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Abstract
In this paper, we ascertain the validity of a diffusion approximation for the frequencies
of different types under recurrent mutation and frequency-dependent viability and
fertility selection in a haploid population with a fixed age-class structure in the limit
of a large population size. The approximation is used to study, and explain in terms of
selection coefficients, reproductive values and population-structure coefficients, the
differences in the effects of viability versus fertility selection on the fixation probability
of an advantageous mutant.
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1 Introduction

Mathematical models for biological populations often assume that individuals repro-
duce and survive at the same rates throughout their life. This is a very strong
assumption, however. This is not what happens in general in real populations with
overlapping generations in which the fertility parameters and the probabilities of sur-
vival usually depend on the age of the individuals. A review of studies on such a
dependence in nature can be found, e.g., in Jones et al. (2014).
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In a neutral finite population in discrete time with a fixed age-class structure such
that the number of individuals in each age class is kept constant from one time step to
the next, which is an assumption in the basic model introduced in Felsenstein (1971),
it is known that the frequency of a mutant type in each age class converges to a same
weighted frequency of the mutant type in the whole population that does not change
from one time step to the next. Can we expect a similar phenomenon over a short time
scale in a population under selection if selection is weak enough, and does this make
the dynamics of the mutant type over a longer time scale amenable to exact analysis
under the same assumption of a fixed age-class structure? These are the questions that
are addressed in this paper.

Still recently, using numerical iterations based on matrix analysis and some com-
puter simulations for a haploid population with two age classes of fixed finite sizes
and age-dependent differences in fertility parameters or probabilities of survival, Li
et al. (2016) exhibited a critical point for the probability of fixation of an advantageous
mutant introduced in the first age class as a function of the proportion of individuals
in this age class. It was shown that the probability of fixation of the mutant increases
up to the critical point in the case of a mutant that is advantageous in survival, and
beyond the critical point in the case of a mutant that is advantageous in reproduction.
Notice that, in the neutral model, the probability of fixation of a mutant type that is
introduced in the first age class is a decreasing function with respect to the proportion
of individuals in the first age class as shown in Emigh (1979a). The observed patterns
of the effects of viability selection and fertility selection on the fixation probability, and
their differences, appear to be puzzling and show the importance of considering life
histories in selection models. Explanations are needed to understand these surprising
patterns and this is a strong motivation to get further analytical results.

Let us recall that, using Felsenstein’s (1971) model Emigh (1979a, b) already con-
sidered constant differences in fertility parameters, survival probabilities andmutation
rates between two types in a haploid population in discrete time with a finite number
of age classes. Assuming a diffusion approximation for the frequency of one of the
two types in continuous time, Emigh (1979b) obtained the probability of fixation of
this type in the absence of mutation and the stationary distribution of its frequency
in the presence of recurrent mutation. In his approximation by a diffusion process,
however, Emigh (1979b) assumes, without any verification other than numerical, that
the frequency of each type tends rapidly to the same value in each age class like in the
neutral model, and that this value changes slowly under the effects of selection. This
two-timescale argument remains to be proved and this will be done in this paper.

For a general treatment on evolution in age-structured populations, we refer to
Charlesworth (1980). A rigorous mathematical analysis of equilibrium states in infi-
nite populations can be found in Cushing (1998). See also Kebir et al. (2010, 2015) for
the role of life-history parameters on sex allocation in hermaphroditic species. Notice
that aggregation methods to take into account two timescales have been applied to
infinite age-structured populations in a patchy environment with a migration pro-
cess assumed to be fast in comparison to the demographic process [see Auger et al.
(2008) and references therein, and also Marvà and San Segundo (2018)], and in a
game-theoretic framework with the game dynamics assumed to be faster than the
demographic dynamics (Marvà et al. 2013). In Lessard and Soares (2018), on the
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other hand, a continuous-time dynamics for an infinite population with a finite num-
ber of age classes has been obtained in the limit of weak selection with the inverse of
selection intensity as unit of time.

In this paper, we are interested in a continuous-time limit of a finite discrete-time
populationwith afixed age-class structure. In a population of size N with discrete, non-
overlapping generations, the classical limit as N → +∞with N generations as unit of
time and N−1 as intensity of selection andmutation in amulti-type setting is aWright–
Fisher diffusion as shown in Kimura (1964). Notice that, as shown in Chalub and
Souza (2009) for theMoranmodel andChalub and Souza (2014) for theWright–Fisher
model with weak frequency-dependent selection between two types of individuals, the
limiting probability density of one type, if it exists, depends on the relationship between
the intensity of selection and the time step as the population size goes to infinity: the
diffusion equation, the replicator-diffusion equation and the partial differential version
of the replicator equation. Notice also that when modeling a population according to
a stochastic point process with birth, mutation, and death occurring at continuous
random times, large population approximations can be deterministic, in the form of
ordinary, integro-, or partial differential equations, or probabilistic, in the form of
stochastic partial differential equations or superprocesses depending on the scalings
of the parameters (Champagnat et al. 2006, 2008).

In the case of weak selection and mutation in a finite age-class-structured popula-
tion in discrete time, we can resort to a diffusion approximation for a Markov chain
with two timescales as established in Ethier and Nagylaki (1980). This has been used,
for instance, to ascertain a strong-migration limit in geographically structured popu-
lations as the population size goes to infinity (Nagylaki 1980) and in group-structured
populations as the number of groups goes to infinity (Lessard 2009).

The first objective of this paper is to ascertain the validity of a diffusion approx-
imation for the frequencies of different types under weak selection and mutation in
a haploid population with a fixed age-class structure by checking the conditions in
Ethier and Nagylaki (1980). This is done in Sect. 4 in the general case of n types with
frequency-dependent viability and fertility selection parameters and general mutation
probabilities, following the presentation of themodel in Sects. 2 and 3. The proof relies
on rigorous approximations of the moments of the multivariate Wallenius’ noncentral
hypergeometric distribution by the moments of a multinomial distribution.

The second objective of this paper is to provide explanations for the results obtained
in Li et al. (2016). This is discussed in Sect. 6 after applying the diffusion approxima-
tion to the situations studied in the aforementioned paper in Sect. 5.

Technical details are all relegated to Appendices.

2 Selectionmodel with age-class structure

Consider a finite population of size N with n ≥ 1 types of individuals distributed in
d ≥ 1 age classes. Time is assumed to be discrete. The number of individuals in each
age class remains constant from one time step to the next. Let the size of age class k
be
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Nk = fk N (1)

for k = 1, . . . , d, with f1 ≥ f2 ≥ · · · ≥ fd and

d∑

k=1

fk = 1. (2)

The population is assumed to be haploid so that each offspring that is produced
from one time step to the next comes from only one parent.

From one time step to the next, N1 offspring are produced independently from one
another to form the next cohort of individuals in age class 1, while Nk+1 individuals
are chosen without replacement among the Nk individuals in age class k to form the
next cohort of individuals in age class k + 1 for k = 1, . . . , d − 1.

Let the number of individuals of type i = 1, . . . , n in age class k = 1, . . . , d at
time step τ ≥ 0 be ci,k(τ ). The array c(τ ) = (ci,k(τ )) gives the population state at
time step τ ≥ 0. Let

xi,k(τ ) = ci,k(τ )

Nk
(3)

be the frequency of type i = 1, . . . , n in age class k = 1, . . . , d at time step τ ≥ 0, so
that the population state at this time step can be represented by the array of frequencies

x(τ ) = (xi,k(τ )). (4)

In the following, we assume c(0) = c and x(0) = x.
Given a population state x, let r j,k(x) and s j,k(x) be the selective advantages in

reproduction and survival, respectively, for an individual of type j = 1, . . . , n in
age class k = 1, . . . , d, with s j,d(x) = 0 so that the last age class is d. Moreover,
let u j,i,k(x) be the probability for an individual of type j = 1, . . . , n in age class
k = 1, . . . , d to produce an offspring of type i = 1, . . . , n with

n∑

i=1

u j,i,k(x) = 1. (5)

Weak mutation and weak selection for N large enough are modeled by assuming
mutation and selection parameters of order N−1 in the form

u j,i,k(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

N
μ j,i,k(x) for i �= j,

1 − 1

N

n∑
l=1,l �= j

μ j,l,k(x) for i = j,
(6)

r j,k(x) = 1

N
ρ j,k(x) (7)
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and

s j,k(x) = 1

N
σ j,k(x) (8)

for some continuous functions μ j,i,k(x), ρ j,k(x) and σ j,k(x) for i, j = 1, . . . , n and
k = 1, . . . , d. Actually (see remark following the statement of theorem 1 in Sect. 4),
these functions are assumed to have continuous partial derivatives of all orders.

The cohort of individuals in age class k + 1 at time step 1 for k = 1, . . . , d − 1 is
obtained by samplingwithout replacement Nk+1 individuals among the Nk individuals
in age class k at time step 0 with weight 1 + si,k(x) given to individuals of type i for
i = 1, . . . , n. Let

ck+1(1) = (c1,k+1(1), . . . , cn,k+1(1))
T ,

ck(0) = ck = (c1,k, . . . , cn,k)
T ,

sk(x) = (s1,k(x), . . . , sn,k(x))T ,

where T stands for transpose, and 1 be the n-dimensional vector with all entries equal
to 1. Then

ck+1(1) | c(0) = c ∼ mwnchypg(Nk+1, Nk, ck, 1 + sk(x)).

