \wedge (1-x) \wedge y - y \wedge (1-y) \wedge x,$$

$$x \wedge y \wedge z = -x \wedge (1-x) \wedge y - y \wedge (1-y) \wedge x,$$

in other words,

$$\eta_3(3)(x,y,z) = -\eta_3(3)(x,1-x,y) - \eta_3(3)(y,1-y,x).$$

We have

$$m((1-x)+(1-y)z)=\frac{1}{4\pi^2}\int_{\gamma}\eta_3(2)(x,y)+\eta_3(2)(y,x).$$

$$\Gamma = \{ P(x, y, z) = 0 \} \cap \{ |x| = |y| = 1, |z| \ge 1 \}$$

$$\partial \Gamma = \{ P(x, y, z) = 0 \} \cap \{ |x| = |y| = |z| = 1 \}$$

Maillot: $P \in \mathbb{R}[x, y, z]$,

$$\gamma = \{ P(x, y, z) = P(x^{-1}, y^{-1}, z^{-1}) = 0 \} \cap \{ |x| = |y| = 1 \}.$$

$$C = \{P(x, y, z) = P(x^{-1}, y^{-1}, z^{-1}) = 0\}$$

$$\frac{(1-x)(1-x^{-1})}{(1-y)(1-y^{-1})} = 1$$

$$C = \{x = y\} \cup \{xy = 1\}$$

$$-\{x\}_2 \otimes y - \{y\}_2 \otimes x = \pm 2\{x\}_2 \otimes x.$$

$$m((1-x)+(1-y)z)=\frac{1}{4\pi^2}8(\mathcal{L}_3(1)-\mathcal{L}_3(-1))=\frac{7}{2\pi^2}\zeta(3).$$

Other examples

Boyd & L. (2005)

$$m(x^2+1+(x+1)y+(x-1)z)=\frac{L(\chi_{-4},2)}{\pi}+\frac{21}{8\pi^2}\zeta(3)$$

$$m(x^2 + x + 1 + (x + 1)y + z) = \frac{\sqrt{3}}{4\pi}L(\chi_{-3}, 2) + \frac{19}{6\pi^2}\zeta(3)$$

An example in four variables

L.(2003)

$$\pi^{3}m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y)z\right)=2\pi^{2}L(\chi_{-4},2)+8\sum_{0\leq j< k}\frac{(-1)^{j+k+1}}{(2j+1)^{3}k}$$

(2005)

$$= 24L(\chi_{-4}, 4)$$

In general, for *m* odd,

$$\sum_{0 \le j < k} \frac{(-1)^{j+k+1}}{(2j+1)^m k}$$

$$= mL(\chi_{-4}, m+1) + \sum_{h=1}^{\frac{m-1}{2}} \frac{(-1)^h \pi^{2h} (2^{2h} - 1)}{(2h)!} B_{2h} L(\chi_{-4}, m-2h+1)$$

An example in four variables

L.(2003)

$$\pi^{3}m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y)z\right)=2\pi^{2}L(\chi_{-4},2)+8\sum_{0\leq j< k}\frac{(-1)^{j+k+1}}{(2j+1)^{3}k}$$

(2005)

$$= 24L(\chi_{-4}, 4)$$

In general, for *m* odd,

$$\sum_{0 \le j < k} \frac{(-1)^{j+k+1}}{(2j+1)^m k}$$

$$= mL(\chi_{-4}, m+1) + \sum_{h=1}^{\frac{m-1}{2}} \frac{(-1)^h \pi^{2h} (2^{2h} - 1)}{(2h)!} B_{2h} L(\chi_{-4}, m-2h+1)$$

An example in four variables

L.(2003)

$$\pi^{3}m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y)z\right)=2\pi^{2}L(\chi_{-4},2)+8\sum_{0\leq j< k}\frac{(-1)^{j+k+1}}{(2j+1)^{3}k}$$

(2005)

$$= 24L(\chi_{-4}, 4)$$

In general, for *m* odd,

$$\sum_{0 \le j \le k} \frac{(-1)^{j+k+1}}{(2j+1)^m k}$$

$$= mL(\chi_{-4}, m+1) + \sum_{h=1}^{\frac{m-1}{2}} \frac{(-1)^h \pi^{2h} (2^{2h} - 1)}{(2h)!} B_{2h} L(\chi_{-4}, m-2h+1)$$

