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I will mostly follow [2].
Definition and some identities
Definition 1 Bernoulli numbers are defined as By = 1 and recursively as

(m +1)Byy = —mz_l (m; 1)Bk,

k=0

so we find B; = —1 By =

5
|

0,B1=—35.B5 =0,Bs = 5,.... B2 = — 37

_L
30°

Lemma 2

t > tm
ot —1 mZ_:OBmﬁ'

PROOF. Write A =Y am% and multiply by ef — 1,

b= D am
— n: m—0 m!

equate coefficients for t™*! gives ag = 1 and
m
1

S (" Ja=o

k=0

O

Theorem 3 (J. Bernoulli) Let m be a positive integer and define
Smn)=1"4+ ...+ (n-1)",

then .

m+1
1)S =
o+ 1t = > ("

) Bknn’H’lfk
k=0

PROOF. Ineft=3"> | km%n, substitute k = 0,1,...,n — 1 and add,

e t
ZSm(n)ﬁ—1+et+...+e(”*1)t:en N

= m! t et—1
(9] k—1 ©© i
t tJ
_ k L
- n k! ZBJ]'!
k=1 §=0

now equate the coefficients of ¢" and multiply by (m + 1)!. O
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Definition 4

Bu(z) = Em: <’:> Bra™k

are called Bernoulli polynomaials.

So By(z) =1, By(z) = z — 3, etc.
Then Theorem 3 may be stated as

S =—(Bn — B,
(W) =~ (Brsa () = B1)
Lemma 5
text o tm

PROOF. First note that

m—1 m

B (z) = <k> (m — k)Bra™ 1% = mB,,_, (x).
k=0

Also

1 1 & /m+1
By (2)de = —— By, =0, > 1,
/0 (z)dx m+1< k‘ ) =0 m

Now let F\(z,t) = >0 B (2)L;, differentiating,
m
_F (z,1) Z Bp_1( T = tF(z,1).

Now we solve using separation of variables, F(z,t) = T(t)e®’, then

et —1

1 1
/OF(a:,t)dm:/o T(t)e* dx = T(t) ;

/Fxtdx—zm|/

and this proves the statement (Castellanos, [1]). O

but

Proposition 6 1. By,(z+1) — By(z) = Y11 (V) Bn—k(x) = ma™ ! (Roman [5]).
2. B(1 — ) = (—1)" By ().
3. B = Yt 51 Loneo(—1)" ()™ (Rademacher [4)).
4o (1) () B (k) = m! (Ruiz [6]).

5. Bu(kz) = k=" Y20 By, (a: + %)'



Euler MacLaurin sum formula (Rademacher, [4]).

Let f(z) smooth. Since Bj(z) =1,

1 1
/ F(2)da = By (2) f(x)]} — / By () f'(x)dz
0 0

Evaluating in x = 1,
! e 1SS =1y B pmmn gy o) _qyet
)= [ s # 3SR - D0) + () /

Changing f(x) by f(n — 14 z) and adding, we obtain the formula

b b q B
S pn) = [ fade+ Ym0 - D) + R,
a m=1

n=a+1

where
(1!

R =
q q|

b
[ Bula = ) 1O @)z

An integral and some identities

Proposition 7 We have:

0o 2 log" zda ki1 P (21(;ga) _p, (@)
/o (22 + a?) (22 + b?) :( ) .

where

2ik+1 T T 2k+1 -9 ik—i—l
R 20 (s 2) e (5)) 2022

PROOF. (Idea) We first prove that

/oo % ,n.(aa—l o ba—l)
o (

72 + a?) (22 + b?) 2008%(()2—@2) or 0<a<l, ab#0

by first computing

/°° z%dx ra®1
2 2~ o
0o T+a 2cos 5

We note that the polynomials P, may be defined recursively as

xktl 1 AR it (k+1
Py(z) = L —1) Pis1_j(x).
W=y 2 (T Ao
j>1(odd)



The idea, suggested by Rodriguez-Villegas, is to obtain the value of the integral in the
statement by differentiating k& times the integral of with a and then evaluating at o = 1.

Let ( - 1)
T a/af _ ha—
fla) = 2 cos 52 (b? — a?)

which is the value of the integral with «. In other words, we have

9 k
F®(1) = / xlog” xdx .
o (224 a?)(z? +b?)