This is a multivariate Wallenius’ noncentral hypergeometric (mwnchypg) distribu-
tion (Wallenius 1963; Chesson 1976). See “Appendix B” for more details and some
approximations.

As for reproduction, selection can be soft with competition within each age class
(and each age class contributing a fixed expected proportion of offspring ), or hard
with competition in the whole population (see, e.g., Karlin 1982). In the following, we
consider the case of soft selection. See “Appendix A” for the case of hard selection.

With soft selection taking place and pk being the expected proportion of offspring
coming from age class k for k = 1, . . . , d, the probability for an offspring produced
in a population in state x to be of type i is given by

Pi (x) =
d∑

k=1

pk

n∑

j=1

x j,k(1 + r j,k(x))u j,i,k(x)
1 +∑n

j ′=1 x j ′,kr j ′,k(x)
(9)

for i = 1, . . . , n. Using (6) and (7), this probability can be written as

Pi (x) =
d∑

k=1

pkxi,k + 1

N

d∑

k=1

pk
(
μ̃i,k(x) + xi,k ρ̃i,k(x)

)+ o(N−1) (10)
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with No(N−1) → 0 uniformly in x as N → +∞, where

μ̃i,k(x) =
n∑

j=1, j �=i

(
x j,kμ j,i,k(x) − xi,kμi, j,k(x)

)
(11)

and

ρ̃i,k(x) = ρi,k(x) −
n∑

j=1

x j,kρ j,k(x) (12)

for i = 1, . . . , n and k = 1, . . . , d. Finally, assuming N1 independent trials to form
the next cohort of individuals in age class 1, we have

c1(1) | c(0) = c ∼ multinomial(N1, P1(x), . . . , Pn(x)). (13)

In the rest of this section, we study the expected frequencies of types in the next cohorts
of individuals.

Let us define xi = (xi,1, . . . , xi,d)T for i = 1, . . . , n, and

M =

⎛

⎜⎜⎜⎜⎜⎝

p1 p2 p3 . . . pd
1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0

⎞

⎟⎟⎟⎟⎟⎠
. (14)

Using properties of themultinomial distribution for the type frequencies in age class
1 (with parameters as above so that Ex[xi,1(1)] = Pi (x) for 1, . . . , n) and properties
of the mwnchypg distribution for the type frequencies in the other age classes [see
(141) in “Appendix B” with parameters r = Nk , R = Nk−1 and f = fk−1], the
conditional expected frequency of type i in the cohort of individuals in age class k at
time step 1 takes the form

Ex[xi,k(1)] = (Mxi )k + 1

N
φi,k(x) + o(N−1) (15)

with No(N−1) → 0 uniformly in x as N → +∞. Here, we have

φi,1(x) =
d∑

k=1

pk
(
μ̃i,k(x) + xi,k ρ̃i,k(x)

)
(16)

and

φi,k(x) = xi,k−1Ck−1σ̃i,k−1(x) (17)
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with

Ck−1 = fk−1 − fk
fk

ln

(
fk−1

fk−1 − fk

)
(18)

and

σ̃i,k(x) = σi,k(x) −
n∑

j=1

σ j,k(x)x j,k (19)

for k = 2, . . . , d and i = 1, . . . , n. The coefficient Ck−1 that distinguishes viability
selection from fertility selection depends on the population age-class structure, more
precisely on the relative sizes of the age classes k − 1 and k. It modulates the strength
of viability selection from age class k − 1 to age class k.

3 Neutral model with age-class structure

The stochastic matrix M = (mkl) is the backward transition matrix under neutrality,
with mkl being the expected proportion of individuals in age class k coming from age
class l one time step back in the absence of selection for k, l = 1, . . . , d. Under the
additional assumptions that pd > 0 and gcd{k : 1 ≤ k ≤ d, pk > 0} = 1 (which is
the case if pd−1 > 0 with pd > 0), the stochastic matrix M is necessarily irreducible
and aperiodic. Its stationary probability distribution

wT = (w1, . . . , wd) = wT M (20)

is given by

wk = 1

k̄

d∑

m=k

pm (21)

for k = 1, . . . , d, with

k̄ =
d∑

k=1

kpk = 1

w1
(22)

being the mean age of reproduction in the neutral model.
In the absence of mutation and selection, that is

μ j,i,k(x) = ρ j,k(x) = σ j,k(x) = 0 (23)

for k = 1, . . . , d and i, j = 1, . . . , n with i �= j , the expected frequencies of type i
in the different age classes from time step τ − 1 to time step τ , according to (15), are
given by
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E[xi,1(τ ) | xi (τ − 1)] =
d∑

k=1

pkxi,k(τ − 1) (24)

and

E[xi,k(τ ) | xi (τ − 1)] = xi,k−1(τ − 1) (25)

for k = 2, . . . , d and i = 1, . . . , n. This yields

E[xi (τ ) | xi (τ − 1)] = Mxi (τ − 1), (26)

from which

E[xi (τ )] = E[E[xi (τ ) | xi (τ − 1)]] = ME[xi (τ − 1)] = Mτ E[xi (0)] = Mτxi ,
(27)

by conditional expectation and mathematical induction, for τ ≥ 0 and i = 1, . . . , n.
The Perron-Frobenius theory for an irreducible aperiodic stochastic matrix (see, e.g.,
Karlin and Taylor 1975) guarantees that

lim
τ→+∞ Mτ = 1wT . (28)

Thus, as time goes to infinity, the array of frequencies for the different types in the
different age classes satisfies

lim
τ→+∞ E[xi (τ )] = lim

τ→+∞ Mτxi =
(
wT xi

)
1 (29)

for i = 1, . . . , n.
Another consequence of neutrality is that the frequencies of the different types in the

different age classes weighted by the entries of the stationary probability distribution
of the backward transition matrix M , namely, the vector z(τ ) = (z1(τ ), . . . , zn(τ ))T

with

zi (τ ) = wT xi (τ ) (30)

for i = 1, . . . , n and τ ≥ 0, is a martingale. As a matter of fact, we have

E[zi (τ )|xi (τ − 1)] = E[wT xi (τ )|xi (τ − 1)] = wT Mxi (τ − 1) = zi (τ − 1) (31)

for i = 1, . . . , n and τ ≥ 0.
The stationary probability distribution of the backward transition matrix M has an

interpretation in terms of reproductive values. Note that

lk = N2

N1

N3

N2
· · · Nk

Nk−1
= Nk

N1
= fk

f1
(32)
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is the probability for an individual in age class 1 to survive up to age class k for
k = 1, . . . , d. The notion of reproductive value, introduced in Fisher (1930), represents
the expected contribution to all future generations. In our neutral model, the average
number of individuals produced by an individual in age class k is

bk = pk
N1

Nk
= pk

lk
(33)

for k = 1, . . . , d. Taking v1 = 1 as the reproductive value of an individual in age class
1, the reproductive value of an individual in age class k is given by

vk =
d∑

m=k

bm
lm
lk

= 1

lk

d∑

m=k

pm = T
wk

lk
, (34)

which means

wk = lkvk
T

= Nkvk

N1T
, (35)

for k = 1, . . . , d. Since Nk is the size of age class k and vk is the reproductive value
of an individual in this age class in a neutral population, while N1T is a normalizing
factor, then wk is the relative reproductive value of age class k in a neutral population.

Note that the vector v = (v1, v2, . . . , vd)
T is a left eigenvector associated with the

leading eigenvalue 1 of the Leslie matrix (Leslie 1945) given by

A =

⎛

⎜⎜⎜⎜⎜⎝

p1/l1 p2/l2 p3/l3 . . . pD/lD
l2/l1 0 0 . . . 0
0 l3/l2 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 lD/lD−1 0

⎞

⎟⎟⎟⎟⎟⎠
. (36)

The matrix A = (ai j ) is a forward or projection matrix, with ai j being the expected
number of individuals left in age class i by an individual in age class j . On the other
hand, the stationary age distribution is given by the corresponding right eigenvector
u = (l1, l2, . . . , ld)T . Therefore, we have

Au = u and vT A = vT with vTu = 1 (37)

owing to (21) and (35).
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4 Diffusion approximation for the selectionmodel with age-class
structure

In this section, we shall apply a diffusion approximation theorem for Markov chains
with two time scales that is due to Ethier and Nagylaki (1980). The model considered
is the general selection model with fixed age-class structure described in Sect. 2.