Generalized Mahler measure

Gon & Oyanagi (2004)

For
$$f_1, \ldots, f_r \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$$
,

$$\mathit{m}(\mathit{f}_1,\ldots,\mathit{f}_r) = \frac{1}{(2\pi\mathrm{i})^n} \int_{\mathbb{T}^n} \max\{\log|\mathit{f}_1|,\ldots,\log|\mathit{f}_r|\} \frac{\mathrm{d}\mathit{x}_1}{\mathit{x}_1} \ldots \frac{\mathrm{d}\mathit{x}_n}{\mathit{x}_n}$$

Note

$$m(f_1, f_2) = m(f_1 + zf_2)$$

Generalized Mahler measure

Gon & Oyanagi (2004)

For
$$f_1, \ldots, f_r \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$$
,

$$\textit{m}(\textit{f}_1,\ldots,\textit{f}_r) = \frac{1}{(2\pi \mathrm{i})^n} \int_{\mathbb{T}^n} \max\{\log |\textit{f}_1|,\ldots,\log |\textit{f}_r|\} \frac{\mathrm{d} \textit{x}_1}{\textit{x}_1} \ldots \frac{\mathrm{d} \textit{x}_n}{\textit{x}_n}$$

Note

$$m(f_1,f_2)=m(f_1+zf_2)$$

Examples

The particular case when $f_j = P(x_j)$ for some $P \in \mathbb{C}[x]$. Gon & Oyanagi (2004)

$$m(1-x_1,\ldots,1-x_n) = \sum_{j=1}^{\left[\frac{n}{2}\right]} c_{j,n} \frac{\zeta(2j+1)}{\pi^{2j}}$$

$$m(1-x_1,1-x_2) = \frac{7}{2\pi^2} \zeta(3)$$

$$m(1-x_1,1-x_2,1-x_3) = \frac{9}{2\pi^2} \zeta(3)$$

$$m(1-x_1,1-x_2,1-x_3,1-x_4) = -\frac{93}{2\pi^4} \zeta(5) + \frac{9}{\pi^2} \zeta(3)$$

Can be also computed using regulators.

|P(x)| is montononous when $0 \le \arg x \le \pi$.

In this case, $|P(x)| = 2 \left| \sin \frac{\arg x}{2} \right|$.

$$m(P(x_1),\ldots,P(x_n)) = \frac{n!}{(\pi i)^n} \int_{0 \le \arg x_n \le \cdots \le \arg x_1 \le \pi} \eta(P(x_1),x_1,\ldots,x_n)$$

L. (2005)

$$m\left(\frac{1-x_1}{1+x_1},\dots,\frac{1-x_n}{1+x_n}\right) = \sum_{j=1}^{\left[\frac{n}{2}\right]} c'_{j,n} \frac{\zeta(2j+1)}{\pi^{2j}}$$

$$m\left(\frac{1-x_1}{1+x_1},\frac{1-x_2}{1+x_2}\right) = \frac{7}{\pi^2}\zeta(3)$$

$$m\left(\frac{1-x_1}{1+x_1},\dots,\frac{1-x_3}{1+x_3}\right) = \frac{21}{2\pi^2}\zeta(3)$$

$$m\left(\frac{1-x_1}{1+x_1},\dots,\frac{1-x_4}{1+x_4}\right) = -\frac{93}{\pi^4}\zeta(5) + \frac{21}{\pi^2}\zeta(3)$$

$$m(1+x_1-x_1^{-1},\ldots,1+x_n-x_n^{-1})=$$
 combination of polylogarithms.

$$m(1 + x_1 - x_1^{-1}) = -\log(\varphi),$$

$$m(1 + x_1 - x_1^{-1}, 1 + x_2 - x_2^{-1})$$

$$= \frac{1}{\pi^2} \operatorname{Re}(\operatorname{Li}_3(\varphi^2) - \operatorname{Li}_3(-\varphi^2) + \operatorname{Li}_3(\varphi^{-2}) - \operatorname{Li}_3(-\varphi^{-2}))$$

for
$$\varphi = \frac{-1+\sqrt{5}}{2}$$
.

