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1. (a) a ∈ R is a unit if and only if there is a b ∈ R such that ab = 1R

a ∈ R is a zero divisor if and only if a 6= 0R adn there is a b ∈ R such that b 6= 0R

and ab = 0R

(If R is not commutative, we need to add more conditions: For unit: ab = 1R = ba
For zero divisor: ab = 0R or ba = 0R).

(b) R = Z/(18) = Z18. The units are those elements n such that (n, 18) = 1 (since
this is the condition for the equation nx = 1 to have a solution in Z18). Then,
n = 1, 5, 7, 11, 13, 17.

(c) We need to solve 15x = 1 in Z7564. We do the Euclidean algorithm,

7564 = 15 · 504 + 4

15 = 4 · 3 + 3

4 = 3 · 1 + 1

3 = 1 · 3

Then (7564, 15) = 1, and there is a unique solution to the equation. To find it, we
write 1 as a linear combination of 15 and 7564:

1 = 4− 3 = 4− (15− 4 · 3) = 4 · 4− 15 = (7564− 15 · 504) · 4− 15 = 7564 · 4− 15 · 2017

Therefore, 15−1 = 2017 in Z7564.

2. f(x) = 5x4 + 3x3 + 1, g(x) = 3x2 + 2x + 1 in Z7. We apply the division algorithm
dividing 5x4 + 3x3 + 1 by 3x2 + 2x+ 1:

5x4 + 3x3 + 1 = (3x2 + 2x+ 1)4x2 + (2x3 + 3x2 + 1),

2x3 + 3x2 + 1 = (3x2 + 2x+ 1)3x+ (4x2 + 4x+ 1),

4x2 + 4x+ 1 = (3x2 + 2x+ 1)6 + (6x+ 2).

Therefore,

5x4 + 3x3 + 1 = (3x2 + 2x+ 1)(4x2 + 3x+ 6) + (6x+ 2).

Now we divide 3x2 + 2x+ 1 by 6x+ 2:

3x2 + 2x+ 1 = (6x+ 2)4x+ (x+ 1),

x+ 1 = (6x+ 2)6 + 3.

Therefore,
3x2 + 2x+ 1 = (6x+ 2)(4x+ 6) + 3.
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Finally, the Euclidean algorithm reads:

5x4 + 3x3 + 1 = (3x2 + 2x+ 1)(4x2 + 3x+ 6) + (6x+ 2)

3x2 + 2x+ 1 = (6x+ 2)(4x+ 6) + 3

Then (f(x), g(x)) = 1. Furthermore, we have

3 = 3x2 + 2x+ 1− (6x+ 2)(4x+ 6) = g(x)− (f(x)− g(x)(4x2 + 3x+ 6))(4x+ 6)

= g(x)(1 + (4x2 + 3x+ 6)(4x+ 6))− f(x)(4x+ 6) = g(x)(2x3 +x2 + 2)− f(x)(4x+ 6)

We multiply by 5:

1 = g(x)(3x3 + 5x2 + 3)− f(x)(6x+ 2)

3. (a) 2x5 + 5x4 + 4x3 + 7x2 + 7x+ 2 in Q[x]. First we look for roots. Since a0 = 2 and
a5 = 2, we try r = −2, and see that it is a root, since −64 + 80−32 + 28−14 + 2 = 0.
Then we may write 2x5 + 5x4 + 4x3 + 7x2 + 7x+ 2 = (x+ 2)(2x4 +x3 + 2x2 + 3x+ 1).
We look at 2x4 + x3 + 2x2 + 3x+ 1. Then −1

2 is a root, since 1
8 −

1
8 + 1

2 −
3
2 + 1 = 0.

We write 2x4 + x3 + 2x2 + 3x + 1 = (2x + 1)(x3 + x + 1). Now x3 + x + 1 does not
have any roots in Q, because the only possibilities are ±1 (since a0 = a3 = 1) but
1 + 1 + 1 = 3 and −1−1 + 1 = −1. Therefore, x3 +x+ 1 is irreducible, since a degree
3 polynomial without roots is irreducible. Therefore, the factorization in Q[x] is

2x5 + 5x4 + 4x3 + 7x2 + 7x+ 2 = (x+ 2)(2x+ 1)(x3 + x+ 1).

(b) x3 + x2 + x+ 1 in Z2[x]. It is easy to see that −1 is a root and x3 + x2 + x+ 1 =
(x+ 1)(x2 + 1). But then 1 is also a root of x2 + 1 and we obtain x2 + 1 = (x+ 1)2.
Finally, in Z2[x],

x3 + x2 + x+ 1 = (x+ 1)3.