The population age-class structure

f = ( f1, f2, . . . , fd)
T =

(
N1

N
,
N2

N
, . . . ,

Nd

N

)T

(38)

as defined in (1) and (2) is kept constant, while we let the population size N go to plus
infinity. The array of frequencies x(τ ) = (xi,k(τ )) as defined in (3) and (4) for τ ≥ 0
is a Markov chain on the state space

S =
⎧
⎨

⎩x = (xi,k ) : xi,k = ci,k
Nk

with
n∑

i=1

ci,k = Nk for i = 1, . . . , n and k = 1, . . . , d

⎫
⎬

⎭ . (39)

This Markov chain actually depends on the population size N = ∑d
k=1 Nk . Consider

the weighted frequency of type i in the whole population at time step τ ≥ 0 defined
as

zi (τ ) = wT xi (τ ) =
d∑

k=1

wk xi,k(τ ), (40)

where wT = (w1, . . . , wd) is the stationary probability distribution of the backward
transition matrix under neutrality M defined in Sect. 4, and the difference between
this weighted frequency and the frequency of type i in age class k at the same time
step

yi,k(τ ) = xi,k(τ ) − zi (τ ), (41)

for i = 1, . . . , n and k = 1, . . . , d. Let the initial population state be x(0) = x =
(xi,k), which corresponds to

z(0) = (z1(0), . . . , zn(0))
T = (z1, . . . , zn)

T = z (42)

and

y(0) = (yi,k(0)) = (yi,k) = y. (43)

Note that

x = z1T + y, (44)
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where 1 denotes here the d-dimensional row vector with all entries equal to 1. Define
the changes over one time step

�zi = zi (1) − zi (45)

and

�xi,k = xi,k(1) − xi,k, (46)

so that

�yi,k = �xi,k − �zi , (47)

for i = 1, . . . , n and k = 1, . . . , d.
As rigorously shown in “Appendix C”, there exist continuous functions bi (z, y),

ai, j (z, y) and ci,k(z, y) such that the following conditions on conditional expected
values hold:

I . Ex(�zi ) = bi (z, y)N−1 + o
(
N−1

)
, (48a)

I I . Ex((�zi )(�z j )) = ai, j (z, y)N−1 + o
(
N−1

)
, (48b)

I I I . Ex((�zi )
4) = o(N−1), (48c)

I V . Ex(�yi,k) = ci,k(z, y) + o(1), (48d)

V . Varx(�yi,k) = o(1). (48e)

Here, o(1) → 0 and No(N−1) → 0 uniformly for x in S as N → +∞. Moreover,
the continuous functions are given by

bi (z, y) =
d∑

k=1

wkφi,k(z1T + y), (49a)

ai, j (z, y) =
d∑

k=1

w2
k ((Myi )k + zi )(δi j − (My j )k − z j )

(
1

fk
− 1

fk−1

)
, (49b)

ci,k(z, y) = (Myi )k − yi,k, (49c)

with yi = (yi,1, . . . , yi,d)T and φi,k defined in (16) and (17), for i = 1, . . . , n and
k = 1, . . . , d. Here, we use the convention that 1/ f0 = 0.

Furthermore, the recurrence system of equations

Yi,k(t + 1, z, y) − Yi,k(t, z, y) = ci,k(z,Y(t, z, y)) (50)

for all integers t ≥ 0 with the initial condition

Yi,k(0, z, y) = yi,k, (51)
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for k = 1, . . . , d and i = 1, . . . , n, has a solution that goes to 0 uniformly for z ∈ R
n

and y ∈ R
n × R

d as t → +∞. This is referred to as condition V I , which is also
shown in “Appendix C”.

According to Ethier and Nagylaki (1980), we have proved the following result:

Theorem 1 The frequency process
(
xi,k(τ )

)
for τ ≥ 0 with N time steps as unit of

time as N → +∞ converges in law to a diffusion with infinitesimal means given by

bi (z, 0) =
d∑

k=1

wkφi,k(z1T ) (52)

and infinitesimal covariances given by

ai, j (z, 0) = zi (δi j − z j )α (53)

for i, j = 1, . . . , n, with

α =
d∑

k=1

w2
k

(
1

fk
− 1

fk−1

)
. (54)

Remark Under our assumptions, the function bi (z, 0) has continuous partial deriva-
tives of all orders on the simplex of n-dimensional frequency vectors and satisfies
bi (z, 0) ≥ 0 when zi = 0, for i = 1, . . . , n. Then, it can be checked that the closure of
the diffusive operator defined by (52) and (53) generates a strongly continuous semi-
group (see Ethier 1976), which is a supplementary technical condition for the above
result to be ascertained.

Notice that the quantity

Ne = N

k̄α
(55)

is the effective size of a large neutral population taking into account that one time step
corresponds to 1/k̄ generations as shown in Felsenstein (1971) (see also Charlesworth
2009). The infinitesimal covariances in the diffusion approximation for the age-class-
structured population of size N with Ne time steps as unit of time are the same as
in the diffusion approximation for a Wright–Fisher population of size N/k̄ with non-
overlapping generations and N/k̄ generations as unit of time as N → +∞.

As for the infinitesimalmeans, all calculations aremade byweighing the age classes
with the entries of the stationary distribution of the backward transition matrix under
neutrality.

5 Selectionmodel with two types in two age classes

In the case of two types (n = 2), let the weighted frequencies of types 1 and 2 be
given by z = (z1, z2)T = (z, 1 − z)T . Then the infinitesimal mean for type 1 in the
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diffusion approximation stated in Theorem 1 takes the form

b1(z) = (1 − z)μ2,1(z) − zμ1,2(z) + z(1 − z)(ρ1(z) − ρ2(z) + σ1(z) − σ2(z)),

(56)

where

μi, j (z) =w1

d∑

k=1

pkμi, j,k(z1T), (57a)

ρi (z) =w1

d∑

k=1

pkρi,k(z1T ), (57b)

σi (z) =
d∑

k=2

wkCk−1σi,k−1(z1T ), (57c)

with

Ck−1 = fk−1 − fk
fk

ln

(
fk−1

fk−1 − fk

)
(58)

for k = 2, . . . , d, while the infinitesimal covariances are given by

ai, j (z) = (−1)i+ j z(1 − z)α (59)

for i, j = 1, 2.
In the absence of mutation, that is, μ1,2(z) = μ2,1(z) = 0, and constant selection

parameters independent of the population state, that is,

ρi (z) =w1

d∑

k=1

pkρi,k = ρi , (60a)

σi (z) =
d∑

k=2

wkCk−1σi,k−1 = σi , (60b)

the infinitesimal mean and variance for type 1 are given by

b1(z) = z(1 − z)(ρ1 − ρ2 + σ1 − σ2) (61)

and

v1(z) = a1,1(z) = z(1 − z)α, (62)

respectively. Then, the probability of fixation of type 1 starting from an initial weighted
frequency z0 = wT x1(0) and taking N time steps as unit of time as N → +∞ is given
by
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u(z0) =
∫ z0
0 G(x)dx
∫ 1
0 G(x)dx

, (63)

where

G(x) = exp

{
−2

∫ x

0

b1(z)

v1(z)
dz

}
(64)

(see, e.g., Ewens 2004, pp. 136–140; Etheridge 2011, pp. 39–41; or Crow and Kimura
1970, pp. 367–382). In the case at hand, we get

G(x) = exp

{
−2(ρ1 − ρ2 + σ1 − σ2)x

α

}
, (65)

from which

u(z0) = 1 − exp {−2(ρ1 − ρ2 + σ1 − σ2)z0/α}
1 − exp {−2(ρ1 − ρ2 + σ1 − σ2)/α} . (66)

In the case of two age classes (d = 2), let (p1, p2) = ( f1, f2) = ( f , 1 − f ) with
0 < f2 = 1 − f ≤ f = f1 < 1 so that 1/2 ≤ f < 1. Then, we have

w1 = 1

p1 + 2p2
= 1

2 − f
, (67)

while

w2 = p2
p1 + 2p2

= 1 − f

2 − f
. (68)

Note thatw1 increases from 2/3 to 1 as f increases from 1/2 to 1, whilew2 decreases
from 1/3 to 0. Moreover, we have

α = w2
1

(
1

f1
− 1

f0

)
+ w2

2

(
1

f2
− 1

f1

)
= 3 − 2 f

(2 − f )2
. (69)

Note that α increases as f increases from 1/2 to 1 but very little, going from 8/9 to 1.
Now suppose that there is only one individual of type 1 in age class 1 at time step

τ = 0 in a population of total size N , that is, x1,1(0) = f /s and x1,2(0) = 0 with
s = 1/N . In this case, we have

z0 = w1x1,1(0) = s

(2 − f ) f
= z0(s). (70)

This is the fixation probability for type 1 under neutrality, which decreases from (4/3)s
to s as f increases from 1/2 to 1. Under selection, the fixation probability is given by
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u(z0(s)) =
1 − exp

{
−2(ρ1 − ρ2 + σ1 − σ2)

s
(2− f ) f α

}

1 − exp {−2(ρ1 − ρ2 + σ1 − σ2)/α} , (71)

from which

U ( f ) = lim
s→0

1

s
u(z0(s)) = 2(ρ1 − ρ2 + σ1 − σ2)

1
(2− f ) f α

1 − exp {−2(ρ1 − ρ2 + σ1 − σ2)/α} (72)

by applying L’Hôpital’s rule.
In the following subsections, we consider the fixation probability for a singlemutant

arising in age class 1 in three situations: selection only on fertility, selection only on
survival, and selection on fertility and survival. In each situation, we study u(z0(s))/s,
which corresponds to the fixation probability times the population size N , as a function
of the fraction of the population in age class 1, given by f , for some particular values
of s = 1/N and in the limit as N → +∞.

5.1 Selection on fertility

First, consider fertility differences in favor of type 1 with ρ1,1 = ρ1,2 = 1, ρ2,1 =
ρ2,2 = 0 and σ2,1 = σ1,1 = 0. Then the coefficient of fertility selection for type 1 is

ρ1 = w1 = 1

2 − f
, (73)

while ρ2 = σ2 = σ1 = 0. Note that ρ1 increases from 2/3 to 1 as f increases from
1/2 to 1. Moreover, in this situation, the fixation probability for type 1 is

u(z0(s)) =
1 − exp

{
− 2s

f (3−2 f )

}

1 − exp
{
− 2(2− f )

3−2 f

} , (74)

which leads to

U ( f ) = lim
s→0

1

s
u(z0(s)) =

2
f (3−2 f )

1 − exp
{
− 2(2− f )

3−2 f

} . (75)

The derivative of U ( f ) with respect to f , U ′( f ), is given by

2 exp
{

4
3−2 f

} (
exp

{
4

3−2 f

} (
8 f 2 − 18 f + 9

)+ exp
{

2 f
3−2 f

} (−8 f 2 + 20 f − 9
))

(
exp

{
4

3−2 f

}
− exp

{
2 f

3−2 f

})2
f 2(2 f − 3)3

.