A result about generalized Mahler measure

Let
$$P\in\mathbb{C}(x_1,\ldots,x_n)$$
 and let $f_i=P(x_{i,1},\ldots,x_{i,n})$ for $i=1,\ldots r$. Then
$$\lim_{r\to\infty} m(f_1,\ldots,f_r)=\log||P||_{\infty}$$

where $||\cdot||_{\infty}$ stands for the sup norm on \mathbb{T}^n .

Functional equations for Mahler measures of genus-one curves

(joint with Mathew D. Rogers) Matilde N. Lalín

University of Alberta
mlalin@math.ualberta.ca
http://www.math.ualberta.ca/~mlalin

Mahler measures conference – Tokyo Institute of Technology
December 2007

Mahler measure of multivariable polynomials

 $P \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, the (logarithmic) Mahler measure is:

$$m(P) = \int_0^1 \dots \int_0^1 \log |P(e^{2\pi i\theta_1}, \dots, e^{2\pi i\theta_n})| d\theta_1 \dots d\theta_n$$
$$= \frac{1}{(2\pi i)^n} \int_{\mathbb{T}^n} \log |P(x_1, \dots, x_n)| \frac{dx_1}{x_1} \dots \frac{dx_n}{x_n}$$

The measures of a family of genus-one curves

$$m(k) := m\left(x + \frac{1}{x} + y + \frac{1}{y} + k\right)$$

Boyd 1998

$$m(k) \stackrel{?}{=} \frac{\mathrm{L}'(E_k,0)}{s_k} \quad k \in \mathbb{N} \neq 0,4$$

 E_k determined by $x + \frac{1}{x} + y + \frac{1}{y} + k = 0$.

Deninger 1997

L-functions \leftarrow Beilinson's conjectures Kronecker-Eisenstein series for k=1

The measures of a family of genus-one curves

$$m(k) := m\left(x + \frac{1}{x} + y + \frac{1}{y} + k\right)$$

Boyd 1998

$$m(k) \stackrel{?}{=} \frac{\mathrm{L}'(E_k,0)}{s_k} \quad k \in \mathbb{N} \neq 0,4$$

 E_k determined by $x + \frac{1}{x} + y + \frac{1}{y} + k = 0$.

Deninger 1997

L-functions \leftarrow Beilinson's conjectures Kronecker-Eisenstein series for k=1

The measures of a family of genus-one curves

$$m(k) := m\left(x + \frac{1}{x} + y + \frac{1}{y} + k\right)$$

Boyd 1998

$$m(k) \stackrel{?}{=} \frac{\mathrm{L}'(E_k,0)}{s_k} \quad k \in \mathbb{N} \neq 0,4$$

 E_k determined by $x + \frac{1}{x} + y + \frac{1}{y} + k = 0$.

Deninger 1997

L-functions \leftarrow Beilinson's conjectures Kronecker-Eisenstein series for k=1

Rodriguez-Villegas 1997

$$k = 4\sqrt{2}$$
 (CM case)

$$m(4\sqrt{2}) = m(x + \frac{1}{x} + y + \frac{1}{y} + 4\sqrt{2}) = L'(E_{4\sqrt{2}}, 0)$$

 $k = 3\sqrt{2}$ (modular curve $X_0(24)$)

$$m(3\sqrt{2}) = m\left(x + \frac{1}{x} + y + \frac{1}{y} + 3\sqrt{2}\right) = qL'(E_{3\sqrt{2}}, 0)$$

$$q\in\mathbb{Q}^*,\quad q\stackrel{?}{=}rac{5}{2}$$

Theorem

(Rodriguez-Villegas) $E_k \sim \text{modular elliptic surface assoc } \Gamma_0(4)$.

$$\begin{split} m(k) &= \operatorname{Re} \left(\frac{16 y_{\mu}}{\pi^2} \sum_{m,n}^{\prime} \frac{\chi_{-4}(m)}{(m + n4 \mu)^2 (m + n4 \bar{\mu})} \right) \\ &= \operatorname{Re} \left(-\pi \mathrm{i} \mu + 2 \sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-4}(d) d^2 \frac{q^n}{n} \right) \end{split}$$

where $j(E_k) = j\left(-\frac{1}{4\mu}\right)$

$$q = e^{2\pi i \mu} = q\left(\frac{16}{k^2}\right) = \exp\left(-\pi \frac{{}_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1, 1 - \frac{16}{k^2}\right)}{{}_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1, \frac{16}{k^2}\right)}\right)$$

and y_{μ} is the imaginary part of μ .

