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Mahler measure

Definition 1 For P ∈ C[x±1
1 , . . . , x±1

n ], the (logarithmic) Mahler measure is defined by

m(P ) =
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)|dx1

x1
. . .

dxn

xn

. (1)

The simplest example in several variables is due to Smyth [11]

m(1 + x + y) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1)

L(χ−3, s) =
∞∑

n=1

χ−3(n)

ns
χ−3(n) =





1 n ≡ 1 mod 3
−1 n ≡ −1 mod 3
0 n ≡ 0 mod 3

Polylogarithms

Many examples should be understood in the context of polylogarithms.

Definition 2 The kth polylogarithm is the function defined by the power series

Lik(x) :=
∞∑

n=1

xn

nk
x ∈ C, |x| < 1. (2)

This function can be continued analytically to C \ [1,∞).
In order to avoid discontinuities, and to extend polylogarithms to the whole complex

plane, several modifications have been proposed. Zagier [12] considers the following version:

L̂k(x) := R̂ek




k−1∑

j=0

2jBj

j!
(log |x|)jLik−j(x)


 , (3)

where Bj is the jth Bernoulli number, and R̂ek denotes Re or i Im depending on whether
k is odd or even.

This function is one-valued, real analytic in P1(C) \ {0, 1,∞} and continuous in P1(C).

Moreover, L̂k satisfy very clean functional equations. The simplest ones are

L̂k

(
1

x

)
= (−1)k−1L̂k(x) L̂k(x̄) = (−1)k−1L̂k(x).
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There are also lots of functional equations which depend on the index k. For instance, for
k = 2, we have the Bloch–Wigner dilogarithm,

D(x) := Im(Li2(x)) + arg(1 − x) log |x|

which satisfies the well-known five-term relation

D(x) + D(1 − xy) + D(y) + D

(
1 − y

1 − xy

)
+ D

(
1 − x

1 − xy

)
= 0. (4)

The relation with regulators

We write the Mahler measure as an integral of a certain R(n−1)-valued smooth n−1-form
in X(C), the variety determined by the zeroes of the polynomial.

m(P ) = m(P ∗) +
1

(−2πi)n−1

∫

Γ
ηn(n)(x1, . . . , xn)

where
Γ = {P (x1, . . . , xn) = 0} ∩ {|x1| = . . . = |xn−1| = 1, |xn| ≥ 1}

This was an idea of Deninger [3].
As an example, let us look at Smyth’s case in two variables ([11]). The two-variable

differential form is
η2(2)(x, y) = log |x|di arg y − log |y|di arg x.

Then

m(1 + x + y) =
1

(2πi)2

∫

T2

log |1 + x + y|dx

x

dy

y
.

By Jensen’s equality:

=
1

2πi

∫

T1

log+ |1 + x|dx

x

=
1

2πi

∫

Γ
log |y|dx

x
= − 1

2πi

∫

Γ
η2(2)(x, y),

where
Γ = {1 + x + y = 0} ∩ {|x| = 1, |y| ≥ 1}.

Here are some properties of ηn(n)(x1, . . . , xn) :

• ηn(n) is multiplicative in each variable and anti-symmetric. Hence it can be thought
as a function on

∧n(C(X)∗)Q.

• dηn(n)(x1, . . . , xn) = R̂en

(
dx1

x1
∧ . . . ∧ dxn

xn

)

• There is an R(n − 2)-valued smooth n − 2-form in X(C) such that

ηn(n)(x, 1 − x, x1, . . . , xn−2) = dηn−1(n)(x, x1, . . . , xn−2)
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In the two-variable case we have

η2(2)(x, 1 − x) = dD̂(x).

The forms for n = 3 are

η3(3)(x, y, z) = log |x|
(

1

3
d log |y| ∧ d log |z| + di arg y ∧ di arg z

)

+ log |y|
(

1

3
d log |z| ∧ d log |x| + di arg z ∧ di arg x

)
+log |z|

(
1

3
d log |x| ∧ d log |y| + di arg x ∧ di arg y

)
,

η3(3)(x, 1 − x, y) = dη3(2)(x, y),

η3(2)(x, y) = D̂(x)di arg y +
1

3
log |y|(log |1 − x|d log |x| − log |x|d log |1 − x|).