(76)
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(a) (b)

Fig. 1 Selection on fertility: a Fixation probability for type 1 divided by the selection parameter s. The
brown curve is for s = 1/20, the blue one for s = 1/100, the red one for s = 1/200, and the black one
for U ( f ), that is, for the limit case as s → 0. b Derivative of U ( f ) with respect to f , U ′( f ) (color figure
online)

It is difficult to find algebraically the critical points of U ( f ). Figure 1b shows that
U ′( f ) has only one zero from negative values to positive values as f increases. There-
fore, it is the only critical point of U ( f ), and actually the global minimum point of
U ( f ). This is confirmed by a rigorous mathematical analysis in “Appendix D”. Notice
that U ′( f ) is an increasing function, so that U ( f ) is a convex function.

5.2 Selection on survival

In the case of survival probabilities in favor of type 1 with σ1,1 = 1, σ2,1 = 0 and
ρ1,1 = ρ1,2 = ρ2,1 = ρ2,2 = 0, we have a coefficient of viability selection for type 1
given by

σ1 = w2C1 = 2 f − 1

2 − f
ln

(
f

2 f − 1

)
, (77)

while ρ1 = ρ2 = σ2 = 0. Note that

C1 = 2 f − 1

1 − f
ln

(
f

2 f − 1

)
(78)

increases from 0 to 1 as f increases from 1/2 to 1, while w2 decreases from 1/3 to 0.
As a result, σ1 is concave for f between 1/2 and 1, and takes the value 0 at f = 1/2
and f = 1. On the other hand, in this situation, the fixation probability for type 1 is

u(z0(s)) =
1 − exp

{
− 2s

f (3−2 f )

(
(2 f − 1) ln

(
f

2 f−1

))}

1 − exp
{
− 2(2− f )

3−2 f

(
(2 f − 1) ln

(
f

2 f−1

))} , (79)
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(a) (b)

Fig. 2 Selection on viability: a Fixation probability for type 1 divided by the selection parameter s. The
brown curve is for s = 1/20, the blue one for s = 1/100, the red one for s = 1/200, and the black one
for U ( f ), that is, for the limit case as s → 0. b Derivative of U ( f ) with respect to f , U ′( f ) (color figure
online)

which gives

U ( f ) = lim
s→0

1

s
u(z0(s)) =

2(2 f − 1) ln
(

f
2 f−1

)

(3 − 2 f ) f

(
1 −

(
f

2 f −1

)− 2(2− f )(2 f −1)
3−2 f

) . (80)

The expression of U ′( f ) can be found in “Appendix E” (Eq. (216)). It is difficult to
find algebraically the critical points of U ( f ). Figure 2b shows that U ′( f ) has only
one zero from positive values to negative values as f increases, so it is the only critical
point ofU ( f ) in the interval (1/2, 1), and actually the global maximum point. Notice
that U ′( f ) is first decreasing and then increasing on (1/2, 1), so that U ( f ) has an
inflection point in (1/2, 1).

5.3 Selection on survival and fertility

Finally, with survival and fertility in favor of type 1 in the form ρ1,1 = ρ1,2 = σ1,1 = 1
and ρ2,1 = ρ2,2 = σ2,1 = 0, we have a coefficient of selection for type 1 given by

ρ1 + σ1 = w1 + w2C1 = 1

2 − f
+ 2 f − 1

2 − f
ln

(
f

2 f − 1

)
, (81)

while ρ2 + σ2 = 0. Then, the fixation probability for type 1 is

u(z0(s)) =
1 − exp

{
− 2s

f (3−2 f )

(
1 + (2 f − 1) ln

(
f

2 f −1

))}

1 − exp
{
− 2(2− f )

3−2 f

(
1 + (2 f − 1) ln

(
f

2 f −1

))} , (82)
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(a) (b)

Fig. 3 Selection on fertility and survival: a fixation probability for type 1 divided by the selection parameter
s. The brown curve is for s = 1/20, the blue one for s = 1/100, the red one for s = 1/200, and the black
one for U ( f ), that is, for the limit case as s → 0. b Derivative of U ( f ) with respect to f , U ′( f ) (color
figure online)

which gives

U ( f ) = lim
s→0

1

s
u(z0(s)) =

2
(
(2 f − 1) ln

(
f

2 f −1

)
+ 1

)

(3 − 2 f ) f

(
1 − exp

{
− 2( f −2)

(
(2 f −1) ln

(
f

2 f −1

)
+1
)

2 f −3

}) .

(83)

The expression of U ′( f ) can be found in “Appendix E” (Eq. (217)). Figure 3b shows
the curve of U ′( f ). We can see that U ′( f ) is first decreasing and then increasing
on (1/2, 1), so that U ( f ) has an inflection point in (1/2, 1) like in the case with
selection on survival only. The main difference with this case is that the increase after
the inflection point is much more pronounced.

6 Discussion

We have considered a haploid population in discrete time with a fixed age-class
structure in which the numbers of individuals in the different age classes are kept
constant from one time step to the next one. This model was introduced in Felsenstein
(1971), studied later on in Emigh (1979a, b) and used recently in Li et al. (2016) to
show the effects of life histories on the fixation probability.

We have assumed weak frequency-dependent selection with fertility parameters
and survival probabilities, besides mutation probabilities, all of order N−1 for n types
of individuals, where N is the total population size. For the array of frequencies of the
different types in the different age classes, we have checked the conditions in Ethier
and Nagylaki (1980) to ascertain convergence of this discrete-timeMarkov chain with
two timescales to a continuous-time diffusion process in the limit of a large population
size. On a short timescale, the frequency of each type converges to the same value in
each age class. This value corresponds to a weighted average of the type frequencies
in the age classes with weights given by the stationary probability distribution of a
backward transition matrix under neutrality. These weights correspond to the relative
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reproductive values of the different age classes in the neutral model. Moreover, on a
longer timescale, the weighted averages of the type frequencies change according to a
diffusion process analogous to aWright–Fisher diffusion for a well-mixed population.

In order to establish Ethier and Nagylaki’s (1980) conditions, we have obtained
the rates of convergence of the moments of a multivariate Wallenius’ non-central
hypergeometric distribution to the moments of a multinomial distribution in the limits
of a weak bias and a large sample size.

We have used the ascertained diffusion approximation to get the fixation probability
for a mutant type. In the particular case of two types in two age classes with constant
selection parameters and in the absence of mutation, the probability of ultimate fixa-
tion of a single mutant introduced in age class 1 can be expressed as a function of the
frequency of age class 1. Under neutrality, this function is always decreasing as the fre-
quency of age class 1 increases from 1/2 to 1. We have shown that this function stops
decreasing beyond some threshold frequency in the case of a fertility-advantageous
mutant, while it starts decreasing only beyond some threshold frequency in the case of
a viability-advantageous mutant. These patterns can be explained by the facts that the
coefficient of selection for a fertility-advantageous mutant always increases with the
frequency of age class 1, while the coefficient of selection for a viability-advantageous
mutant increaseswhen the frequencyof age class 1 is close enough to 1/2 anddecreases
when this frequency is close enough to 1. This is the case because the former coefficient
is given by the relative reproductive value of age class 1, while the latter coefficient
is given by the relative reproductive value of age class 2 times some coefficient that
depends on the population age-class structure. It is noted that the relative reproductive
value of age class 1 increases with the frequency of age class 1, while it is the opposite
for the relative reproductive value of age class 2. Moreover, the population-structure
coefficient increases with an increase in the frequency of age class 1. Such an increase
enhances the strength of viability selection since it diminishes the proportion of indi-
viduals in age class 1 surviving to age class 2. In the case of selection on both fertility
and survival, the coefficient of selection is a linear combination of the corresponding
coefficients for fertility only and for survival only. In all cases, the decrease of the
fixation probability under neutrality as the frequency of age class 1 increases can be
stopped and reversed by selection. This occurs when the increase in frequency of age
class 1 is accompanied by a large enough increase in the coefficient of selection.

Our analytical results in the limit of a large population size confirm and explain
similar patterns obtained by numerical iterations based on matrix analysis for small
population sizes and by computer simulations for larger population sizes in Li et al.
(2016). Notice that a first-order approximation of the fixation probability can be
obtained by considering small perturbations on the neutral genealogical process
(Soares and Lessard 2019), but a diffusion approximation is a more general result
with a wide range of possible applications. It could be used to study not only fixation
probabilities, but also many other features of the population such as stationary states.