5 / 26

Theorem

(Kurokawa & Ochiai 2005) For $h \in \mathbb{R}^*$.

$$m(4h^2) + m\left(\frac{4}{h^2}\right) = 2m\left(2\left(h + \frac{1}{h}\right)\right).$$

(L. & Rogers 2007) For |h| < 1, $h \neq 0$,

$$m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i}h+\frac{1}{\mathrm{i}h}\right)\right)=m\left(\frac{4}{h^2}\right).$$

$$m\left(2\left(h+\frac{1}{h}\right)\right)-m\left(2\left(\mathrm{i}h+\frac{1}{\mathrm{i}h}\right)\right)=m\left(4h^2\right)$$

Theorem

(Kurokawa & Ochiai 2005) For $h \in \mathbb{R}^*$.

$$m(4h^2) + m\left(\frac{4}{h^2}\right) = 2m\left(2\left(h + \frac{1}{h}\right)\right).$$

(L. & Rogers 2007) For |h| < 1, $h \neq 0$,

$$m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i}h+\frac{1}{\mathrm{i}h}\right)\right)=m\left(\frac{4}{h^2}\right).$$

$$m\left(2\left(h+\frac{1}{h}\right)\right)-m\left(2\left(\mathrm{i}h+\frac{1}{\mathrm{i}h}\right)\right)=m\left(4h^2\right).$$

Corollary

$$m(8) = 4m(2) = \frac{8}{5}m(3\sqrt{2})$$

$$m\left(3\sqrt{2}\right) = qL'(E_{3\sqrt{2}}, 0)$$
$$q \in \mathbb{Q}^*, \quad q \stackrel{?}{=} \frac{5}{2}$$

Corollary

$$m(8) = 4m(2) = \frac{8}{5}m(3\sqrt{2})$$

$$m\left(3\sqrt{2}\right) = qL'(E_{3\sqrt{2}}, 0)$$
 $q \in \mathbb{Q}^*, \quad q \stackrel{?}{=} \frac{5}{2}$

The elliptic regulator

F field. Matsumoto Theorem:

$$K_2(F) = \langle \{a, b\}, a, b \in F \rangle / \langle \text{bilinear}, \{a, 1 - a\} \rangle$$

 $K_2(E)\otimes \mathbb{Q}$ subgroup of $K_2(\mathbb{Q}(E))\otimes \mathbb{Q}$ determined by kernels of tame symbols.

$$x, y \in \mathbb{C}(E)$$

$$\eta(x,y) := \log |x| d \arg y - \log |y| d \arg x$$

1-form on $E(\mathbb{C}) \setminus S$ for any loop $\gamma \in E(\mathbb{C}) \setminus S$

$$(\gamma, \eta(x, y)) = \frac{1}{2\pi} \int_{\gamma} \eta(x, y)$$

The elliptic regulator

F field. Matsumoto Theorem:

$$K_2(F) = \langle \{a, b\}, a, b \in F \rangle / \langle \text{bilinear}, \{a, 1 - a\} \rangle$$

 $K_2(E)\otimes \mathbb{Q}$ subgroup of $K_2(\mathbb{Q}(E))\otimes \mathbb{Q}$ determined by kernels of tame symbols.

$$x, y \in \mathbb{C}(E)$$

$$\eta(x, y) := \log |x| d \arg y - \log |y| d \arg x$$

1-form on $E(\mathbb{C}) \setminus S$

for any loop $\gamma \in E(\mathbb{C}) \setminus S$

$$(\gamma, \eta(x, y)) = \frac{1}{2\pi} \int_{\gamma} \eta(x, y)$$

The elliptic regulator

F field. Matsumoto Theorem:

$$K_2(F) = \langle \{a, b\}, a, b \in F \rangle / \langle \text{bilinear}, \{a, 1 - a\} \rangle$$