Now the first variable of ηn(n − 1) behaves like the five-term relation.
As before, there is a R(n − 3)-valued smooth n − 3-form in X(C) such that

ηn(n − 1)(x, x, x1, . . . , xn−3) = dηn(n − 2)(x, x1, . . . , xn−3).

The first variable in ηn(n − 2) behaves like the functional equations of the trilogarithm.
And so on...
Finally, the second to last form satisfies

ηn(2)(x, x) = dηn(1)(x),

with
ηn(1)(x) = L̂n(x).

Let us take a look at Smyth’s case for three variables. We can express the polynomial
as P (x, y, z) = (1 − x) + (1 − y)z. We get:

m(P ) = m(1 − y) +
1

(2πi)2

∫

T2

log+

∣∣∣∣
1 − x

1 − y

∣∣∣∣
dx

x

dy

y
= − 1

(2π)2

∫

Γ
η3(3)(x, y, z).

x ∧ y ∧ z = − x ∧ (1 − x) ∧ y − y ∧ (1 − y) ∧ x,

in other words,

η3(3)(x, y, z) = −η3(3)(x, 1 − x, y) − η3(3)(y, 1 − y, x).

We have

m((1 − x) + (1 − y)z) =
1

4π2

∫

γ

η3(2)(x, y) + η3(2)(y, x).

On the other hand,
η3(2)(x, x) = dL̂3(x).
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We would like to apply Stokes’ Theorem again. Observe that ∂Γ = {P (x, y, z) =
0} ∩ {|x| = |y| = |z| = 1}. When P ∈ R[x, y, z], Γ can be thought as

γ = {P (x, y, z) = P (x−1, y−1, z−1) = 0} ∩ {|x| = |y| = 1}.

Note that we are integrating now on a path inside the curve C = {P (x, y, z) = P (x−1, y−1, z−1) =
0}. The differential form ω is defined in this new curve (this way of thinking the integral
over a new curve has been proposed by Maillot). Now it makes sense to try to apply Stokes’
Theorem.

Back to Smyth’s case, in order to compute C we set (1−x)(1−x−1)
(1−y)(1−y−1)

= 1 and we get

C = {x = y} ∪ {xy = 1} in this example, and

−{x}2 ⊗ y − {y}2 ⊗ x = ±2{x}2 ⊗ x.

We integrate in the set described by the following picture

π

π

π

_

π_

Then

m((1 − x) + (1 − y)z) =
1

4π2
8(L3(1) − L3(−1)) =

7

2π2
ζ(3).

New examples

Using this method we have been able to prove the following examples which were originally
computed numerically by Boyd

m(x2 + 1 + (x + 1)y + (x − 1)z) =
L(χ−4, 2)

π
+

21

8π2
ζ(3),

m(x2 + x + 1 + (x + 1)y + z) =

√
3

4π
L(χ−3, 2) +

19

6π2
ζ(3).

An example in four variables

In [8] we computed this example

π3m

(
1 + x +

(
1 − x1

1 + x1

)
(1 + y)z

)
= 2π2L(χ−4, 2) + 8

∑

0≤j<k

(−1)j+k+1

(2j + 1)3k
.

With this method we have been able to prove that

= 24L(χ−4, 4).
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In particular this implies

∑

0≤j<k

(−1)j+k+1

(2j + 1)3k
= 3L(χ−4, 4) − π2

4
L(χ−4, 2)

More generally, by using the Hurwitz zeta function we have been able to prove

∑

0≤j<k

(−1)j+k+1

(2j + 1)mk
= mL(χ−4, m + 1) +

m−1

2∑

h=1

(−1)hπ2h(22h − 1)

(2h)!
B2hL(χ−4, m − 2h + 1),

for m odd.

Generalized Mahler measure

Introduced by Gon & Oyanagi [4]
For f1, . . . , fr ∈ C[x±1

1 , . . . , x±1
n ],

m(f1, . . . , fr) =
1

(2πi)n

∫

Tn

max{log |f1|, . . . , log |fr|}
dx1

x1
. . .

dxn

xn

Note that in particular,
m(f1, f2) = m(f1 + zf2).