Since our diffusion approximation has been obtained in the general case of
frequency-dependent selection, it could allow us to study evolutionary games in age-
class-structured populations, e.g., to find conditions for cooperation to be favored
by selection over defection with respect to the fixation probability in the absence of
mutation (see, e.g., Nowak et al. 2004) or with respect to the mean abundance in the
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stationary state in the presence of recurrent mutation (see, e.g., Nowak et al. 2010;
Kroumi and Lessard 2015). Assumptions on the population structure could also be
lessened. We could consider, for instance, that the size of each age class is not fixed
from one time step to the next one, or that the population size varies over time as in
Huang et al. (2015) for a well-mixed population. We could also extend the model to
any class-structured population as considered for an infinite population in Lessard and
Soares (2018). Another possible extension would be to study a diploid population as
in Emigh and Pollak (1979) in the absence of mutation. Some of these extensions such
as a non-fixed age-class structure would require a much more recondite analysis, but
they are not out of reach.
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Appendix A: hard selection

With hard selection for reproduction in a population in initial state x, an offspring is
produced by a parent of type j = 1, . . . , n in age class k = 1, . . . , d with probability

(1 + r j,k(x))x j,k fk

1 +
n∑

j ′=1

d∑
l=1

r j ′,l(x)x j ′,l fl

. (84)

This assumes that an individual of type j in age class k has a relative fertility 1+r j,k(x)
with respect to all individuals in the population. Afterwards, there is mutation to type
i = 1, . . . , n with probability u j,i,k(x), so that

Pi (x) =
d∑

k=1

n∑

j=1

(1 + r j,k(x))x j,k fku j,i,k(x)

1 +
n∑

j ′=1

d∑
l=1

x j ′,lr j ′,l(x) fl

(85)

is the probability for the offspring to be of type i = 1, . . . , n. This probability can be
written in the form

Pi (x) =
d∑

k=1

xi,k fk + 1

N

d∑

k=1

(
μ̃i,k(x) + xi,k ρ̃i,k(x)

)
fk + o(N−1) (86)

with No(N−1) → 0 uniformly in x as N → +∞, where μ̃i,k(x) is defined in (11)
and

ρ̃i,k(x) = ρi,k(x) −
d∑

l=1

n∑

j=1

ρ j,l(x)x j,l fl . (87)

Here, the conditional expected frequency of type i in the next cohort in age class k is
given by
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Ex[xi,k(1)] = (Mxi )k + 1

N
φi,k(x) + o(N−1) (88)

with

φi,1(x) =
d∑

k=1

(
μ̃i,k(x) + xi,k ρ̃i,k(x)

)
fk (89)

and

φi,k(x) = xi,k−1Ck−1σ̃i,k−1(x) (90)

with σ̃i,k−1(x) defined in (19) for k = 2, . . . , d, where

M =

⎛

⎜⎜⎜⎜⎜⎝

f1 f2 f3 . . . fd
1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0

⎞

⎟⎟⎟⎟⎟⎠
(91)

is a backward transitionmatrix under neutrality. Note that this matrix coincide with the
backward transition matrix in the case of soft selection if pk = fk for k = 1, . . . , d.

Under the additional assumptions that fd > 0 and gcd{k : 1 ≤ k ≤ d, fk > 0} = 1,
the stochastic matrix M in (91) is necessarily irreducible and aperiodic. Its stationary
distribution w = (w1, . . . , wd)

T is given by

wk = 1

k̄

d∑

l=k

fl (92)

for k = 1, . . . , d with

k̄ =
d∑

k=1

k fk (93)

being the mean age of reproduction in the neutral model.

Appendix B: approximations for amultivariateWallenius’ non-central
hypergeometric distribution

Definition ofWallenius’distribution

Consider an urn model for R balls of n different colors and weights in a biased
sampling. Let mi be the number of balls of color i with weight ωi for i = 1, . . . , n,
so that m = (m1,m2, . . . ,mn)

T ∈ N
n, ω = (ω1, ω2, . . . , ωn)

T ∈ R
n, and R =∑n

i=1 mi . Let us sample r balls without replacement and count the number of balls
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of each color. The result of the experiment is a random vector (Y1, . . . ,Yn) with state
space

S =
{
y = (y1, . . . , yn)

T ∈ N
n :

n∑

i=1

yi = r

}
, (94)

and mass function

p(y,ω) =
(

n∏

i=1

(
mi

yi

))∫ 1

0

(
n∏

k=1

(1 − tωk/D(ω))yk

)
dt, (95)

where

D(ω) = ωT (m − y) =
n∑

i=1

ωi (mi − yi ). (96)

This probability distribution is represented by mwnchypg(r , R,m,ω). It was first
studied by Wallenius (1963) in the univariate case and by Chesson (1976) in the
multivariate case.

Approximation of themass function under weak bias

Wewant to approximate the distributionmwnchypg(r , R,m,ω) around the point ω =
1. This is what is needed to study the first-order effects of differences in viability from
one age class to the next that are of order N−1 as N → +∞. Note that

f (y,ω, t) =
n∏

i=1

(1 − tωi /D(ω))yi , (97)

for ω = (ω1, . . . , ωk, . . . , ωn)
T ∈ R

n , 0 < t < 1 and y ∈ S, has partial derivative
with respect to ωk given by

∂ f

∂ωk
(y,ω, t)

=
n∑

j=1

y j

(
ω j (mk − yk) − D(ω)δ jk

D(ω)2

)(
tω j /D(ω) ln(t)

1 − tω j /D(ω)

)(
n∏

i=1

(1 − tωi /D(ω))yi

)
.

(98)

This implies that (see, e.g., Godement 2005, p. 36)

∂ p

∂ωk
(y,ω) =

(
n∏

i=1

(
mi

yi

))
∂

∂ωk

(∫ 1

0
f (y,ω, t)dt

)

123



Diffusion approximation for age-class-structured population... 2091

=
(

n∏

i=1

(
mi

yi

))∫ 1

0

∂ f

∂ωk
(y,ω, t)dt . (99)

Moreover,

∂ p

∂ωk
(y,ω) =

(
n∏

i=1

(
mi

yi

)) n∑

j=1

y j
ω j (mk − yk) − D(ω)δ jk

D(ω)2
I j (y,ω) (100)

with

I j (y,ω) =
∫ 1

0

tω j /D(ω) ln(t)

1 − tω j /D(ω)

(
n∏

i=1

(1 − tωi /D(ω))yi

)
dt (101)

for j = 1, . . . , n. This uses the fact that

tωi /D(ω) = exp

{
ωi

D(ω)
ln(t)

}
. (102)

At ω = 1, we have

∂ p

∂ωk
(y, 1) =

(
n∏

i=1

(
mi

yi

))(
rmk − Ryk
(R − r)2

)
I (y, 1) (103)

with

I (y, 1) =
∫ 1

0
t (R−r)−1

ln(t)(1 − t (R−r)−1
)r−1dt .

With the change of variable x = t (R−r)−1
, the above integral becomes

I (y, 1) = (R − r)2
∫ 1

0
ln(x)x (R−r)(1 − x)r−1dx = (R − r)2

∂B

∂z
(z, u)

∣∣∣∣
(R−r+1,r)

,

(104)

where

B(z, u) =
∫ 1

0
xz−1(1 − x)u−1dx = �(z)�(u)

�(z + u)
(105)

and

�(z) =
∫ ∞

0
t z−1e−t dt (106)

are respectively the beta and gamma functions (see, e.g., Stegan 1964, pp. 255–258).
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The partial derivative of the beta function with respect to the first variable is given
by

∂B

∂z
(z, u) = �(u)

�(z + u)�′(z) − �′(z + u)�(z)

(�(z + u))2
= B(z, u) (ψ(z) − ψ(z + u))

(107)

with

ψ(z) = d

dz
ln(�(z)) = �′(z)

�(z)
. (108)

This function verifies

ψ(m1) − ψ(m2) =
m1−1∑

k=m2

1

k
(109)

for integers m1 and m2 satisfying m1 > m2 ≥ 1. Using the fact that �(m) = (m − 1)!
for m ∈ N, we find

∂B

∂z
(z, u)

∣∣∣∣
(R−r+1,r)

= �(R − r + 1)�(r)

�(R + 1)
(ψ(R − r + 1) − ψ(R + 1))

= − (R − r)!(r − 1)!
R! Sr ,R (110)

with

Sr ,R =
R∑

k=R−r+1

1

k
. (111)

Replacing Eq. (110) in Eq. (104), we get

I (y, 1) =(R − r)2
∂B

∂z
(z, u)

∣∣∣∣
(R−r+1,r)

= − (R − r)2
(R − r)!(r − 1)!

R! Sr ,R

= − (R − r)2Sr ,R(R
r

)
r

. (112)

Then Eq. (103) can be written as

∂ p

∂ωk
(y, 1) = p(y, 1)

(
yk

R

r
− mk

)
Sr ,R (113)
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with

p(y, 1) =

n∏
i=1

(
mi

yi

)

(
R

r

) (114)

being the mass function of a multivariate hypergeometric distribution with parameters
given by (r , R,m), represented by mhypg(r , R,m).

The second partial derivatives of the mass function of a mhypg(R, r ,m) random
vector are given by

∂

∂ωl

∂ p

∂ωk
(y,ω) =

(
n∏

i=1

(
mi

yi

)) n∑

j=1

y j

(
∂

∂ωl

(
ω j (mk − yk) − D(ω)δ jk

D(ω)2

)
I j (y,ω)

)

+ y j

(
ω j (mk − yk) − D(ω)δ jk

D(ω)2

∂

∂ωl

(
I j (y,ω)

))
(115)

where

I j (y,ω) =
∫ 1

0

tω j /D(ω) ln(t)

1 − tω j /D(ω)
f (y,ω, t)dt . (116)

We have that

∂

∂ωl

(
ω j (mk − yk) − D(ω)δ jk

D(ω)2

)
=δl j D(ω) − 2ωl(ml − yl)

(D(ω))3
+ δ jk

(D(ω))2

= (δl j + δ jk)D(ω) − 2ωl(ml − yl)

(D(ω))3
, (117)

∂

∂ωl

(
tω j /D(ω)

1 − tω j /D(ω)

)
= tω j /D(ω) ln(t)

(
D(ω)δl j − ω j (ml − yl)

)

(D(ω)(1 − tω j /D(ω)))2

(118)

and

∂

∂ωl
( f (y,ω, t)) =

n∑

j=1

y j

(
ω j (ml − yl) − D(ω)δ jl

D(ω)2

)
tω j /D(ω) ln(t)

1 − tω j /D(ω)
f (y,ω, t).

