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I will mostly follow [2].

Definition and some identities

Definition 1 Bernoulli numbers are defined as B0 = 1 and recursively as

(m + 1)Bm = −
m−1
∑

k=0

(

m + 1

k

)

Bk,

so we find B1 = −1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0, B6 = 1

42 , . . . , B12 = − 691
2730 , . . .

Lemma 2

t

et − 1
=

∞
∑

m=0

Bm

tm

m!
.

PROOF. Write t
et−1 =

∑∞
m=0 am

tm

m! and multiply by et − 1,

t =
∞

∑

n=1

tn

n!

∞
∑

m=0

am

tm

m!
,

equate coefficients for tm+1 gives a0 = 1 and

m
∑

k=0

(

m + 1

k

)

ak = 0.

¤

Theorem 3 (J. Bernoulli) Let m be a positive integer and define

Sm(n) = 1m + . . . + (n − 1)m,

then

(m + 1)Sm(n) =
m

∑

k=0

(

m + 1

k

)

Bkn
m+1−k.

PROOF. In ekt =
∑∞

m=0 km tm

m! substitute k = 0, 1, . . . , n − 1 and add,

∞
∑

m=0

Sm(n)
tm

m!
= 1 + et + . . . + e(n−1)t =

ent − 1

t

t

et − 1

=
∞

∑

k=1

nk tk−1

k!

∞
∑

j=0

Bj

tj

j!

now equate the coefficients of tm and multiply by (m + 1)!. ¤
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Definition 4

Bm(x) =
m

∑

k=0

(

m

k

)

Bkx
m−k

are called Bernoulli polynomials.

So B0(x) = 1, B1(x) = x − 1
2 , etc.

Then Theorem 3 may be stated as

Sm(n) =
1

m + 1
(Bm+1(n) − Bm+1).

Lemma 5

text

et − 1
=

∞
∑

m=0

Bm(x)
tm

m!
.

PROOF. First note that

B′
m(x) =

m−1
∑

k=0

(

m

k

)

(m − k)Bkx
m−1−k = mBm−1(x).

Also
∫ 1

0
Bm(x)dx =

1

m + 1

m
∑

k=0

(

m + 1

k

)

Bk = 0, m ≥ 1.

Now let F (x, t) =
∑∞

m=0 Bm(x) tm

m! , differentiating,

∂

∂x
F (x, t) =

∞
∑

m=1

Bm−1(x)
tm

(m − 1)!
= tF (x, t).

Now we solve using separation of variables, F (x, t) = T (t)ext, then

∫ 1

0
F (x, t)dx =

∫ 1

0
T (t)extdx = T (t)

et − 1

t

but
∫ 1

0
F (x, t)dx =

∞
∑

m=0

tm

m!

∫ 1

0
Bm(x)dx = 1

and this proves the statement (Castellanos, [1]). ¤

Proposition 6 1. Bm(x + 1) − Bm(x) =
∑m

k=0

(

m
k

)

Bm−k(x) = mxm−1 (Roman [5]).

2. Bm(1 − x) = (−1)mBm(x).

3. Bm =
∑m

k=0
1

k+1

∑k
r=0(−1)r

(

k
r

)

rm (Rademacher [4]).

4.
∑m

k=0(−1)k+m
(

m
k

)

Bm(k) = m! (Ruiz [6]).

5. Bm(kx) = kq−1
∑k−1

j=0 Bm

(

x + j
k

)

.
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Euler MacLaurin sum formula (Rademacher, [4]).

Let f(x) smooth. Since B′
1(x) = 1,

∫ 1

0
f(x)dx = B1(x)f(x)|10 −

∫ 1

0
B1(x)f ′(x)dx

= . . . =

q
∑

m=1

(−1)m−1 Bm(x)

m!
f (m−1)(x)

∣

∣

∣

∣

1

0

+ (−1)q

∫ 1

0

Bq(x)

q!
f (q)(x)dx

Evaluating in x = 1,

f(1) =

∫ 1

0
f(x)dx +

q
∑

m=1

(−1)m Bm

m!
(f (m−1)(1) − f (m−1)(0)) + (−1)q−1

∫ 1

0

Bq(x)

q!
f (q)(x)dx.

Changing f(x) by f(n − 1 + x) and adding, we obtain the formula

b
∑

n=a+1

f(n) =

∫ b

a

f(x)dx +

q
∑

m=1

(−1)m Bm

m!
(f (m−1)(b) − f (m−1)(a)) + Rq

where

Rq =
(−1)q−1

q!