(c) x11 + 1 in Z11[x]. Using the binomial expansion and the fact that 11|
(

11
k

)
for

any 1 ≤ k ≤ 10, we get, in Z11[x],

x11 + 1 = (x+ 1)11.

(We haven’t covered this is class).

4. (a) A subring I of a commutative ring R is an ideal if for each r ∈ R and a ∈ I then
ra ∈ I.

(b) x ∼ y ⇔ x− y ∈ A. (i) We need to see that this is an equivalence relation. It is
reflective: x ∼ x since x − x = 0 ∈ A (since A is a subring). It is symmetric: x ∼ y
implies x− y ∈ A implies y − x = −(x− y) ∈ A (since A is a subring) implies y ∼ x.
It is transitive: x ∼ y and y ∼ z imply that x − y, y − z ∈ A. Since A is a subring,
x − z = (x − y) + (y − z) ∈ A, which implies x ∼ z. (ii) x ∼ y and u ∼ v imply
x− y, u− v ∈ A. Since A is a subring, (x+ u)− (y + v) = x− y + u− v ∈ A which
implies that x + u ∼ y + v. Also, since A is an ideal, u(x − y), y(u − v) ∈ A. Then
xu− yv = u(x− y) + y(u− v) ∈ A, which implies xu ∼ yv.
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5. (a) We haven’t see this.

(b) (i) 5x5 + 9x4 + 15x3 + 3x2 + 6x+ 3. We have that p = 3 divides each of a0, . . . , a4,
and it does not divide a5. Further, p2 = 9 does not divide a0. By Eisenstein’s
criterion, the polynomial is irreducible.

(ii) x4 + 15x3 + 7. We look at the polynomial in Z2[x], we get x4 + x3 + 1. This
polynomial has no roots (check for 0, 1), and if it were the product of two degree 2
polynomials, it would be (x2 + x + 1)2 (since the others polynomials of degree 2 in
Z2[x] are reducible: x2, x2 + 1 = (x + 1)2, x2 + x = x(x + 1)). But (x2 + x + 1)2 =
x4 + x2 + 1 6= x4 + x3 + 1. Therefore the polynomial is irreducible.

(c) We haven’t seen this.

6. (a) It is well defined since φ(x) ∈ Z12 for any x ∈ Z3.

(b) φ(x+y) = 4(x+y) = 4x+4y = φ(x)+φ(y). φ(xy) = 4(xy) = 16xy = (4x)(4y) =
φ(x)φ(y). We have used that 16 = 4 in Z12.

(c) x ∈ Ker(φ) iff φ(x) = 0 iff 4x = 0 iff 3|x iff x = 0 in Z3. Therefore Ker(φ) = {0}.
(d) R∗ is the set of units of R. In this case, R∗ = {1, 2}. No matter what we do, the
image of φ is given by numbers that are “multiples” of 4 in Z12 and therefore they
are not units. The answer is NO.

7. F field, and A = {f(x) ∈ F [x] | f(1) = 0} ⊂ F [x].

(a) A is not empty, since x− 1 ∈ A.

(b) Let f(x), g(x) ∈ A, then f(1) = g(1) = 0. Now (f−g)(1) = f(1)−g(1) = 0, which
implies f−g ∈ A. If f(x) ∈ A and g(x) ∈ F [x], then (fg)(1) = f(1)g(1) = 0g(1) = 0.
Therefore, fg ∈ A. Then A is an ideal.

(c) Since x−1 ∈ A, then (x−1)F [x] ⊂ A. We need to prove also that A ⊂ (x−1)F [x].
If f ∈ A, then f(1) = 0, that means that 1 is a root of f . Therefore, (x − 1)|f(x)
and we can write f(x) = (x − 1)g(x). But this shows that f(x) ∈ (x − 1)F [x] and
A ⊂ (x− 1)F [x].

8. (a) The polynomials of degree 3 in Z2[x] are x3, x3 +x2, x3 +x, x3 +1, x3 +x2 +x, x3 +
x2 + 1, x3 + x+ 1, x3 + x2 + x+ 1.