(119)

Then

∂

∂ωl

∂ p

∂ωk
(y,ω) =

(
n∏

i=1

(
mi

yi

)) n∑

j=1

y j
(δl j + δ jk)D(ω) − 2ωl(ml − yl)

(D(ω))3
I j (y,ω)
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+ y j

(
ω j (mk − yk) − D(ω)δ jk

D(ω)2
Jl j (y,ω)

)
(120)

with

Jl j (y,ω) = ∂

∂ωl
I j (y,ω)

=
∫ 1

0

tω j /D(ω)(ln(t))2

(D(ω)(1 − tω j /D(ω)))2
f (y,ω, t)

·
(
D(ω)δl j − ω j (ml − yl)

+
n∑

k=1

yk
(ωk(ml − yl) − D(ω)δkl) tωk/D(ω)

1 − tωk/D(ω)

)
dt . (121)

Approximation of the k-thmoments under weak bias

According to Eq. (113), with (H1, . . . , Hn) representing a mhypg(R, r ,m) random
vector, we have

E

[(
Yi
r

)k
]

= E

[(
Hi

r

)k
]

+
n∑

l=1

(ωl − 1)
∑

y∈S

( yi
r

)k
p(y, 1)

(
yl
R

r
− ml

)
Sr ,R + o(|ω − 1|),

(122)

where

∑

y∈S

( yi
r

)k
p(y, 1)

(
yl
R

r
− ml

)
= E[Hk

i Hl ] R
rk

− ml

rk
E[Hk

i ] (123)

and

o(|ω − 1|)
|ω − 1| → 0 (124)

as |ω − 1| → 0 with | · | denoting the Euclidean norm. Actually, the convergence is
uniform in ω as can be shown by induction on the number of balls removed, r , at least
for k = 1, 2, 3, 4 (Soares 2019). Therefore, we have

E

[(
Yi
r

)k
]

= E

[(
Hi

r

)k
]
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+ Sr ,R

n∑

l=1

(ωl − 1)

(
E[Hk

i Hl ] R

rk+1 − ml

rk
E[Hk

i ]
)

+ o(|ω − 1|)
(125)

uniformly in ω for the k-th moments.
For the first moments, for instance, we have

E

[
Yi
r

]
= E

[
Hi

r

]
+ Sr ,R

n∑

l=1

(ωl − 1)

(
E[Hi Hl ] R

r2
− ml

r
E[Hi ]

)
+ o(|ω − 1|)

(126)

uniformly in ω, where

E[Hi ] = r
mi

R
(127)

and

E[Hi Hl ] =
{

mlmi r(r−1)
R(R−1) if i �= l,

mi (mi−1)r(r−1)
R(R−1) + mir

R if i = l,
(128)

for i, l = 1, . . . , n. This yields

E

[
Yi
r

]
= mi

R
+ mi

R

R(R − r)

r(R − 1)
Sr ,R

(
ωi − 1 −

n∑

l=1

(ωl − 1)
ml

R

)
+ o(|ω − 1|)

(129)

uniformly in ω for i = 1, . . . , n.

Approximation of the covariances under weak bias

According to Eq. (113), we have

E[YiY j ] = E[Hi Hj ]

+
n∑

l=1

(ωl − 1)
∑

y∈S
yi y j p(y, 1)

(
yl
R

r
− ml

)
Sr ,R + o(|ω − 1|),

(130)

where

∑

y∈S
yi y j p(y, 1)

(
yl
R

r
− ml

)
= E[Hi Hj Hl ] R

r
− ml E[Hi Hj ]. (131)
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Therefore,

E

[
Yi
r

Y j

r

]
=E

[
Hi

r

Hj

r

]

+ Sr ,R

n∑

l=1

(ωl − 1)

(
E[Hi Hj Hl ] R

r3
− ml

r2
E[Hi Hj ]

)
+ o(|ω − 1|)

(132)

for i, j = 1, . . . , n, where o(|ω − 1|) is actually uniform in ω as can be proved by
induction on the number of balls removed, r (Soares 2019). Here, E[Hi Hj ] is given
by (128), while

E[Hi Hj Hl ]

=

⎧
⎪⎪⎨

⎪⎪⎩

mim jml
r(r−1)(r−2)
R(R−1)(R−2) if i �= j, j �= l and l �= i,

mim j
r(r−1)
R(R−1)

(
1 + (mi − 1) r−2

R−2

)
if i �= j and l = i,

mi
r
R

[
1 + (mi − 1) r−1

R−1

(
3 + (mi − 2) r−2

R−2

)]
if i = j = l.

(133)

This gives an approximation for the covariances

Cov

[
Yi
r

,
Y j

r

]
= E

[
Yi
r

Y j

r

]
− E

[
Yi
r

]
E

[
Y j

r

]
(134)

for i, j = 1, . . . , n.

Approximations in the case of a large sample size in a large population

Consider that the weight associated to a ball of color i is in the form

ωi − 1 = f

R
σi (135)

with 0 < f < 1 and σi constant for i = 1, . . . , n. As R → +∞, let us keep constant
the ratios

β = r

R
(136)

and

xi = mi

R
(137)

123



Diffusion approximation for age-class-structured population... 2097

for i = 1, . . . , n. Then, defining

Xi = Yi
r

= Yi
βR

(138)

and using (129) for its first moment, we get

E[Xi ] = xi + f

R
xi

(
1 − β

β

)
S

(
σi −

n∑

l=1

σl xl

)
+ o(R−1), (139)

where

S = lim
R→+∞ SβR,R = ln

(
1

1 − β

)
. (140)

This gives

E[Xi ] = xi + xi f

R
C σ̃i + o(R−1), (141)

where

C = 1 − β

β
ln

(
1

1 − β

)
= R − r

r
ln

(
R

R − r

)
(142)

and

σ̃i = σi −
n∑

l=1

σl xl . (143)

On the other hand, using (128) and (133), it can be checked that we have the
following limits as R → +∞ with β and xi for i = 1, . . . , n being kept fixed :

i �= j, l �= i, j E[Hi Hj Hl ] R
r3

− E[Hi Hj ]ml
r2

→ − 2(1−β)xi x j xl
β

i �= j, l = i E[H2
i H j ] R

r3
− E[Hi Hj ]mi

r2
→ (1−β)xi (1−2xi )x j

β

i = j, l �= i E[H2
i Hl ] R

r3
− E[H2

i ]ml
r2

→ − 2(1−β)x2i xl
β

i = j = l E[H3
i ] R

r3
− E[H2

i ]mi
r2

→ 2(1−β)(1−xi )x2i
β

(144)

Therefore, (144) and (132) lead to

E[Xi X j ] = E

[
Hi Hj

r2

]
+ f

R

(
1 − β

β

)
xi x j S

(
σi + σ j − 2

n∑

l=1

σl xl

)
+ o(R−1).

(145)

123



2098 C. D. Soares, S. Lessard

On the other hand, owing to (129) and (144), we have

E[Xi ]E[X j ] =E

[
Hi

r

]
E

[
Hj

r

]

+ f

R

(
1 − β

β

)
xi x j S

(
σi + σ j − 2

n∑

l=1

σl xl

)
+ o(R−1). (146)

Therefore, for the covariance, we get

Cov[Xi , X j ] = Cov

[
Hi

r
,
Hj

r

]
+ o(R−1), (147)

where

Cov

[
Hi

r
,
Hj

r

]
= 1

R
xi (δi j − x j )

(
1 − β

β

)
+ o(R−1). (148)

As for the third moment, we have

E

[(
Yi
r

)3
]

= 1

r3

(
3m(2)

i r (2)

R(2)
+ m(3)

i r (3)

R(3)
+ mir

R

)

+ R(R − r)

r3
Sr ,R

(
mi

R(2)
+ 6m(2)

i (r − 1)

R(3)
+ 3m(3)

i (r − 1)(2)

R(4)

)

·
(

ωi −
n∑

l=1

ωl
ml

R

)
+ o(|ω − 1|), (149)

with the notation r (k) = r(r − 1) · · · (r − k + 1), where

3m(2)
i r (2)

r3R(2)
=3xi (xi − 1/R)(β − 1/R)

β2R(1 − 1/R)
= o(1), (150)

m(3)
i r (3)

r3R(3)
= xi (xi − 1/R)(xi − 2/R)β(β − 1/R)(β − 2/R)

β3(1 − 1/R)(1 − 2/R)
= x3i + o(1),

(151)
mir

r3R
= xi

(βR)2
= o(1), (152)

mi

r R(2)
= xi

βR(R − 1)
= o(1), (153)

6m(2)
i (r − 1)

r R(3)
=6xi (xi − 1/R)(β − 1/R)

βR(1 − 1/R)(1 − 2/R)
= o(1), (154)

3m(3)
i (r − 1)(2)

r R(4)
=3xi (xi − 1/R)(xi − 2/R)(β − 1/R)(β − 2/R)

β(1 − 1/R)(1 − 2/R)(1 − 3/R)
= 3x3i β + o(1)