Examples

There is a particular case. Fix P ∈ C[x] and set fj = P (xj).
Gon & Oyanagi [4] computed the following example

m(1 − x1, . . . , 1 − x2m) =
(−1)m+1(2m)!

π2m
ζ(2m + 1)

+(2m)!
m∑

j=1

(−1)j (1 − 22j)

(2m − 2j)!(2π)2j
ζ(2j + 1),

m(1 − x1, . . . , 1 − x2m−1) = (2m − 1)!
m−1∑

j=1

(−1)j (1 − 22j)

(2m − 2j − 1)!(2π)2j
ζ(2j + 1).

Some particular cases are:

m(1 − x1, 1 − x2) = m(1 − x1 + z(1 − x2)) =
7

2π2
ζ(3),

m(1 − x1, 1 − x2, 1 − x3) =
9

2π2
ζ(3),

m(1 − x1, 1 − x2, 1 − x3, 1 − x4) = − 93

2π4
ζ(5) +

9

π2
ζ(3).

This example can be also computed using regulators. Using that |P (x)| is montononous
when 0 ≤ arg x ≤ π (in this case, |P (x)| = 2

∣∣sin arg x
2

∣∣)

m(P (x1), . . . , P (xn)) =
n!

(πi)n

∫

0≤arg xn≤...≤arg x1≤π

η(P (x1), x1, . . . , xn)
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We have been able to also compute this example

m

(
1 − x1

1 + x1
, . . . ,

1 − x2m

1 + x2m

)
=

(−1)m+1(2m)!(22m+1 − 1)

(2π)2m
ζ(2m + 1)

+(2m)!
m∑

j=1

(−1)j (1 − 22j+1)

(2m − 2j)!(2π)2j
ζ(2j + 1),

m

(
1 − x1

1 + x1
, . . . ,

1 − x2m−1

1 + x2m−1

)
= (2m − 1)!

m−1∑

j=1

(−1)j (1 − 22j+1)

(2m − 2j − 1)!(2π)2j
ζ(2j + 1).

Some particular cases:

m

(
1 − x1

1 + x1
,
1 − x2

1 + x2

)
= m

(
1 − x1

1 + x1
+ z

(
1 − x2

1 + x2

))
=

7

π2
ζ(3),

m

(
1 − x1

1 + x1
, . . . ,

1 − x3

1 + x3

)
=

21

2π2
ζ(3),

m

(
1 − x1

1 + x1
, . . . ,

1 − x4

1 + x4

)
= −93

π4
ζ(5) +

21

π2
ζ(3).

Finally, we computed the following

m(1 + x1 − x−1
1 , . . . , 1 + xn − x−1

n ) = combination of polylogarithms.

Some particular cases include

m(1 + x1 − x−1
1 ) = − log (ϕ) ,

m(1 + x1 − x−1
1 , 1 + x2 − x−1

2 ) =
1

π2
Re(Li3(ϕ

2) − Li3(−ϕ2) + Li3(ϕ
−2) − Li3(−ϕ−2))

for ϕ = −1+
√

5
2 .

References

[1] D. W. Boyd, F. Rodriguez Villegas, Mahler’s measure and the dilogarithm (I), Canad.
J. Math. 54 (2002), 468 - 492.

[2] D. W. Boyd, F. Rodriguez Villegas, with an appendix by N. M. Dunfield, Mahler’s
measure and the dilogarithm (II), (preprint, July 2003)

[3] C. Deninger, Deligne periods of mixed motives, K-theory and the entropy of certain
Zn-actions, J. Amer. Math. Soc. 10 (1997), no. 2, 259–281.

[4] Y. Gon, H. Oyanagi, Generalized Mahler measures and multiple sine functions. Internat.
J. Math. 15 (2004), no. 5, 425–442.

6



[5] A. B. Goncharov, Geometry of Configurations, Polylogarithms, and Motivic Cohomol-
ogy, Adv. Math. 114 (1995), no. 2, 197–318.

[6] A. B. Goncharov, The Classical Polylogarithms, Algebraic K-theory and ζF (n), The
Gelfand Mathematical Seminars 1990-1992, Birkhauser , Boston (1993), 113 - 135.

[7] A. B. Goncharov, Explicit regulator maps on polylogarithmic motivic complexes,
(preprint, March 2000).
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