By developing in power series around a = 1, we obtain

T T 2 log" a — log" b n
f(a)cosT— 2(62—a2)nz_;) o (a—1)"

By differentiating k£ times,

k

kY pe—j N r Sl 1 )
2 (J’)f(k OICE S S a) 2 e GE

§=0 n=0

We evaluate in o = 1,

I (F)stna (5) = g e,

j=0 (odd)

As a consequence, we obtain

k+1 - k+1 k+1
(k)¢ L k+ (k+1—) m\i=1  log"" a—log""" b
! Z ( j )f OE) e
When k = 0,
2log 2logb
f<°><1>=f<1>:10%“—1°gbzzpo( ; > P (222
a? — b2 2 a? — b2 '

The general result follows by induction on k£ and the definition of Py. O

Theorem 8 We have the following identities:

o forl<i<n:
Sn—l(12>'-'7(2n_ 1)2)

n—I
1Y st a2 (20— 2)%%8325 (2”;; S)> (225 — 2)(=1)*+.
s=0

o Forl<mn:

<(2nn'> —2”25n $(2%, (20 = 2)%)- st(228—1)(—1)s+1,



e for0<i<n:
(21 + D)spi(22,...,(2n)%)

n—I
— @)Y saie(1% (20— 1)%)Ba, (2“;; 3)) (225 — 9)(—1)**.
s=0

o Forl<mn:
n 225 228 -1
S sns(22,. . (20— 2y (—1) 1 22T =D g g9 1)1
s=1
where
1 if 1=0
sl(al,...,ak): Zil<_._<ila¢1...ail if 0<I<k
0 if k<l

are the elementary symmetric polynomials, i.e.,
k k
H:L‘+al Zsl al,...,a ra
i=1 1=0

Some big classic results

Theorem 9 (Euler)

T 2m
2((2m) = (1) B

PROOF. We will need -
1 T
otr =220

This identity may be deduced by applying the logarithmic derivative to

sm—xH< . 2)

Then - - -
2 2k 2m
T x x
weotz=1-2 (—) =1-2 om)
; n?m? =0 T mzzzl ‘f )me
On the other hand,
cos T i(el” fe7i7) > 21:1: "
:ccota;:msinj::m ST— =iz + T-l—i—ZB

and compare coefficients of z?
For instance, ((2) = 6 , C( ) 90, ete.

Corollary 10 1. (=1)™" By, > 0.



2(2m)!
2. |B2m| — oo or Boy, ~ (—1)mH! (Z(J;‘En as m — 00.

PROOF. The first assertion is consequence of the fact that ((2m) is positive. The
second is consequence of the fact that ((2m) > 1 implies

2(2m)!
B —.
| Bam| > (2m)2m
O

Theorem 11 (Claussen, von Staudt) For m > 1

Bng— Z

(p—1)|2m, pprime

(mod 1)

D=

We will need the following

Definition 12 For every rational number r and p prime write r = pk% where a, b are
integers such that p fab. Then ordy,(r) = k. We say that r is p-integral if ordy(r) > 0.

Lemma 13 Let p be a prime number and k a positive integer, then

12 int l
- %77 s p-integral.

2. ka’jl = 0(modp) if k > 2.
3. % is p-integral if k > 3 and p > 5.
PROOF. By induction, k+ 1 < p*. Let k+ 1 = p®q. Then kp_—iljl = pkq_a > 1 implies

k > a. For the second case use that k£ +1 < pk for k > 2. The third case is consequence of
kE+1<pt2fork>3andp>5 0O

Proposition 14 Let p be a prime and m a positive integer. Then pB,, is p-integral. Also,
if m is even pBy, = Sy (p) (mod p)

PROOF. For the first statement we will use induction. It is clear for m = 1. Now note

that for m > k we have
m+1\y  m+1 m
k C m—k+1\k
k+1

s = 2 (1) B = 2o (1) Bovi 2

0 k=0

Then Theorem 3 becomes

Now set n = p and since S, (p) is integer, it suffices to prove that

k

m P
B, -1
<k>p "E+1

is p-integral for £ = 1,...,m, but that is true by induction and Lemma 13.
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For the congruence it suffices to see that

o (1))

for £ > 1. By Lemma 13 this is true for £ > 2. The case with & = 1 corresponds to
B (pBm—1)p and it is true because m is even and the only nontrivial case is with m = 2.

Lemma 15 Let p be a prime. If p —1 /m, then Sy, (p) = 0(modp). If p — 1|m then
Sm(p) = —1(mod p)

PROOF. First suppose that p — 1 fm. Let g be a primitive root modulo p. Then
Sm@) =1"4+ ...+ (p—=1)"=1"+¢" + ...+ ¢? 2™ (mod p)

and
(g™ — 1)Sm(p) = g™®Y — 1 =0 (mod p)

the result follows. Now suppose that p — 1|m, then
Smp)=14+1+4+...+1=p—1(modp)

O
PROOF. (Theorem 11) Assume m is even. By Proposition 14, pB,, is p-integral and
= Su(p) (mod p). By Lemma 15, B,, is a p-integer if p — 1 fm and pB,, = —1 (mod p) if

p — 1/m. Then

1
Bu+ Yy -

p—1|m

is a p-integer for all primes p, then it must be integral. [J
More Congruences

Corollary 16 Ifp—1 [2m, then Bay,, is p-integral. If p—1|2m then pBa,, + 1 is p-integral
and

1
ord,(pBam + 1) = ord, (p (BQm + 5)) >1
50 pBay, = —1 (mod p). Also 6 always divides the denominator of Bay,.