 $K_2(E)\otimes \mathbb{Q}$ subgroup of $K_2(\mathbb{Q}(E))\otimes \mathbb{Q}$ determined by kernels of tame symbols.

$$x, y \in \mathbb{C}(E)$$

$$\eta(x, y) := \log |x| d \arg y - \log |y| d \arg x$$

1-form on $E(\mathbb{C}) \setminus S$ for any loop $\gamma \in E(\mathbb{C}) \setminus S$

$$(\gamma, \eta(x, y)) = \frac{1}{2\pi} \int_{\gamma} \eta(x, y)$$

The regulator map (Beilinson, Bloch):

$$r: K_2(E) \otimes \mathbb{Q} \to H^1(E, \mathbb{R})$$

$$\{x,y\} \to \left\{\gamma \to \int_{\gamma} \eta(x,y)\right\}$$

for $\gamma \in H_1(E,\mathbb{Z})$. $(H^1(E,\mathbb{R}) \text{ dual of } H_1(E,\mathbb{Z}))$

Follows from $\eta(x, 1 - x) = dD(x)$,

$$D(x) = \operatorname{Im}(\operatorname{Li}_2(x)) + \operatorname{arg}(1-x)\log|x|$$

is the Bloch-Wigner dilogarithm

The relation with Mahler measures

Deninger

$$m(k) \sim_{\mathbb{Z}} \frac{1}{2\pi} r(\{x,y\})(\gamma)$$

In the example,

$$yP_k(x,y) = (y - y_{(1)}(x))(y - y_{(2)}(x)),$$

$$m(k) = \frac{1}{2\pi i} \int_{\mathbb{T}^1} (\log^+ |y_{(1)}(x)| + \log^+ |y_{(2)}(x)|) \frac{\mathrm{d}x}{x}.$$

By Jensen's formula respect to y.

$$m(k) = \frac{1}{2\pi i} \int_{\mathbb{T}^1} \log |y| \frac{\mathrm{d}x}{x} = -\frac{1}{2\pi} \int_{\mathbb{T}^1} \eta(x, y),$$

 $\mathbb{T}^1 \in H_1(E,\mathbb{Z}).$

Computing the regulator

$$E(\mathbb{C}) \cong \mathbb{C}/\mathbb{Z} + \tau \mathbb{Z} \cong \mathbb{C}^*/q^{\mathbb{Z}}$$

 $z \mod \Lambda = \mathbb{Z} + \tau \mathbb{Z}$ is identified with $e^{2i\pi z}$.

Bloch regulator function

$$R_{\tau}\left(e^{2\pi i(a+b\tau)}\right) = \frac{y_{\tau}^2}{\pi} \sum_{m,n\in\mathbb{Z}}' \frac{e^{2\pi i(bn-am)}}{(m\tau+n)^2(m\bar{\tau}+n)}$$

 y_{τ} is the imaginary part of τ .

Elliptic dilogarithm

$$D_{\tau}(z) := \sum_{n \in \mathbb{Z}} D(zq^n)$$

Regulator function given by

$$\mathbb{Z}[E(\mathbb{C})]^- = \mathbb{Z}[E(\mathbb{C})]/\sim \quad [-P] \sim -[P].$$

 R_{τ} is an odd function,

$$\mathbb{Z}[E(\mathbb{C})]^- \to \mathbb{C}.$$

$$(x) = \sum m_i(a_i), \qquad (y) = \sum n_j(b_j).$$

$$\mathbb{C}(E)^* \otimes \mathbb{C}(E)^* \to \mathbb{Z}[E(\mathbb{C})]^-$$

$$(x) \diamond (y) = \sum m_i n_j (a_i - b_j).$$

Proposition

 E/\mathbb{R} elliptic curve,x, y are non-constant functions in $\mathbb{C}(E)$ with trivial tame symbols, $\omega \in \Omega^1$

$$-r(\lbrace x,y\rbrace) = -\int_{\gamma} \eta(x,y) = \operatorname{Im}\left(\frac{\Omega}{y_{\tau}\Omega_{0}}R_{\tau}\left((x)\diamond(y)\right)\right)$$

where Ω_0 is the real period and $\Omega=\int_{\gamma}\omega$.

