oldmida.pdf

- (a) ax ≡ 1 (mod 36) is solvable iff (a, 36) = 1. Since 36 = 2²·3³, we need to exclude the numbers that are multiples of 2 and/or 3. We get a = 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35.
 (b) We need to solve 5x ≡ 1 (mod 36). By simple inspection (or Euclidean algorithm), we get 1 = 35-5·7. Then the solution is x ≡ -7 (mod 36). The corresponding element in S is 29.
- 2. (a) $115x \equiv 4 \pmod{165}$. We compute $(115, 165) = (5 \cdot 23, 3 \cdot 5 \cdot 11) = 5$. But 5 /4, therefore the equation does not have solutions.

(b) $115x \equiv 10 \pmod{165}$. Since 5|10, the equation has 5 solutions. First we do the Euclidean algorithm:

$$165 = 115 + 50$$

$$115 = 50 \cdot 2 + 15$$

$$50 = 15 \cdot 3 + 5$$

$$15 = 5 \cdot 3$$

We get $5 = 50 - 15 \cdot 3 = 50 - (115 - 50 \cdot 2) \cdot 3 = 50 \cdot 7 - 115 \cdot 3 = (165 - 115) \cdot 7 - 115 \cdot 3 = 165 \cdot 7 - 115 \cdot 10$.

Thus, $10 = 165 \cdot 14 - 115 \cdot 20$. $x \equiv -20 \pmod{165}$ is a solution. Since $\frac{n}{d} = \frac{165}{5} = 33$. All the solutions are $x \equiv -20, 13, 46, 79, 112 \pmod{165}$.

3. (a) * is an operation since $a * b \in \mathbb{Z}$. (We have not seen this, I won't be asking you a question like this.

(b) It is associative. a * (b * c) = a + (b * c) - 7 = a + (b + c - 7) - 7 = (a + b - 7) + c - 7 = (a * b) + c - 7 = (a * b) * c.

(c) Take z = 7 as identity. Then a * 7 = a + 7 - 7 = a = 7 * a.

(d) Every element has inverse. The inverse for a is 14 - a. We have a * (14 - a) = a + 14 - a - 7 = 7.

4. Let us look at $a^2 + b^2 \equiv c^2 \pmod{3}$. We prove the statement by contradiction, so assume that none of a, b, c are divisible by 3. A number a that is not divisible by 3 is either $\equiv 1 \pmod{3}$ or $\equiv 2 \pmod{3}$. When we square it, we get $a^2 \equiv 1 \pmod{3}$ no matter what. Similarly, $b^2, c^2 \equiv 1 \pmod{3}$. But then $a^2 + b^2 \equiv c^2 \pmod{3}$ becomes $1 + 1 \equiv 1 \pmod{3}$ which is a contradiction.

oldmidb.pdf

1. (a) 12 is a unit in \mathbb{Z}_{19} since (12, 19) = 1. For its inverse we use the Euclidean algorithm:

$$19 = 12 + 7$$

 $12 = 7 + 5$
1

$$7 = 5 + 2$$
$$5 = 2 \cdot 2 + 1$$
$$2 = 1 \cdot 2$$

Therefore, $1 = 5 - 2 \cdot 2 = 5 - (7 - 5) \cdot 2 = 5 \cdot 3 - 7 \cdot 2 = (12 - 7) \cdot 3 - 7 \cdot 2 = 12 \cdot 3 - 7 \cdot 5 = 12 \cdot 3 - (19 - 12) \cdot 5 = 12 \cdot 8 - 19 \cdot 5.$

Then 8 is the inverse for 12 in \mathbb{Z}_{19} .

(b) Since $12 \cdot 8 = 1$ in \mathbb{Z}_{19} , we multiply by 4 to get a solution for $12 \cdot x = 4$ in \mathbb{Z}_{19} . Then x = 32 = 13 in \mathbb{Z}_{19} . (One solution suffices since (12, 19) = 1, so there is exactly one solution.

(c) We need a number n that is relatively prime to 2,3,5,7,11,13. We can take, for example, n = 17 or 19. Other units would be 4, 6, 9, since they are all relatively primes with n.

2. (a)

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} + \begin{pmatrix} e & f \\ 0 & g \end{pmatrix} = \begin{pmatrix} a+e & b+f \\ 0 & d+g \end{pmatrix} \in S$$
$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} e & f \\ 0 & g \end{pmatrix} = \begin{pmatrix} ae & af+bg \\ 0 & dg \end{pmatrix} \in S$$

Therefore, it is closed under addition and multiplication.

(b) (A regular element is an element that is invertible). Clearly, any multiple of the identity will work. Also any matrix in S with determinant different from zero. For example,

$$\left(\begin{array}{rrr}1&0\\0&1\end{array}\right),\left(\begin{array}{rrr}1&0\\0&2\end{array}\right),\left(\begin{array}{rrr}1&0\\1&3\end{array}\right).$$

(c) The zero element is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, since the sum operation is the one coming from $M_2(\mathbb{R})$. The identity element is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ for the same reason.

(d) S is a subring of $M_2(\mathbb{R})$ since the operations are closed, the zero element of $M_2(\mathbb{R})$ belongs to S, and every element of S has its additive inverse in S, since the additive inverse for $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ 0 & -d \end{pmatrix}$. Therefore S is a ring.

It is not commutative, since

$$\left(\begin{array}{cc}1&1\\0&1\end{array}\right)\left(\begin{array}{cc}1&0\\0&2\end{array}\right) = \left(\begin{array}{cc}1&2\\0&2\end{array}\right)$$

but

$$\left(\begin{array}{rrr}1&0\\0&2\end{array}\right)\left(\begin{array}{rrr}1&1\\0&1\end{array}\right)=\left(\begin{array}{rrr}1&1\\0&2\end{array}\right)$$

Therefore, it is neither an integral domain nor a field.