∫ b

a

Bq(x − [x])f (q)(x)dx

An integral and some identities

Proposition 7 We have:

∫ ∞

0

x logk xdx

(x2 + a2)(x2 + b2)
=

(π

2

)k+1 Pk

(

2 log a
π

)

− Pk

(

2 log b
π

)

a2 − b2
.

where

Pk(x) =
2ik+1

k + 1

(

Bk+1

(x

i

)

− 2kBk+1

( x

2i

))

+
(2k+1 − 2)ik+1

k + 1
Bk+1

PROOF. (Idea) We first prove that

∫ ∞

0

xαdx

(x2 + a2)(x2 + b2)
=

π(aα−1 − bα−1)

2 cos πα
2 (b2 − a2)

for 0 < α < 1, a, b 6= 0

by first computing
∫ ∞

0

xαdx

x2 + a2
=

πaα−1

2 cos πα
2

.

We note that the polynomials Pk may be defined recursively as

Pk(x) =
xk+1

k + 1
+

1

k + 1

k+1
∑

j>1 (odd)

(−1)
j+1

2

(

k + 1

j

)

Pk+1−j(x).
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The idea, suggested by Rodriguez-Villegas, is to obtain the value of the integral in the
statement by differentiating k times the integral of with α and then evaluating at α = 1.
Let

f(α) =
π(aα−1 − bα−1)

2 cos πα
2 (b2 − a2)

which is the value of the integral with α. In other words, we have

f (k)(1) =

∫ ∞

0

x logk xdx

(x2 + a2)(x2 + b2)
.

By developing in power series around α = 1, we obtain

f(α) cos
πα

2
=

π

2(b2 − a2)

∞
∑

n=0

logn a − logn b

n!
(α − 1)n.

By differentiating k times,

k
∑

j=0

(

k

j

)

f (k−j)(α)
(

cos
πα

2

)(j)
=

π

2(b2 − a2)

∞
∑

n=0

logn+k a − logn+k b

n!
(α − 1)n.

We evaluate in α = 1,

k
∑

j=0 (odd)

(−1)
j+1

2

(

k

j

)

f (k−j)(1)
(π

2

)j

=
π(logk a − logk b)

2(b2 − a2)
.

As a consequence, we obtain

f (k)(1) =
1

k + 1

k+1
∑

j>1 (odd)

(−1)
j+1

2

(

k + 1

j

)

f (k+1−j)(1)
(π

2

)j−1
+

logk+1 a − logk+1 b

(k + 1)(a2 − b2)
.

When k = 0,

f (0)(1) = f(1) =
log a − log b

a2 − b2
=

π

2

P0

(

2 log a
π

)

− P0

(

2 log b
π

)

a2 − b2
.

The general result follows by induction on k and the definition of Pk. ¤

Theorem 8 We have the following identities:

• For 1 ≤ l ≤ n:
sn−l(1

2, . . . , (2n − 1)2)

= n

n−l
∑

s=0

sn−l−s(2
2, . . . , (2n − 2)2)

1

l + s
B2s

(

2(l + s)

2s

)

(22s − 2)(−1)s+1.

• For 1 ≤ n:

(

(2n)!

2nn!

)2

= 2n

n
∑

s=1

sn−s(2
2, . . . , (2n − 2)2)

1

s
B2s(2

2s − 1)(−1)s+1.
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• For 0 ≤ l ≤ n:
(2l + 1)sn−l(2

2, . . . , (2n)2)

= (2n + 1)
n−l
∑

s=0

sn−l−s(1
2, . . . , (2n − 1)2)B2s

(

2(l + s)

2s

)

(22s − 2)(−1)s+1.

• For 1 ≤ n:

n
∑

s=1

sn−s(2
2, . . . , (2n − 2)2)(−1)s+1 22s(22s − 1)

s
B2s = 2(2n − 1)!

where

sl(a1, . . . , ak) =







1 if l = 0
∑

i1<...<il
ai1 . . . ail if 0 < l ≤ k

0 if k < l

are the elementary symmetric polynomials, i.e.,

k
∏

i=1

(x + ai) =
k

∑

l=0

sl(a1, . . . , ak)x
k−l

Some big classic results

Theorem 9 (Euler)

2ζ(2m) = (−1)m+1 (2π)2m

(2m)!
B2m.

PROOF. We will need

cot x =
1

x
− 2

∞
∑

n=1

x

n2π2 − x2
.

This identity may be deduced by applying the logarithmic derivative to

sinx = x

∞
∏

n=1

(

1 −
x2

n2π2

)

.

Then

x cot x = 1 − 2
∞

∑

n=1

x2

n2π2

∞
∑

k=0

( x

nπ

)2k

= 1 − 2
∞

∑

m=1

ζ(2m)
x2m

π2m

On the other hand,

x cot x = x
cos x

sinx
= x

i(eix + e−ix)

eix − e−ix
= ix +

2ix

e2ix − 1
= 1 +

∞
∑

n=2

Bn

(2ix)n

n!

and compare coefficients of x2m.
For instance, ζ(2) = π2

6 , ζ(4) = π4

90 , etc.