Use results of Beilinson, Bloch, Deninger

Idea of Proof

$$x + \frac{1}{x} + y + \frac{1}{y} + k = 0$$

Weierstrass form:

$$x = \frac{kX - 2Y}{2X(X - 1)}$$
 $y = \frac{kX + 2Y}{2X(X - 1)}$.

$$Y^2 = X\left(X^2 + \left(\frac{k^2}{4} - 2\right)X + 1\right).$$

 $P = (1, \frac{k}{2})$, torsion point of order 4.

$$(x) \diamond (y) = 4(P) - 4(-P) = 8(P).$$

$$P\equiv -rac{1}{4}\mod \mathbb{Z}+ au\mathbb{Z} \qquad k\in \mathbb{R}$$
 $au=\mathrm{i} y_ au \qquad k\in \mathbb{R}, |k|>4,$ $au=rac{1}{2}+\mathrm{i} y_ au \qquad k\in \mathbb{R}, |k|<4$ Understand cycle $[|x|=1]\in H_1(E,\mathbb{Z})$ $\Omega= au\Omega_0 \quad k\in \mathbb{R}$

$$-r(\lbrace x,y\rbrace) = -\int_{\gamma} \eta(x,y) = \operatorname{Im}\left(\frac{\Omega}{y_{\tau}\Omega_{0}}R_{\tau}\left((x)\diamond(y)\right)\right)$$
$$m(k) = \frac{4}{\pi}\operatorname{Im}\left(\frac{\tau}{y_{\tau}}R_{\tau}(-i)\right), \quad k \in \mathbb{R}$$

$$\mathit{m}(k) = rac{4}{\pi} \operatorname{Im} \left(rac{ au}{y_{ au}} R_{ au}(-\mathrm{i})
ight), \quad k \in \mathbb{R}$$

Take $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in SL_2(\mathbb{Z}).$

$$m(k) = -\frac{4|\tau|^2}{\pi y_{\tau}} J_{-\frac{1}{\tau}} \left(e^{-\frac{2\pi i}{4\tau}} \right)$$

If we let $\mu = -\frac{1}{4\pi}$, then

$$m(k) = -\frac{1}{\pi y_{\mu}} J_{4\mu} \left(e^{2\pi i \mu} \right)$$

= Re
$$\left(\frac{16y_{\mu}}{\pi^{2}}\sum_{m,n}^{\prime}\frac{\chi_{-4}(m)}{(m+n4\mu)^{2}(m+n4\bar{\mu})}\right)$$

Functional equations for the regulator

From

$$J(z) = p \sum_{x^p = z} J(x)$$

Let p prime,

$$(1 + \chi_{-4}(p)p^{2})J_{4\tau}\left(e^{2\pi i\tau}\right) = \sum_{j=0}^{p-1} pJ_{\frac{4(\tau+j)}{p}}\left(e^{\frac{2\pi i(\tau+j)}{p}}\right) + \chi_{-4}(p)J_{4p\tau}\left(e^{2\pi ip\tau}\right)$$

• In particular, p = 2,

$$J_{4\tau}\left(\mathrm{e}^{2\pi\mathrm{i} au}\right) = 2J_{2\tau}\left(\mathrm{e}^{\pi\mathrm{i} au}\right) + 2J_{2(\tau+1)}\left(\mathrm{e}^{\pi\mathrm{i}(\tau+1)}\right)$$

Also:

$$J_{\frac{2\tau+1}{2}}\left(e^{\pi i\tau}\right) = J_{2\tau}\left(e^{\pi i\tau}\right) - J_{2\tau}\left(-e^{\pi i\tau}\right)$$

Functional equations for the regulator

From

$$J(z) = p \sum_{x^p = z} J(x)$$

Let *p* prime,

$$(1 + \chi_{-4}(p)p^{2})J_{4\tau}\left(e^{2\pi i\tau}\right) = \sum_{j=0}^{p-1} pJ_{\frac{4(\tau+j)}{p}}\left(e^{\frac{2\pi i(\tau+j)}{p}}\right) + \chi_{-4}(p)J_{4p\tau}\left(e^{2\pi ip\tau}\right)$$

