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Mahler measure

Definition 1 For P € ClzT!, ..., xt", the (logarithmic) Mahler measure is defined by

dxq dx,

iy (1)

1
m(P) = WAnlogrP<m1,...,mn>
The simplest example in several variables is due to Smyth [11]
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Polylogarithms

Many examples should be understood in the context of polylogarithms.

Definition 2 The kth polylogarithm is the function defined by the power series

Lip(z) = > % zeC, |z <. (2)

n=1

This function can be continued analytically to C \ [1, c0).
In order to avoid discontinuities, and to extend polylogarithms to the whole complex
plane, several modifications have been proposed. Zagier [12] considers the following version:
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where B; is the jth Bernoulli number, and @ denotes Re or iIm depending on whether
k is odd or even.

This function is one-valued, real analytic in P*(C) \ {0, 1,00} and continuous in P!(C).
Moreover, Z; satisfy very clean functional equations. The simplest ones are
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There are also lots of functional equations which depend on the index k. For instance, for
k = 2, we have the Bloch-Wigner dilogarithm,

D(z) := Im(Liz(z)) + arg(1 — z) log |z|

which satisfies the well-known five-term relation

D(x) + D(1 — 2y) + D(y) + D (11__;’@/) +D <11__;”y> —0. (4)

The relation with regulators

We write the Mahler measure as an integral of a certain R(n — 1)-valued smooth n — 1-form
in X (C), the variety determined by the zeroes of the polynomial.

1
m(P) = m(P*) + W /an(n)(xl, cey Tp)

where
F={P(x1,...,zn) =0} {|z1]| = ... = |zp_1| = 1, |zp| > 1}

This was an idea of Deninger [3].
As an example, let us look at Smyth’s case in two variables ([11]). The two-variable

differential form is
n2(2) (@, y) = log |z|diargy — log [y|diarg x.
Then ) ded
x ay
1 - [ logl e
m(l+z+y) (2771)2/Tz og | —|—a:+y!x ”

By Jensen’s equality:

where
F={1+z+y=0tn{lz[=1,]y[ > 1}

Here are some properties of n,(n)(x1,...,xy) :

e 7,(n) is multiplicative in each variable and anti-symmetric. Hence it can be thought
as a function on \"(C(X)*)g.

. dnn(n)(xl,...,xn):@(dﬁl/\“'/\%>

e There is an R(n — 2)-valued smooth n — 2-form in X (C) such that

Mn)(x,1 —z,x1,...,250-2) = dnp—1(n)(z, 21, ..., Tp—2)



In the two-variable case we have
n2(2)(z, 1 — z) = dD(z).

The forms for n = 3 are
1
n3(3)(z,y, z) = log |x| <3dlog ly| Adlog|z| + diargy A diarg z>

1 1
+ log |y| <3dlog |z| Adlog|z|+ diargz A di arga:) +log |z| <3dlog |z| Adlog|y| + diargz Adiarg y> )

n3(3)(z, 1 — z,y) = dns3(2)(z,y),

~ ) 1
15(2)(,y) = D(x)diargy + 5 logy|(log 1 — aldlog|z| ~ log |sld log |1 - z])

Now the first variable of 7,,(n — 1) behaves like the five-term relation.
As before, there is a R(n — 3)-valued smooth n — 3-form in X (C) such that

M(n —1)(z,z,21,...,25—3) =dnn(n — 2)(x,21,...,Tn_3).

The first variable in 7, (n — 2) behaves like the functional equations of the trilogarithm.
And so on...
Finally, the second to last form satisfies

Tln(2)(l’a$) = dnn(l)(‘r)’
with -
M(1)(x) = Ln(z).

Let us take a look at Smyth’s case for three variables. We can express the polynomial
as P(z,y,z) = (1 —x) + (1 — y)z. We get:

1 1—2z|dzdy 1
P)=m(l- —— [ log* ——= = 3 .
m(P) =m(1 =)+ s [ 1ot |10 Y o [ @) )
crAyNz=—zxzAN1—-2)ANy— yAN(1—y) Az,

in other words,

173(3)(x,y, Z) = _773(3)('%'7 1- x,y) - 773(3)(3/7 1- y,x).

We have .

mi(1= )+ (1-9)2) = 15 [ M)y +m@)).

On the other hand, -
n3(2)(x,z) = dLs(z).



We would like to apply Stokes’ Theorem again. Observe that OI' = {P(x,y,z) =
0} {lo] = Iyl = 2] = 1}. When P € Rz, , 2, T can be thought as

v=A{P(z,y,2) = P(a" "y~ 27") = 0} n{lz| = |y| = 1}.