(155)
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and

R(R − r)

r2
Sr ,R = (1 − β)

β2 SβR,R = (1 − β)

β2 ln

(
1

1 − β

)
+ o(1). (156)

This yields

E
[
X3
i

]
= x3i + 3x3i f (1 − β)

Rβ
ln

(
1

1 − β

)(
σi −

n∑

l=1

σl xl

)
+ o(R−1)

= x3i + 3x3i f

R
C σ̃i + o(R−1). (157)

Similarly, for the fourth moment, we have

E

[(
Yi
r

)4
]

= 1

r4

(
7m(2)

i r (2)

R(2)
+ 6m(3)

i r (3)

R(3)
+ m(4)

i r (4)

R(4)
+ mir

R

)

+ R(R − r)

r5
Sr ,R

(
mir

R(2)
+ 14m(2)

i r (2)

R(3)
+ 18m(3)

i r (3)

R(4)
+ 4m(4)

i r (4)

R(5)

)

·
(

ωi −
n∑

l=1

ωl
ml

R

)
+ o(|ω − 1|), (158)

where

7m(2)
i r (2)

r4R(2)
= 7xi (xi − 1/R)β(β − 1/R)

β4R(R − 1)
= o(1), (159)

6m(3)
i r (3)

r4R(3)
= 6xi (xi − 1/R)(xi − 2/R)β(β − 1/R)(β − 2/R)

β4R(1 − 1/R)(1 − 2/R)
= o(1), (160)

m(4)
i r (4)

r4R(4)
= xi (xi − 1/R)(xi − 2/R)(xi − 3/R)β(β − 1/R)(β − 2/R)(β − 3/R)

β4(1 − 1/R)(1 − 2/R)(1 − 3/R)

= x4i + o(1), (161)
mir

r4R
= xi

β3R3 = o(1), (162)

mir

r3R(2)
= xi

β2R2(R − 1)
= o(1), (163)

14m(2)
i r (2)

r3R(3)
= 14xi (xi − 1/R)(β − 1/R)

β2(R − 1)(R − 2)
= o(1), (164)

18m(3)
i r (3)

r3R(4)
= 18xi (xi − 1/R)(xi − 2/R)(β − 1/R)(β − 2/R)

β2R(1 − 1/R)(1 − 2/R)(1 − 3/R)
= o(1) (165)

123



2100 C. D. Soares, S. Lessard

and

4m(4)
i r (4)

r3R(5)
= 4xi (xi − 1/R)(xi − 2/R)(xi − 3/R)(β − 1/R)(β − 2/R)(β − 3/R)

β2(1 − 1/R)(1 − 2/R)(1 − 3/R)(1 − 4/R)

= 4x4i β + o(1). (166)

This yields

E
[
X4
i

]
= x4i + 4x4i f (1 − β)

Rβ
ln

(
1

1 − β

)(
σi −

n∑

l=1

σl xl

)
+ o(R−1)

= x4i + 4x4i f

R
C σ̃i + o(R−1). (167)

More generally, we expect

E[Xt
i ] = xti + t x ti f

R
C σ̃i + o(R−1) (168)

for every integer t ≥ 1.
Finally, for the fourth central moment, we have

E[(Xi − E[Xi ])4] = E[X4
i ] − 4E[X3

i ]E[Xi ] + 6E[X2
i ]E[Xi ]2 − 3E[Xi ]4

= x4i + 4x4i f

R
C σ̃i + o(R−1)

− 4

(
x3i + 3x3i f

R
C σ̃i + o(R−1)

)(
xi + xi f

R
C σ̃i + o(R−1)

)

+ 6

(
x2i + 2x2i f

R
C σ̃i + o(R−1)

)(
xi + xi f

R
C σ̃i + o(R−1)

)2

− 3

(
xi + xi f

R
C σ̃i + o(R−1)

)4

=
(
x4i − 4x4i + 6x4i − 3x4i

)

+ (4x4i − 16x4i + 24x4i − 12x4i )
f

R
C σ̃i + o(R−1)

= o(R−1). (169)
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Appendix C: conditions for a diffusion approximation

Condition I

Using (15), we have

Ex[wT xi (1)] =
d∑

k=1

wk Ex[xi (1)] =
d∑

k=1

wk(Mxi )k + 1

N

d∑

k=1

wkφi,k(x) + o(N−1)

(170)

with

d∑

k=1

wk(Mxi )k = wT Mxi = wT xi (171)

owing to the fact that wT M = wT . Then, using (44), we have

Ex[�zi ] = Ex[wT xi (1) − wT xi ] = 1

N

d∑

k=1

wkφi,k(z1T + y) + o(N−1) (172)

as N → +∞.

Condition II

We have

Ex[(�zi )(�z j )] = Ex[zi (1)z j (1)] − zi Ex[z j (1)] − z j Ex[zi (1)] + zi z j (173)

with

Ex[zi (1)z j (1)] = Covx[zi (1), z j (1)] + Ex[zi (1)]Ex[z j (1)]. (174)

Owing to condition I, we have

Ex[zi (1)]Ex[z j (1)] − zi Ex[z j (1)] − z j Ex[zi (1)] + zi z j = Ex[(�zi )]Ex[(�z j )]
= o(N−1). (175)

Therefore,

Ex[(�zi )(�z j )] = Covx[zi (1), z j (1)] + o(N−1). (176)
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Since the variables xi,k(1) and x j,l(1) are independent as soon as l �= k, we have

Covx[zi (1), z j (1)] = Covx

[
d∑

k=1

wk xi,k(1),
d∑

k=1

wk x j,k(1)

]

=
d∑

k=1

w2
kCovx[xi,k(1), x j,k(1)]. (177)

The vector (x1,1(1), . . . , xn,1(1)) having a multinomial probability distribution with
parameters N1, P1(x), . . . , Pn(x), the covariances of the components are given by

Covx[xi,1(1), x j,1(1)] = − 1

N1
Pi (x)Pj (x) = − 1

N1
(Mxi )1(Mx j )1 + o(N−1)

(178)

and

Covx[xi,1(1), xi,1(1)] = 1

N1
Pi (x)(1 − Pi (x))

= 1

N1
(Mxi )1(1 − (Mxi )1) + o(N−1) (179)

for i, j = 1, . . . , n with i �= j , using Eq. (10). Therefore, by (15), we have

Covx[xi,1(1), x j,1(1)] = 1

N f1
(Mxi )1

(
δi j − (Mx j )1

)+ o(N−1) (180)

with δi j = 0 if i �= j and δi i = 1, for i, j = 1, . . . , n. For k = 2, . . . , d, and with
reference to “Appendix B” (with R = Nk−1 and β = fk/ fk−1), we have

Covx[xi,k(1), x j,k(1)] = 1

N
xi,k−1(δi j − x j,k−1)

(
1

fk
− 1

fk−1

)
+ o(N−1)

= 1

N
(Mxi )k(δi j − (Mx j )k)

(
1

fk
− 1

fk−1

)
+ o(N−1).

(181)

Therefore, condition I I holds with

ai, j (z, y) =
d∑

k=1

w2
k ((Myi )k + zi )(δi j − (My j )k − z j )

(
1

fk
− 1

fk−1

)
(182)

using the convention that 1/ f0 = 0.
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Condition III

We start with

Ex[(�zi )
4] − Ex[(zi (1) − Ex[zi (1)])4]

= Ex[(zi (1) − zi )
4] − Ex[(zi (1) − Ex[zi (1)])4]

= Ex[zi (1)4] − 4zi Ex[zi (1)3] + 6z2i Ex[zi (1)2] − 4z3i Ex[zi (1)] + z4i

−
(
Ex[zi (1)4] − 4Ex[zi (1)]Ex[zi (1)3] + 6Ex[zi (1)]2Ex[zi (1)2]

− 4Ex[zi (1)]3Ex[zi (1)] + Ex[zi (1)]4
)

= −4zi Ex[zi (1)3] + 6z2i Ex[zi (1)2] − 4z3i Ex[zi (1)] + z4i

+ 4Ex[zi (1)]Ex[zi (1)3] − 6Ex[zi (1)]2Ex[zi (1)2] + 3Ex[zi (1)]4
= 4Ex[zi (1)3](Ex[zi (1)] − zi ) + 6Ex[zi (1)2](z2i − Ex[zi (1)]2)

− 4z3i Ex[zi (1)] + z4i + 3Ex[zi (1)]4. (183)

From conditions I and II, we have

Ex [�zi ] = bi (z, y) N−1 + o
(
N−1

)
, (184a)

Ex[(�zi )
2] = ai,i (z, y)N−1 + o

(
N−1

)
, (184b)

from which

Ex[(�zi )
4] − Ex[(zi (1) − Ex[zi (1)])4]

= 4Ex[zi (1)3](bi (z, y)N−1) + 6(z2i + 2zi bi (z, y)N−1

+ ai,i (z, y)N−1)(−2zi bi (z, y)N−1)

− 4z3i (zi + bi (z, y)N−1) + z4i + 3(z4i + 4z3i bi (z, y)N
−1) + o

(
N−1

)

= 4bi (z, y)N−1(Ex[zi (1)3] − z3i ) + o
(
N−1

)
. (185)

But we have

Ex[zi (1)3] − z3i = o(1) (186)

since zi (1) =
d∑

k=1
wk xi,k(1)with xi,k(1), xi,l(1), xi,m(1) being conditionally indepen-

dent for k, l,m all different, and satisfying, for t = 1, 2, 3,
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Ex[xi,1(1)t ] = Pi (x)t + o(1)