(b) The maximal ideals are given by irreducible polynomials. We need to see which
ones of the above polynomials are irreducible. Those whose constant coefficient is
zero are clearly reducible (divisible by x). Then we just need to consider x3 + 1, x3 +
x2 + 1, x3 + x + 1, x3 + x2 + x + 1. Those who have an even number of terms have
x = 1 as root. Then we need to look at x3 + x2 + 1, x3 + x + 1. Since neither 0 or
1 are roots, they must be irreducible, since degree 3 polynomials without roots are
irreducible. The ideals are, therefore, (x3 + x2 + 1) and (x3 + x+ 1).

(c) Consider Z5[x]/(f) where f is an irreducible polynomial of degree 2 in Z5[x] (for
example, it could be either x2 + 2 or x2 + 3, since they have no roots in Z5[x]). Then
Z5[x]/(f) is a field. It contains 25 elements, since all the elements may be written as
ax+ b with 5 options for each coefficient.
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1. (1.1) We use the Euclidean algorithm:

726 = 275 · 2 + 176

275 = 176 + 99

176 = 99 + 77

99 = 77 + 22

77 = 22 · 3 + 11

22 = 11 · 2

Therefore, (726, 275) = 11.

(1.2) From the above, 11 = 77 − 22 · 3 = 77 − (99 − 77) · 3 = 77 · 4 − 99 · 3 =
(176− 99) · 4− 99 · 3 = 176 · 4− 99 · 7 = 176 · 4− (275− 176) · 7 = 176 · 11− 275 · 7 =
(726− 275 · 2) · 11− 275 · 7 = 726 · 11− 275 · 29. therefore,

11 = 726 · 11− 275 · 29.

(1.3) Let ua+ vb, ra+ sb ∈ A. Then (ua+ vb)− (ra+ sb) = (u− r)a+ (v− s)b ∈ A.
Also, if n ∈ Z, then n(ua+ vb) = (nu)a+ (nv)b ∈ A. Therefore, A is an ideal.

(1.4) A is principal, it is in fact A = (11). First, any combination of a and b is
multiple of 11, therefore, A ⊂ (11). On the other hand, 11 is a combination of a and
b (see (1.2)), therefore, 11 ∈ A, and (11) ⊂ A. So we get (11) = A.

2. (2.1) a, b, c nonzero integers. (b, c) = d, (ab, c) = e, and (a, c) = 1. Since any divisor
of b is also a divisor of ab, we have that d is a common divisor for ab and c, and
therefore d|e. Write d = ub + vc for u, v ∈ Z. Then ad = uab + avc which implies
that e|ad. Since (a, c) = 1, we can write 1 = xa+ yc. Now d = xad+ ycd, and since
e|c and e|ad, we get e|d. Then d|e and e|d and they are positive (since they are gcds),
implies that e = d.

(2.2) we haven’t seen this.

3. We want to prove

n2 + (n+ 1)2 + . . .+ (2n)2 =
n(n+ 1)(14n+ 1)

6
.

For n = 1, we have 12 + 22 = 5 = 1·2·15
6 . Assume the result is true for n = k. Then

for n = k + 1, we have

(k+ 1)2 + . . .+ (2k+ 2)2 = [k2 + (k+ 1)2 + . . .+ (2k)2] + [(2k+ 1)2 + (2k+ 2)2 − k2]

=
k(k + 1)(14k + 1)

6
+[(2k+1)2+(2k+2)2−k2] =

k(k + 1)(14k + 1)
6

+(7k2+12k+5)

=
k(k + 1)(14k + 1)

6
+ (k + 1)(7k + 5) = (k + 1)

[
k(14k + 1)

6
+ (7k + 5)

]
= (k + 1)

(
14k2 + 43k + 30

6

)
=

(k + 1)(k + 2)(14k + 15)
6

,

which proves the result.
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4. Here R = Z3.

(4.1) The elements of R are 0,1,2.

(4.2) 2 + 2 = 1 and 22 = 1.

(4.3) R is an integral domain since the products of nonzero elements are nonzero:
1 · 1 = 1, 1 · 2 = 2, 2 · 1 = 2 and 2 · 2 = 1.

S = R[x]/(x2 + 1).

(4.4) 02 + 1 = 1, 12 + 1 = 2 and 22 + 1 = 2, so x2 + 1 does not have roots in R.

(4.5) A degree 2 polynomial without roots is irreducible.

(4.6)α2 = [x]2 = −[1] = [2] in S.

(4.7) S has 9 elements: aα+ b where a, b ∈ {0, 1, 2}.
(4.8) α4 = [2]2 = [1].

(4.9) β = [1] + α. Then β2 = ([1] + α)2 = [1] + 2α+ α2 = [1] + 2α+ [2] = 2α.