Corollary 10 1. (−1)m+1B2m > 0.
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2.
∣

∣

B2m

2m

∣

∣ → ∞ or B2m ∼ (−1)m+1 2(2m)!
(2π)2m as m → ∞.

PROOF. The first assertion is consequence of the fact that ζ(2m) is positive. The
second is consequence of the fact that ζ(2m) > 1 implies

|B2m| >
2(2m)!

(2π)2m
.

¤

Theorem 11 (Claussen, von Staudt) For m ≥ 1

B2m ≡ −
∑

(p−1)|2m, p prime

1

p
(mod 1)

We will need the following

Definition 12 For every rational number r and p prime write r = pk a
b

where a, b are
integers such that p 6 |ab. Then ordp(r) = k. We say that r is p-integral if ordp(r) ≥ 0.

Lemma 13 Let p be a prime number and k a positive integer, then

1. pk

k+1 is p-integral.

2. pk

k+1 ≡ 0 (mod p) if k ≥ 2.

3. pk−2

k+1 is p-integral if k ≥ 3 and p ≥ 5.

PROOF. By induction, k + 1 ≤ pk. Let k + 1 = paq. Then pk

k+1 = pk−a

q
≥ 1 implies

k ≥ a. For the second case use that k + 1 < pk for k ≥ 2. The third case is consequence of
k + 1 < pk−2 for k ≥ 3 and p ≥ 5. ¤

Proposition 14 Let p be a prime and m a positive integer. Then pBm is p-integral. Also,
if m is even pBm ≡ Sm(p) (mod p)

PROOF. For the first statement we will use induction. It is clear for m = 1. Now note
that for m ≥ k we have

(

m + 1

k

)

=
m + 1

m − k + 1

(

m

k

)

Then Theorem 3 becomes

Sm(n) =
m

∑

k=0

(

m

k

)

Bk

nm+1−k

m + 1 − k
=

m
∑

k=0

(

m

k

)

Bm−k

nk+1

k + 1
(1)

Now set n = p and since Sm(p) is integer, it suffices to prove that

(

m

k

)

pBm−k

pk

k + 1

is p-integral for k = 1, . . . , m, but that is true by induction and Lemma 13.
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For the congruence it suffices to see that

ordp

((

m

k

) (

pBm−k

pk

k + 1

))

≥ 1

for k ≥ 1. By Lemma 13 this is true for k ≥ 2. The case with k = 1 corresponds to
m
2 (pBm−1)p and it is true because m is even and the only nontrivial case is with m = 2.

Lemma 15 Let p be a prime. If p − 1 6 |m, then Sm(p) ≡ 0 (mod p). If p − 1|m then
Sm(p) ≡ −1 (mod p)

PROOF. First suppose that p − 1 6 |m. Let g be a primitive root modulo p. Then

Sm(p) = 1m + . . . + (p − 1)m ≡ 1m + gm + . . . + g(p−2)m (mod p)

and
(gm − 1)Sm(p) ≡ gm(p−1) − 1 ≡ 0 (mod p)

the result follows. Now suppose that p − 1|m, then

Sm(p) ≡ 1 + 1 + . . . + 1 ≡ p − 1 (mod p)

¤

PROOF. (Theorem 11) Assume m is even. By Proposition 14, pBm is p-integral and
≡ Sm(p) (mod p). By Lemma 15, Bm is a p-integer if p − 1 6 |m and pBm ≡ −1 (mod p) if
p − 1|m. Then

Bm +
∑

p−1|m

1

p

is a p-integer for all primes p, then it must be integral. ¤

More Congruences

Corollary 16 If p−1 6 |2m, then B2m is p-integral. If p−1|2m then pB2m +1 is p-integral
and

ordp(pB2m + 1) = ordp

(

p

(

B2m +
1

p

))

≥ 1

so pB2m ≡ −1 (mod p). Also 6 always divides the denominator of B2m.

From now on write Bm = Um

Vm
as a fraction in lowest terms with Vm > 0.

Proposition 17 For m even and > 1,

VmSm(n) ≡ Umn (mod n2)

PROOF. We will use equation (1), for k ≥ 1 write

(

m

k

) (

Bm−k

nk−1

k + 1

)

n2 = Am
k n2.
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If we show that for p|n, p 6= 2, 3, then ordp(A
m
k ) ≥ 0 and if p|n, p = 2 or 3, ordp(A

m
k ) ≥ −1,

then (Am
k , n) must divide 6 and the same is true for the greater common divisor between

the sum of Am
k and n. Then we may write

Sm(n) = Bmn +
An2

lB

with (B, n) = 1 and l|6. Multiplying by BVm and using the fact that 6|Vm (by Corollary
16) the result is proved.