• In particular, p = 2,

$$J_{4\tau}\left(e^{2\pi i\tau}\right) = 2J_{2\tau}\left(e^{\pi i\tau}\right) + 2J_{2(\tau+1)}\left(e^{\pi i(\tau+1)}\right)$$

Also:

$$J_{\frac{2\tau+1}{2}}\left(\mathrm{e}^{\pi\mathrm{i}\tau}\right)=J_{2\tau}\left(\mathrm{e}^{\pi\mathrm{i}\tau}\right)-J_{2\tau}\left(-\mathrm{e}^{\pi\mathrm{i}\tau}\right)$$

$$q = q\left(\frac{16}{k^2}\right) = \exp\left(-\pi \frac{{}_2F_1\left(\frac{1}{2},\frac{1}{2};1,1-\frac{16}{k^2}\right)}{{}_2F_1\left(\frac{1}{2},\frac{1}{2};1,\frac{16}{k^2}\right)}\right)$$

Second degree modular equation, |h| < 1, $h \in \mathbb{R}$,

$$q^2\left(\left(\frac{2h}{1+h^2}\right)^2\right)=q\left(h^4\right).$$

 $h \rightarrow ih$

$$-q\left(\left(\frac{2h}{1+h^2}\right)^2\right)=q\left(\left(\frac{2\mathrm{i}h}{1-h^2}\right)^2\right).$$

From

$$\textit{J}_{4\tau}\left(\mathrm{e}^{2\pi\mathrm{i}\tau}\right) = 2\textit{J}_{2\tau}\left(\mathrm{e}^{\pi\mathrm{i}\tau}\right) + 2\textit{J}_{2(\tau+1)}\left(\mathrm{e}^{\pi\mathrm{i}(\tau+1)}\right)$$

One gets

$$\begin{split} m\left(q\left(\left(\frac{2h}{1+h^2}\right)^2\right)\right) + m\left(q\left(\left(\frac{2\mathrm{i}h}{1-h^2}\right)^2\right)\right) &= m\left(q\left(h^4\right)\right). \\ m\left(2\left(h+\frac{1}{h}\right)\right) + m\left(2\left(\mathrm{i}h+\frac{1}{\mathrm{i}h}\right)\right) &= m\left(\frac{4}{h^2}\right). \end{split}$$

$$J_{\frac{2\mu+1}{2}}\left(\mathrm{e}^{\frac{2\pi\mathrm{i}\mu}{2}}\right) = J_{2\mu}\left(\mathrm{e}^{\pi\mathrm{i}\mu}\right) - J_{2\mu}\left(-\mathrm{e}^{\pi\mathrm{i}\mu}\right)$$

Set $\tau = -\frac{1}{2\mu}$ and use $\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$.

$$D_{\frac{\tau-1}{2}}(-\mathrm{i}) = D_{\tau}(-\mathrm{i}) - \frac{1}{y_{2(\mu+1)}} J_{2(\mu+1)}\left(e^{\frac{2\pi\mathrm{i}(\mu+1)}{2}}\right)$$

First equation was:

$$D_{\frac{\tau-1}{2}}(-\mathrm{i}) = D_{\tau}(-\mathrm{i}) + \frac{1}{y_{2(\mu+1)}} J_{2(\mu+1)}\left(e^{\frac{2\pi\mathrm{i}(\mu+1)}{2}}\right)$$

Putting things together,

$$2D_{\tau}(-i) = D_{\frac{\tau}{2}}(-i) + D_{\frac{\tau-1}{2}}(-i)$$

this is:

$$2m\left(2\left(h+\frac{1}{h}\right)\right)=m(4h^2)+m\left(\frac{4}{h^2}\right).$$

Hecke operators approach

$$m(k) = \operatorname{Re}\left(-\pi i\mu + 2\sum_{n=1}^{\infty} \sum_{d|n} \chi_{-4}(d)d^{2}\frac{q^{n}}{n}\right)$$
$$= \operatorname{Re}\left(-\pi i\mu - \pi i \int_{i\infty}^{\mu} (e(z) - 1)dz\right)$$

where

$$e(\mu) = 1 - 4 \sum_{n=1}^{\infty} \sum_{d|n} \chi_{-4}(d) d^2 q^n$$

is an Eisenstein series. Hence the equations can be also deduced from identities of Hecke operators.