Note that we are integrating now on a path inside the curve C' = {P(x,y,2) = P(a~,y~ 1,271 =
0}. The differential form w is defined in this new curve (this way of thinking the integral
over a new curve has been proposed by Maillot). Now it makes sense to try to apply Stokes’
Theorem.

Back to Smyth’s case, in order to compute C' we set (1—2)(1-z")

W = 1 and we get

C = {z =y} U{zry = 1} in this example, and
—f{zh oy —{yhhor=+2€zh o

We integrate in the set described by the following picture

Then 1 7
m((1 =) + (1 =y)2) = 758(Ls(1) = La(=1)) = 5 5((3)-

New examples

Using this method we have been able to prove the following examples which were originally
computed numerically by Boyd

m(@® + 1+ (z+ Dy + (x —1)2) = L(sz) + %4(3)’

m@E?+z+1+(x+1y+2) = ﬁL(X—s, 2) + 6177?2C(3)-

An example in four variables
In [8] we computed this example
(_1)j+k:+1

2 (25 + 1)3k

0<5<k

1 —
m (1+a:+ <1+§1> (1+y)z> = 27°L(x_4,2) + 8

With this method we have been able to prove that
= 24L(x—4,4).
4



In particular this implies

2.

0<j<k

(—1 JHk+1 2
(2].3_1)3]f =3L(x-4,4) — ZL(X—4,2)

More generally, by using the Hurwitz zeta function we have been able to prove

3

—1 J+k+1 2 -1 h7T2h 22h -1
> éil)mk = mL(x-4,m + 1)+ (=) (Qh(), )thL(X,4,m—2h+1),
0<j<k J h=1 )
for m odd.

Generalized Mahler measure

Introduced by Gon & Oyanagi [4]

For fi,...,fr € (C[xfcl,...,xffl],
dx dx
Mo £) = e [ macliog Al Jog S
Note that in particular,
m(f1, f2) = m(f1 + 2 f2).
Examples
There is a particular case. Fix P € C[z] and set f; = P(x;).
Gon & Oyanagi [4] computed the following example
—1)"*1(2m)!
TR S 0
m ,
-y
2m)! —1)/ -((2 1
+om) g< ey tem BT RS ]
m—1 ;
(1 —22%7) .
1-— B (2m —1)! -((2 1).
m( X1, ) T2m— 1 m j; 2m_2]_1)[(271.)2]€< j+ )

Some particular cases are:

m(l —x1,1 —ax2) =m(l — a1 + 2(1 —x2)) = or 2(( ),

9
m(l —x1,1 — 29,1 —x3) = ﬁC(?)),

93 9
m(l —x1,1 — 20,1 — 23,1 —x4) = —277T4C(5) + ﬁC(?))-

This example can be also computed using regulators. Using that |P(x)| is montononous
when 0 < argz < 7 (in this case, |P(z)| = 2 [sin 25%|)

m(P(x1),...,P(z,)) =

- n(P(x1),z1,...,Ty)
(7“)” /Ogargzng...gargmgw ’ ’ o
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We have been able to also compute this example

1— 1— —1)mtL(2m)!(22mt+l — 1
1+ 1+ zom (2m)
m .
) (1 _22]+1) )
+(2m)1) (~1)! T3 ‘),(%)2].4(2] +1),
i=1 JJ°
1 .
11—z 1 —zom—1 — (1—2%+1) -
.. (2m —1)! (25 4+ 1).
m<1+x1’ "1+ Tom 1> " ; QTfL—2J'—1)!(27r)QJC(‘7+ )

Some particular cases:
1—{L‘1 1—:132 1—{[:1 1—$2 7
s g —_ — 37
m<1—|—{L‘1 1+IE2> m<1—|—{[}1+2<1—|—l’2>> 7726:()

m<“”%nq1‘“>=21qw

1+ 2 1+ 23

1—.1’1 1—.1‘4
m Y
1+ 1+ 24

) = -5+ 3¢,
Finally, we computed the following

m(1+xzy — %, ..., 14z, — ;) = combination of polylogarithms.
Some particular cases include

m(l+xz — a:l_l) = —log(p),

_ _ 1 ) . L . _
m(l+x —ay', 1+ ze —ayt) = — Re(Li3(p?) — Lig(—¢?) + Liz(¢ %) — Liz(—¢?))

_ —1+V5
fOI' (,O =—5 -
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