From now on write B,, = lé_m
m

as a fraction in lowest terms with V,,, > 0.
Proposition 17 For m even and > 1,
VinSm(n) = Upn (mod n?)

PROOF. We will use equation (1), for £ > 1 write

m "y m, 2
<k:) (Bm_kk—i—l)n = A'n”.




If we show that for p|n, p # 2,3, then ord,(A}") > 0 and if p|n, p = 2 or 3, ord,(A}") > —1,
then (A}",n) must divide 6 and the same is true for the greater common divisor between
the sum of A]" and n. Then we may write

An?
m = Bm BT
Sm(n) n + B
with (B,n) = 1 and [|6. Multiplying by BV,, and using the fact that 6|V}, (by Corollary
16) the result is proved.
Use Corollary 16 to see that ord,(B,,—x) > —1. Assume p|n and p # 2,3. The cases
k =1,2 are simple. If k > 3,

nkfl
ord,, (Bm—k: P

> > -1+ (k—1)ordpn —ord,(k +1) > k-2 —ord,(k+1) >0

by Lemma 15.
Now let p = 2. Iszl,thean,l=0form>2andA%:2Bléz—%. For k > 1
note that B,,_x = 0 unless k is even or k = m — 1. k even implies ordy(k + 1) = 0 and

k=m-1 A" | = —%nm_Q which has order greater or equal to —1.

When p = 3, ords(A4%') > —1 and ords(A%') > 1. For k > 4, one shows that

3k—2

OI‘d3 (/H-l) 20 ]
Corollary 18 Let m be even and p prime with p—1 fm. Then
Sy (p) = Bpp (mod p?).

PROOF. By Theorem 11, p V,,. Now put n = p in the above Proposition and divide
by Vi, which is permissible since p [V;,,. O

Proposition 19 (Voronoi’s congruence) Let m even and > 1. Suppose that a and n are
positive coprime integers. Then

n—1 .
(a™ — DUy, = ma™ 'V, ijfl {ﬂ} (modn).
n
j=1

PROOF. Write ja = g;n +rj with 0 <r; <n. Then

But 7; = ja (modn), then

Now multiply by V,,, and use Proposition 17. [J
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Proposition 20 Ifp—1 fm, then me s p-integral.

PROOF. By Theorem 11, B,, is a p-integer. Let m = p‘mg with p /mg. In Voronoi
congruence put n = p'. Then (a™ — 1)U,, = 0(modp’). Now let a be a primitive root
modulo p. Since p —1 fm, then p fa™ — 1. Then U,, = 0 (modp'). Then BWT” = mU—‘}':n is
p-integer. [

Theorem 21 (Kummer congruences) Suppose m > 2 is even, p prime, and p—1 fm. Let
m—1
C, = U= )Bm If m" = m (mod ¢(p®)), then Cpy = Cyy, (mod p°).

m

PROOF. We will see the case e = 1. Let t = ord,(m). By Proposition 20, p'|U,,. In

Voronoi’s congruence, set n = p¢*t. Since p’ divides both U,, and m, and mp‘{m is prime to
p, we obtain,

e+t—1

a™ —1)By, m— b me1 | Ja .
E———;;L—— A"ty 1{p&u} (mod p©).
7j=1

The right-hand side is unchanged if we replace m by m’ = m (modp — 1). Then

m _1)B,, ™ — 1)Bn,
(a - ) = (e ) (mod p).
m m

Choose a to be a primitive root modulo p. Since p — 1 fm we have a®’ —1=am -1 *

0 (modp). Then
B,, B,

m/ m

(mod p).
U

Definition 22 An odd prime number p is said to be reqular if p does not divide the nu-
merator of any of the numbers Bo, By, ..., Bp_3. The prime 3 is reqular. Equivalently, p
is reqular if it does not divide the class number of Q(&p)

The first irregular primes are 37 and 59.

Theorem 23 (Kummer) Let p be a regular prime. Then xP + yP = zP has no solution in
positive integers.

Theorem 24 (Jensen) The set of irreqular primes is infinite.

PROOF. Let {pi1,...,ps} be the set of irregular primes. Let k > 2 be even and n =
k(p1—1)...(ps—1). Choose k large such that ‘%‘ > 1 and p prime such that ord, (%) > 0.
Then p — 1 fn and so p # p;. We will prove that p is also irregular.

Let n = m (modp — 1) where 0 < m < p— 1. Then m is even and 2 < m < p — 3. By
the Kummer congruence,

n
Since ord,, (B ) > 0 and ord, (B - Bm) > 0, then

n
n

and p is irregular. [
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