(4.10) β8 = (2α)4 = [2]4α4 = [16] = [1].

(4.11) Since x2 + 1 is irreducible in R[x], then the quotient is a field, and non-zero
elements in S are units.
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1. 7|(32n − 2n):

For n = 1, 7|(32 − 21) = 9 − 2 = 7. Assume the statement is true for n = k. Now
consider n = k + 1: 32(k+1) − 2k+1 = 9 · 32k − 2 · 2k = 7 · 32k + 2 · 32k − 2 · 2k =
7 · 32k + 2(32k − 2k).

Now the first term is divisible by 7 (since there is a 7 multiplying), and the second
term is divisible by 7 by induction hypothesis. Therefore, 7 · 32k + 2(32k − 2k) is
divisible by 7. This completes the induction.

2. (a) Let [a], [b] ∈ S, then 20|a and 20|b. But then 20|(a+ b) and therefore [a+ b] ∈ S.
For multiplication, 20|ab and therefore [ab] ∈ S. Clearly [0] ∈ S by construction.
Finally, the additive inverses are given by −[0] = [0], −[20] = [80], −[40] = [60],
−[60] = [40], −[80] = [20]. Therefore S is a subring of Z100.

(b) S is not an integral domain since [20]2 = [400] = [0] but [20] 6= [0]. It is not a
field, since fields are integral domains.

(c) Z5 is a field but S is not. Since being a unit is preserved by isomorphisms, then
S can not be isomorphic to Z5.

3. (a) (
1 0
0 1

)2

=
(

1 0
0 1

)
(

1 0
0 0

)2

=
(

1 0
0 0

)
(

0 0
0 1

)2

=
(

0 0
0 1

)
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(
0 0
0 0

)2

=
(

0 0
0 0

)
are all idempotent.

(b) In Z12, e2 = e implies e(e− 1) = 0. Therefore, e = 0, 1, or e is a zero divisor. The
zero divisors are 2, 3, 4, 6, 8, 9, 10. Of those, only 4 and 9 work. Thus, e = 0, 1, 4, 9.

(c) Since e2 = e implies e(e − 1) = 0, we see that e = 1 or e = 0 solve the equation
regardless of the ring.

(d) If we have an integral domain, there are no zero divisors, and therefore, the
equation e(e− 1) = 0 has only e = 1 or e = 0 as solutions.

4. (a) Let f(t), g(t) be two polynomials in I2. Then the coefficients of the polynomial
f(t)−g(t) are the difference of coefficients of f(t) and g(t), and therefore they have to
be even. If f(t) ∈ I2 and g(t) ∈ Z[t], then the product f(t)g(t) ∈ I2. This is because
if f(t) = ant

n + . . . a0 and g(t) = bmt
m + . . . b0, then the product has coefficients that

are sums of terms of the form ajbk−j and each of those terms are even, since the ai

are even.

(b) I2 = (2). Clearly the polynomial 2 is in I2, and therefore (2) ⊂ I2. On the other
hand, any polynomial f(t) ∈ I2 may be written as f(t) = 2g(t) which shows that
f(t) ∈ (2).

(c) This is the same as before. Ip is an ideal, and it is actually equal to (p).

5. (a) f ∼ g iff t|(f − g). Then the following elements are equivalent to 3t2 + 2t + 5:
g(t) = 5, t + 5, t2 + 5. When we do the difference we get constant term zero, and
therefore it is multiple of t.

(b) Reflexive: f ∼ f since t|(f − f) = 0. Symmetric: f ∼ g implies that t|(f − g),
which implies that t|(g− f), which implies that g ∼ f . Finally, transitive: f ∼ g and
g ∼ h imply that t|(f − g) and t|(g− h), but then t|(f − g) + (g− h) = (f − h) which
implies that f ∼ h. Then we get an equivalence relation.

(c) The elements that are equivalent to t are those whose constant coefficient is zero,
i.e., f such that f(0) = 0.

6. (a) T (9) = T (1 + 8) = T (1) + T (8) = T (1) +D = T (1) + T (4) = T (5) = A.

T (10) = T (1 + 9) = T (1) + T (9) = T (1) +A = T (1) + T (1) = T (2) = B.

T (11) = T (1 + 10) = T (1) + T (10) = T (1) +B = T (1) + T (2) = T (3) = C.

T (12) = T (1 + 11) = T (1) + T (11) = T (1) + C = T (1) + T (3) = T (4) = D.