Direct approach

Also some equations can be proved directly using isogenies:

$$\phi_{1}: E_{2\left(h+\frac{1}{h}\right)} \to E_{4h^{2}}, \qquad \phi_{2}: E_{2\left(h+\frac{1}{h}\right)} \to E_{\frac{4}{h^{2}}}.$$

$$\phi_{1}: (X,Y) \to \left(\frac{X(h^{2}X+1)}{X+h^{2}}, -\frac{h^{3}Y(X^{2}+2h^{2}X+1)}{(X+h^{2})^{2}}\right)$$

$$m(4h^{2}) = r_{1}(\{x_{1}, y_{1}\}) = \frac{1}{2\pi} \int_{|X_{1}|=1} \eta(x_{1}, y_{1})$$

$$= \frac{1}{4\pi} \int_{|X|=1} \eta(x_{1} \circ \phi_{1}, y_{1} \circ \phi_{1}) = \frac{1}{2} r(\{x_{1} \circ \phi_{1}, y_{1} \circ \phi_{1}\})$$

The identity with $h = \frac{1}{\sqrt{2}}$

$$m(2) + m(8) = 2m \left(3\sqrt{2}\right)$$

 $m\left(3\sqrt{2}\right) + m\left(i\sqrt{2}\right) = m(8)$

$$f = \frac{\sqrt{2}Y - X}{2} \text{ in } \mathbb{C}(E_{3\sqrt{2}}).$$

$$(f) \diamond (1-f) = 6(P) - 10(P+Q) \Rightarrow 6(P) \sim 10(P+Q)$$

$$\phi: E_{3\sqrt{2}} \to E_{i\sqrt{2}}$$
 $(X,Y) \to (-X,iY)$

$$r_{i\sqrt{2}}(\lbrace x,y\rbrace) = r_{3\sqrt{2}}(\lbrace x\circ\phi,y\circ\phi\rbrace)$$

The identity with $h = \frac{1}{\sqrt{2}}$

$$m(2) + m(8) = 2m \left(3\sqrt{2}\right)$$

 $m\left(3\sqrt{2}\right) + m\left(i\sqrt{2}\right) = m(8)$

$$f = \frac{\sqrt{2}Y - X}{2}$$
 in $\mathbb{C}(E_{3\sqrt{2}})$.

$$(f) \diamond (1-f) = 6(P) - 10(P+Q) \Rightarrow 6(P) \sim 10(P+Q).$$

 $Q = \left(-\frac{1}{h^2}, 0\right)$ has order 2.

$$\phi: E_{3\sqrt{2}} \to E_{i\sqrt{2}}$$
 $(X, Y) \to (-X, iY)$

$$r_{i\sqrt{2}}(\lbrace x,y\rbrace) = r_{3\sqrt{2}}(\lbrace x\circ\phi,y\circ\phi\rbrace)$$

But

$$(x \circ \phi) \diamond (y \circ \phi) = 8(P + Q)$$
$$(x) \diamond (y) = 8(P)$$

$$6r_{3\sqrt{2}}(\{x,y\}) = 10r_{i\sqrt{2}}(\{x,y\})$$

and

$$3m(3\sqrt{2})=5m(\mathrm{i}\sqrt{2}).$$

Consequently,

$$m(8)=\frac{8}{5}m(3\sqrt{2})$$

$$m(2)=\frac{2}{5}m(3\sqrt{2})$$

Other families

Hesse family

$$h(a^3) = m\left(x^3 + y^3 + 1 - \frac{3xy}{a}\right)$$

(studied by Rodriguez-Villegas 1997)

$$h(u^3) = \sum_{j=0}^{2} h\left(1 - \left(\frac{1 - \xi_3^j u}{1 + 2\xi_3^j u}\right)^3\right) \qquad |u| \text{ small}$$

• More complicated equations for examples studied by Stienstra 2005:

$$m\left((x+1)(y+1)(x+y)-\frac{xy}{t}\right)$$

and Bertin 2004, Zagier < 2005, and Stienstra 2005:

$$m\left((x+y+1)(x+1)(y+1)-\frac{xy}{t}\right)$$

December 4th, 2007