=
(

d∑

l=1

pl xi,l + o(1)

)t

+ o(1)

=
(

d∑

l=1

pl xi,l

)t

+ o(1)

= ((Mxi )1)t + o(1), (187)

since N1xi,1(1) has a conditional binomial distribution of parameters N1 and Pi (x)
given in (9), and

Ex[xi,k(1)t ] = xti,k−1 + o(1) = ((Mxi )k)t + o(1) (188)

for k = 2, . . . , d, as shown in “Appendix B”. As a matter of fact, for some coefficients
c2 and c3, we have

Ex[zi (1)3] = Ex

⎡

⎣
(

d∑

k=1

wk xi,k(1)

)3⎤

⎦

=
d∑

k=1

w3
k Ex

[(
xi,k(1)

)3]+ c2

d∑

k=1

d∑

l=1,l �=k

w2
kwl Ex

[(
xi,k(1)

)2]
Ex
[
xi,l(1)

]

+ c3

d∑

k=1

d∑

l>k

d∑

m>l

wkwlwmEx
[
xi,k(1)

]
Ex
[
xi,l(1)

]
Ex
[
xi,m(1)

]

=
d∑

k=1

w3
k ((Mxi )k)3 + c2

d∑

k=1

d∑

l=1,l �=k

w2
kwl ((Mxi )k)2 (Mxi )l

+ c3

d∑

k=1

d∑

l>k

d∑

m>l

wkwlwm(Mxi )k(Mxi )l(Mxi )m + o(1)

=
(

d∑

k=1

wk(Mxi )k

)3

+ o(1)

=
(

d∑

k=1

wk xi,k

)3

+ o(1)

= z3i + o(1). (189)
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Therefore,

Ex[(�zi )
4] = Ex[(zi (1) − Ex[zi (1)])4] + o(N−1). (190)

Furthermore,

Ex

[
(zi (1) − Ex[zi (1)])4

]
= Ex

⎡

⎣
(

d∑

k=1

wk(xi,k(1) − Ex[xi,k(1)])
)4⎤

⎦

≤ Ex

[
d∑

k=1

wk
(
xi,k(1) − Ex[xi,k(1)]

)4
]

=
d∑

k=1

wk Ex

[(
xi,k(1) − Ex[xi,k(1)]

)4]
. (191)

The inequality is obtained by using the Jensen inequality for the power of order 4
with the values ak = xi,k(1) − Ex[xi,k(1)] and the positive probabilities wk for
k = 1, . . . , d.

For the first age class (k = 1) whose size is N1 = f1N , we get

Ex

[(
xi,1(1) − Ex[xi,1(1)]

)4]

= Pi (x)(1 − Pi (x))

N 2
1

(
3Pi (x)(1 − Pi (x)) + 1 − 6Pi (x) + 6Pi (x)2

N1

)

= o
(
N−1

)
. (192)

On the other hand, for the following age classes (k = 2, . . . , d), we have

Ex

[(
xi,k(1) − Ex[xi,k(1)]

)4] = o
(
N−1

)
(193)

as shown in “Appendix B” (Eq. (169) with Xi = xi,k(1) and R = Nk−1 = fk−1N ).

Condition IV

We have

Ex
[(
yi,k(1) − yi,k

)] = Ex
[(
xi,k(1) − xi,k

)]+ o (1) (194)

by condition I. Moreover, for the first age class (k = 1), we have

Ex
[
xi,1(1)

] =
d∑

k=1

pkxi,k + o (1) , (195)
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from which

ci,1(z, y) =
d∑

k=1

pkxi,k − xi,1, (196)

while for the following age classes (k = 2, . . . , d), we have

Ex
[
xi,k(1)

] = xi,k−1 + o
(
N−1

)
, (197)

from which

ci,k(z, y) = xi,k−1 − xi,k . (198)

Therefore, we get condition I V with

ci,k(z, y) = (Mxi )k − xi,k = (Myi )k − yi,k, (199)

where M is the matrix defined in (14).

Condition V

According to (47), we have

Varx
[
�yi,k

] = Varx
[
�xi,k

]+ Varx [�zi ] − Covx
[
�xi,k,�zi

]
. (200)

Owing to (181) and (180), we have that

Varx
[
�xi,k

] = o(1), (201)

and to (48a) and (48b), that

Varx [�zi ] = o(1). (202)

On the other hand, the random variables xi,k(1) and xi,l(1) for l �= k = 1, . . . , d and
i = 1, . . . , n are conditionally independent so that

Covx
[
�xi,k,�zi

] = wkCovx
[
xi,k(1), xi,k(1)

] = o(1), (203)

owing to (181) and (180).

Condition VI

Owing to (199), the recurrence system of equations (50) becomes

Yi,k(t + 1, z, y) = (MYi (t, z, y))k (204)
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with

Yi (t, z, y) = (Yi,1(t, z, y), . . . , Yi,d(t, z, y))T . (205)

Then

Yi (t + 1, z, y) = Mt+1Yi (0, z, y) = Mt+1yi (206)

for all integers t ≥ 0. According to Eq. (28), we have

lim
t→+∞ Mt = 1wT (207)

entrywise. Moreover,

wT yi = wT (xi − zi1) = wT
(
xi − (wT xi )1

)
= wT xi − (wT xi )wT 1 = 0, (208)

since wT 1 = 1. Therefore,

lim
t→+∞Yi (t, z, y) = 0 (209)

uniformly in z ∈ R
n and y ∈ R

n × R
d for i = 1, . . . , n by linearity.

Appendix D: analysis of U(f )with selection on fertility only

With the change of variable f = (3 − y)/2, we get

V (y) = U ( f (y)) =
4

(3−y)y

1 − exp
{
− (1+y)

y

} (210)

for 1 < y < 2. The derivative of V (y) is given by

V ′(y) =
4e

1
y +1

(
−2(y − 1)y + e

1
y +1

(2y − 3)y + 3
)

(
e

1
y +1 − 1

)2
(y − 3)2y3

. (211)

In particular, we have

V ′(1) = e2
(
3 − e2

)
(
e2 − 1

)2 < 0, V ′(2) = e3/2
(
2e3/2 − 1

)

2
(
e3/2 − 1

)2 > 0. (212)
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Owing to the intermediate value theorem, there exists a real number y∗ ∈ (1, 2) such
that V ′(y∗) = 0. Furthermore, the second derivative of V (y) given by

V ′′(y) = 4e
1
y +1A(y)

(
e

1
y +1 − 1

)3
(y − 3)3y5

(213)

is a positive function with

A(y) = −6e
2
y +2

((y − 3)y + 3)y2 + e
1
y +1

(y(y(6y(2y − 5) + 5) + 42) − 9)

− 9 − 30y + 11y2 + 12y3 − 6y4 (214)

being negative for 1 < y < 2 (see below). Then the critical point y∗ is unique, and
it is actually the global minimum point of V (y). Therefore, f ∗ = (3 − y∗)/2 is the
only critical point of U ( f ), and it is actually the global minimum point of U ( f ).

It remains to prove that A(y) < 0 for 1 < y < 2. Note that

− 6e
2
y +2

((y − 3)y + 3)y2 + e
1
y +1

(y(y(6y(2y − 5) + 5) + 42) − 9)

= e
1
y +1

(
−6y2e

1
y +1

((y − 3)y + 3) − 9 + 42y + 5y2 − 30y3 + 12y4
)

= e
1
y +1

(
−6y2e

1
y +1

((y − 3)y + 3) + y2
(
5 − 30y + 12y2

)
− 9 + 42y

)

= e
1
y +1

(
−6y2((y − 3)y + 3)

(
e

1
y +1 − 4

)
− 12y4 + 42y3 − 67y2 + 42y − 9

)

(215)

is negative, since e
1
y +1 −4 > e2 −4 > 0, while−12y4 +42y3 −67y2 +42y−9 < 0

and (y − 3)y + 3 > 0, both polynomials having no real roots. Note also that the
polynomial −9− 30y + 11y2 + 12y3 − 6y4 in (214) has only two real roots, namely
y ≈ −1.38072 and y ≈ −0.281155. Moreover, since it goes to −∞ as y → +∞, it
is necessarily negative for 1 < y < 2.

Appendix E: derivative of U(f )with selection on survival

With selection on survival only, we have

U ′( f )

=
2A

(
(2 f − 3)

(
4 f 2 (A − 2) + 3A + f (14 − 4E) − 7

)
L + 2 f PL2 + (A − 1) (3 − 2 f )2

)

f 2(2 f − 3)3 (A − 1)2
,

(216)

while with selection on both survival and fertility, we have

U ′( f )
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=
2C

(
L
(
QB − 8 f 3 + 32 f 2 − 36 f + 21

)
+ 2( f − 1) ((6 f − 9)B − 8 f + 15) + 2 f PL2

)

f 2(2 f − 3)3 (B − 1)2

(217)

with

P = 8 f 3 − 28 f 2 + 34 f − 11, (218a)

Q = 8 f 3 − 20 f 2 + 18 f − 9, (218b)

L = ln

(
f

2 f − 1

)
, (218c)

ln A = 2( f − 2)(2 f − 1)

2 f − 3
ln

(
f

2 f − 1

)
(218d)

and

B = exp

⎧
⎨

⎩
2( f − 2)

(
(2 f − 1) ln

(
f

2 f −1

)
+ 1

)

2 f − 3

⎫
⎬

⎭ . (218e)
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