Math 228 (R1) Midterm

March 3Rd, 2009
Instructor: Matilde N. Lalín

NAME:

SID:

1. This exam consists of 8 pages, including this one.
2. No books, notes, or electronic devices are allowed.
3. Ensure that your full name and student number appear on this page.
4. Read the questions carefully before starting to work.
5. Justify your answers. Show all your work
6. Continue on the back of the page if you run out of space.

Question:	1	2	3	4	5	6	7	Total
Points:	15	15	15	15	15	15	15	105
Score:								

1. (15 points) Find all the solutions $x \in \mathbb{Z}_{35}$ of the equation $20 x=15$.

Page 2
2. (15 points) Solve the following system

$$
\begin{aligned}
& x \equiv 3(\bmod 7) \\
& x \equiv 1(\bmod 9)
\end{aligned}
$$

3. (15 points) Prove by induction that

$$
[7]^{n}=[6 n+1] \quad \text { in } \mathbb{Z}_{9} .
$$

Page 4
4. Define a relation on the vector space $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(a, b) \mid a, b \in \mathbb{R}\}$ by the following

$$
(a, b) \sim(c, d) \Leftrightarrow a+d=b+c
$$

(a) (6 points) Find three vectors that are equivalent to $(2,-3)$
(b) (9 points) Show that \sim defines an equivalence relation in \mathbb{R}^{2}.
5. (15 points) Show that the subset $S=\{0,2,4,6,8\}$ of \mathbb{Z}_{10} is a subring. Does S have an identity?
6. The following are the addition table and the multiplication table for a ring with three elements.

+	r	s	t
r	r	s	t
s	s	t	r
t	t	r	s

\cdot	r	s	t
r	r	r	r
s	r	t	s
t	r	s	t

Answer the following questions (with justification):
(a) (3 points) What is the additive identity?
(b) (3 points) What is the additive inverse of s ?
(c) (3 points) What is the additive inverse of t ?
(d) (6 points) Is this a commutative ring? Does it have a multiplicative identity?
7. (15 points) Let $a, b \in \mathbb{Z}$. Prove that $(a, b) \mid(a+b, a-b)$.

Page 8