Use Corollary 16 to see that ordp(Bm−k) ≥ −1. Assume p|n and p 6= 2, 3. The cases
k = 1, 2 are simple. If k ≥ 3,

ordp

(

Bm−k

nk−1

k + 1

)

≥ −1 + (k − 1)ordpn − ordp(k + 1) ≥ k − 2 − ordp(k + 1) ≥ 0

by Lemma 15.
Now let p = 2. If k = 1, then Bm−1 = 0 for m > 2 and A2

1 = 2B1
1
2 = −1

2 . For k > 1
note that Bm−k = 0 unless k is even or k = m − 1. k even implies ord2(k + 1) = 0 and
k = m − 1, Am

m−1 = −1
2nm−2 which has order greater or equal to −1.

When p = 3, ord3(A
m
2 ) ≥ −1 and ord3(A

m
3 ) ≥ 1. For k ≥ 4, one shows that

ord3

(

3k−2

k+1

)

≥ 0. ¤

Corollary 18 Let m be even and p prime with p − 1 6 |m. Then

Sm(p) ≡ Bmp (mod p2).

PROOF. By Theorem 11, p 6 |Vm. Now put n = p in the above Proposition and divide
by Vm which is permissible since p 6 |Vm. ¤

Proposition 19 (Voronoi’s congruence) Let m even and > 1. Suppose that a and n are
positive coprime integers. Then

(am − 1)Um ≡ mam−1Vm

n−1
∑

j=1

jm−1

[

ja

n

]

(mod n).

PROOF. Write ja = qjn + rj with 0 ≤ rj < n. Then

jmam ≡ rm
j + mqjnrm−1

j (modn2).

But rj ≡ ja (mod n), then

jmam ≡ rm
j + mam−1qjnjm−1 (mod n2).

Summing for j = 1, . . . , n − 1,

Sm(n)am ≡ Sm(n) + mam−1n

n−1
∑

j=1

jm−1

[

ja

n

]

(modn2).

Now multiply by Vm and use Proposition 17. ¤
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Proposition 20 If p − 1 6 |m, then Bm

m
is p-integral.

PROOF. By Theorem 11, Bm is a p-integer. Let m = ptm0 with p 6 |m0. In Voronoi
congruence put n = pt. Then (am − 1)Um ≡ 0 (mod pt). Now let a be a primitive root
modulo p. Since p − 1 6 |m, then p 6 |am − 1. Then Um ≡ 0 (mod pt). Then Bm

m
= Um

mVm
is

p-integer. ¤

Theorem 21 (Kummer congruences) Suppose m ≥ 2 is even, p prime, and p− 1 6 |m. Let

Cm = (1−pm−1)Bm

m
. If m′ ≡ m (mod φ(pe)), then Cm′ ≡ Cm (mod pe).

PROOF. We will see the case e = 1. Let t = ordp(m). By Proposition 20, pt|Um. In
Voronoi’s congruence, set n = pe+t. Since pt divides both Um and m, and mVm

pt is prime to
p, we obtain,

(am − 1)Bm

m
≡ am−1

pe+t−1

∑

j=1

jm−1

[

ja

pe+t

]

(mod pe).

The right-hand side is unchanged if we replace m by m′ ≡ m (mod p − 1). Then

(am′

− 1)Bm′

m′
≡

(am − 1)Bm

m
(mod p).

Choose a to be a primitive root modulo p. Since p − 1 6 |m we have am′

− 1 ≡ am − 1 6≡
0 (mod p). Then

Bm′

m′
≡

Bm

m
(mod p).

¤

Definition 22 An odd prime number p is said to be regular if p does not divide the nu-
merator of any of the numbers B2, B4, . . . , Bp−3. The prime 3 is regular. Equivalently, p

is regular if it does not divide the class number of Q(ξp)

The first irregular primes are 37 and 59.

Theorem 23 (Kummer) Let p be a regular prime. Then xp + yp = zp has no solution in
positive integers.

Theorem 24 (Jensen) The set of irregular primes is infinite.

PROOF. Let {p1, . . . , ps} be the set of irregular primes. Let k ≥ 2 be even and n =
k(p1−1) . . . (ps−1). Choose k large such that

∣

∣

Bn

n

∣

∣ > 1 and p prime such that ordp

(

Bn

n

)

> 0.
Then p − 1 6 |n and so p 6= pi. We will prove that p is also irregular.

Let n ≡ m (mod p − 1) where 0 < m < p − 1. Then m is even and 2 ≤ m ≤ p − 3. By
the Kummer congruence,

Bn

n
≡

Bm

m
(mod p).

Since ordp

(

Bn

n

)

> 0 and ordp

(

Bn

n
− Bm

m

)

> 0, then

ordp

(

Bm

m

)

= ordpBm > 0

and p is irregular. ¤
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