3. (a) We have not covered this topic yet.

Notice that a linear combination 45k + 18l belongs to I iff k is even, since 18l is always even and 45 is odd.

Since $45k_1 + 18l_1 - (45k_2 + 18l_2) = 45(k_1 - k_2) + 18(l_1 - l_2)$, and k_i even implies that $k_1 - k_2$ is also even, we get that the difference of any two elements in I is an element in I. If $n \in \mathbb{Z}$, then clearly $n(45k + 18l) = 45(kn) + 18(ln) \in I$ since k even implies kn even. Therefore I is an ideal of \mathbb{Z} .

(b) We have not covered this topic yet.

First notice that the linear combinations of 45 and 18 are generated by (45, 18) = 9. We need those numbers that are even. Therefore, we just need the multiples of 18. I = (18). The generators can be written as $18 = 45 \cdot 0 + 18 \cdot 1$.

4. (irreducible here means prime).

(a) Since $2006p^7|a^2$ and the prime powers dividing a^2 are all even, then p^8 has to divide a^2 and therefore $p^4|a$.

(b) Take p any prime different from 2, 17, 59. For example, take p = 3. Let $a = 2006 \cdot 3$. Then a^2 is divisible by $2006 \cdot 9$ but $9 \not|a$.

5. (a) Since a and b are linear combinations of c and d, we have that (c, d)|a and (c, d)|b. Therefore (c, d)|(a, b). Similarly, since c and d are linear combinations of a and b, we have that (a, b)|c and (a, b)|d. Therefore (a, b)|(c, d). Then $(a, b) = \pm (c, d)$, and since they are both positive, they must be equal.

(b) Take a = 2, b = 3, c = 4, d = 5. Then a = 2d - 2c, b = 3d - 3c, c = 4b - 4a, and d = 5b - 5a.

oldmidc.pdf

1. (a)

$$150 = 71 \cdot 2 + 8$$
$$71 = 8 \cdot 8 + 7$$
$$8 = 7 + 1$$
$$7 = 1 \cdot 7$$

Then (150, 71) = 1. Now $1 = 8 - 7 = 8 - (71 - 8 \cdot 8) = 8 \cdot 9 - 71 = (150 - 71 \cdot 2) \cdot 9 - 71 = 150 \cdot 9 - 71 \cdot 19$.

(b) The additive inverse is -71 = 79 in \mathbb{Z}_{150} . The multiplicative inverse (according to the linear combination we found in (a)) is -19 = 131 in \mathbb{Z}_{150} .

- 2. For n = 1, we have that $4^1 = 3 \cdot 1 + 1$ in \mathbb{Z}_9 . Assume the statement is true for n = k, i.e., that $4^k = 3k + 1$ in \mathbb{Z}_9 . Let n = k + 1, we have $4^{k+1} = 4 \cdot 4^k = 4 \cdot (3k + 1) = 12k + 4 = 3k + 4 = 3(k + 1) + 1$ in \mathbb{Z}_9 , which completes the induction.
- 3. (a) Every integer n > 1 can be written in one and only one way in the form n = p₁...p_r where the p_i are positive primes such that p₁ ≤ ... ≤ p_r.
 (b) Let (a, b) = 1. Then there are u, v ∈ Z such that au+bv = 1. Then acu+bcv = c. Since a|bc and a|acu, we have that a|acu+bcv = c.

4. S is closed for addition and multiplication:

 $(a+b\alpha) + (c+d\alpha) = (a+c) + (b+d)\alpha \in S$

 $(a+b\alpha)(c+d\alpha) = ac+bd\alpha^2 + (bc+ad)\alpha = ac+bd(1+\alpha) + (bc+ad)\alpha = ac+bd + (bd+bc+ad)\alpha \in S$

Also $0 \in S$. Finally, if $a + b\alpha \in S$, so is $-a - b\alpha \in S$, which is the additive inverse. Therefore S is a subring of R.

5. (a) An integral domain is a commutative ring R with identity $1 \neq 0$ that satisfies the axiom: For every $a, b \in R$, and ab = 0, then a = 0 or b = 0.

(b) Let e be an idempotent in R, so that $e^2 = e$. Then $e^2 - e = 0$ and (e - 1)e = 0. Since R is an integral domain, we must have that either e - 1 = 0 (meaning e = 1) or e = 0.

- (c) Consider \mathbb{Z}_6 . Then 3 is an idempotent since $3^2 = 9 = 3$ in \mathbb{Z}_6 .
- 6. (a) Take $M_2(\mathbb{Z}_2)$, 2×2 matrices with coefficients in \mathbb{Z}_2 . This is a ring with the usual matrix operations and it is finite (it has only 16 elements), but is not commutative, since

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

and

(b) This is not possible that a field is not an integral domain. In a field, every nonzero element has an inverse. If ab = 0 and $a \neq 0$, we then multiply by the inverse of a and conclude that b = 0. Therefore, it is an integral domain.

(c) 2, 17, and 34 are three nonzero elements that are not units in \mathbb{Z}_{68} , since they have common factors with $68 = 2^2 \cdot 17$.

(d) Take $a \sim b$ iff $a - b \geq 0$. Then it is reflexive, as a - a = 0. It is transitive: if $a \sim b$ and $b \sim c$, then $a - b \geq 0$ and $b - c \geq 0$, so $a - c \geq 0$ and therefore $a \sim c$. However it is not symmetric, for example $2 \sim 1$ but $1 \neq 2$.