(b)

+ A B C D

A B C D A
B C D A B
C D A B C
D A B C D

+ A B C D

A A B C D
B B D B D
C C B A D
D D D D D
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(c) The zero element is D, since the D row in the addition table is the same as the
upper row.

(d) R is not an integral domain since B2 = D, which is zero. It can not be a field,
since any field is an integral domain.

7. f(t) = 2t4 + t3 + t+ 1, g(t) = t3 + t2 + 1 in Z3[t]. We do the division algorithm

2t4 + t3 + t+ 1 = (t3 + t2 + 1)2t+ (2t3 + 2t+ 1)

2t3 + 2t+ 1 = (t3 + t2 + 1)2 + (t2 + 2t+ 2)

Therefore, the division algorithm reads

2t4 + t3 + t+ 1 = (t3 + t2 + 1)(2t+ 2) + (t2 + 2t+ 2).

Now we apply this again

t3 + t2 + 1 = (t2 + 2t+ 2)t+ (2t2 + t+ 1)

2t2 + t+ 1 = (t2 + 2t+ 2)2

Therefore, the division algorithm reads

t3 + t2 + 1 = (t2 + 2t+ 2)(t+ 2).

Therefore, (f(t), g(t)) = t2 + 2t+ 2.

We also get t2 + 2t+ 2 = f(t)− g(t)(2t+ 2) = f(t) + g(t)(t+ 1).

8. Let f(t) = 1
6 t

5+2
3 t

4−1
2 t

3−3t2. First of all, we can write f(t) = 1
6 t

2
(
t3 + 4t2 − 3t− 18

)
.

We look for roots for the last factor. Let us try t = 2, since 2|18. Then 8+16−6−18 =
0. Therefore, we can write f(t) = 1

6 t
2(t− 2)(t2 + 6t+ 9). Finally, it is easy to see (by

the quadratic formula, for example), that t2 + 6t+ 9 = (t+ 3)2. Therefore,

f(t) =
1
6
t2(t− 2)(t+ 3)2.

9. (a) p(t) = 21t3 − 6t + 8. We reduce to Z5: p(t) = t3 − t + 3. We look for roots:
p(0) = 3, p(1) = 3, p(2) = 4, p(3) = 2, p(4) = 3. Then there are no roots in Z5 and
the polynomial is irreducible since its degree is 3. Therefore, there are no roots in
the rationals as well.

(b) q(t) = 3t10 + 5f(t) with deg f(t) < 10 and f(0) = 17.

(i) We could take, for example, q(t) = 3t10 + 5 · 17.

(ii) Take p = 5. Then p divides the coefficients, except for the principal one. Also,
f(0) = 17 implies that the constant coefficient of f is 17 and the constant coefficient
of q is 17 · 5. Therefore p2 does not divide the constant coefficient of q. By Eisenstein
criterion, q is irreducible
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10. p(t) = t4 + t2 + 1.

(a) Notice that t4 + t2 + 1 = (t2 + t+ 1)2, therefore p is not irreducible and R̄ is not
a field.

(b) [t3+t2+1]p(t)+x = [t2+t]p(t) implies x = [t2+t]p(t)−[t3+t2+1]p(t) = [t3+t+1]p(t).

The answer is uniquely determined since addition inverses are unique.

(c) [t3 + t2 + 1]p(t)x = [t2 + t]p(t). First we find the multiplicative inverse for [t3 +
t2 + 1]p(t). For that, we need a, b ∈ Z2[t] such that a(t3 + t2 + 1) + bp(t) = 1. We do
euclidean algorithm:

t4 + t2 + 1 = (t3 + t2 + 1)t+ (t3 + t2 + t+ 1)

t3 + t2 + t+ 1 = (t3 + t2 + 1) + t

then the division algorithm is

t4 + t2 + 1 = (t3 + t2 + 1)(t+ 1) + t.

One more time,
t3 + t2 + 1 = t(t2 + t) + 1.

Then 1 = (t3+t2+1)+t(t2+t) = (t3+t2+1)+((t4+t2+1)+(t3+t2+1)(t+1))(t2+t) =
(t3 + t2 + 1)(t3 + t+ 1) + (t4 + t2 + 1)(t2 + t). Therefore, the inverse of [t3 + t2 + 1]p(t)

is given by [t3 + t+ 1]p(t). Now

x = [t3+t2+1]−1
p(t)[t

2+t]p(t) = [t3+t+1]p(t)[t
2+t]p(t) = [t5+t4+t3+t]p(t) = [(t3+t)+(t2+1)+t3+t]p(t)

= [t2 + 1]p(t).
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