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A diffusion approximation for a randomized 2 x 2-matrix game in a large finite population is
ascertained in the case of random payoffs whose expected values, variances and covariances are of
order given by the inverse of the population size N. Applying the approximation to a Randomized
Prisoner’s Dilemma (RPD) with independent payoffs for cooperation and defection in random pairwise
interactions, conditions on the variances of the payoffs for selection to favor the evolution of
cooperation, favor more the evolution of cooperation than the evolution of defection, and disfavor
the evolution of defection are deduced. All these are obtained from probabilities of ultimate fixation
of a single mutant. It is shown that the conditions are lessened with an increase in the variances
of the payoffs for defection against cooperation and defection and a decrease in the variances of
the payoffs for cooperation against cooperation and defection. A RPD game with independent payoffs
whose expected values are additive is studied in detail to support the conclusions. Randomized matrix
games with non-independent payoffs, namely the RPD game with additive payoffs for cooperation and
defection based on random cost and benefit for cooperation and the repeated RPD game with Tit-for-
Tat and Always-Defect as strategies in pairwise interactions with a random number of rounds, are
studied under the assumption that the population-scaled expected values, variances and covariances
of the payoffs are all of the same small enough order. In the first model, the conditions in favor of
the evolution of cooperation hold only if the covariance between the cost and the benefit is large
enough, while the analysis of the second model extends the results on the effects of the variances of

the payoffs for cooperation and defection found for the one-round RPD game.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Cooperative behavior is a phenomenon that is widely observed
in nature. However, natural selection tends to enhance selfish
behavior through fierce competition. In order to explain the ra-
tionality of cooperation and its evolution in natural populations,
a two-player game known as the Prisoner’s Dilemma (PD) has
been widely studied as one of the most important theoretical
frameworks (Axelrod and Hamilton, 1981; Maynard Smith, 1982;
Axelrod, 1984; Poundstone, 1992; Nowak and Highfield, 2011).
In an additive version of the PD game, cooperation takes the
form of a donor who pays a cost ¢ for a recipient to get a
benefit b. Defection costs nothing and does not disqualify from
receiving a benefit. Therefore, the payoff for cooperation never
exceeds the payoff for defection (Nowak, 2006; Nowak and Sig-
mund, 2007). This is the case in more general versions of the PD
game. Moreover, assuming random pairwise interactions in an
infinite population and average payoffs as relative growth rates,
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the replicator equation (Taylor and Jonker, 1978) predicts global
convergence to fixation of defection (Hofbauer and Sigmund,
1998).

In a finite population of constant size N undergoing dis-
crete, non overlapping generations according to a Wright-Fisher
model and more general models with exchangeable reproduction
schemes (Fisher, 1930; Wright, 1931; Cannings, 1974; Ewens,
2004; Lessard, 2011), the fixation probability for a neutral mutant
type represented only once initially is just the inverse of the
population size, that is, N='. If this probability becomes larger
than N~! in the presence of selection, then the mutant type has
been said to be favored by selection (Nowak et al., 2004). Several
mechanisms have been considered to explain how cooperation
could be favored by natural selection assuming additive effects
of average payoffs on fitness (Nowak and Sigmund, 2007). This
is the case, for instance, for cooperation taking the form of
the “Tit-for-Tat” strategy (Trivers, 1971; Axelrod and Hamilton,
1981; Axelrod, 1984) starting with cooperation in a repeated
PD game between randomly chosen partners if the number of
rounds exceeds some threshold value (Nowak et al., 2004). This is
also the case in group-structured or graph-structured populations
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for modeling some social or geographical networks with local
interactions (Ohtsuki et al., 2006). However, with a one-round
PD game and constant payoffs in a well-mixed population, the
fitness of cooperation never exceeds the fitness of defection, and,
as a result, cooperation cannot be favored by selection.

In nature, there are changes not only in the composition of a
population but also in the surrounding environment in which the
population finds itself. These can affect the payoffs that individu-
als receive as a result of interactions with others. Randomness in
evolutionary games can take several forms such as probabilistic
encounter rules or mixed strategies depending or not on the
replies of others (Taylor and Jonker, 1978; Eshel and Cavalli-
Sforza, 1982; Hofbauer and Sigmund, 1998). Of particular interest
are stochastic games which allow the environment to change in
response to the players’ choices (Shapley, 1953; Fudenberg et al.,
2012; Solan and Vieille, 2015; Hilbe et al.,, 2018). But also not
to be forgotten are variations in payoffs caused by disturbances
in the natural environment. These can be periodic, e.g., being
seasonal or alternating day and night. But they can also be totally
random as if occurring by accident (May, 1973; Kaplan et al.,
1990; Lande et al., 2003). In the case of deterministically time-
dependent payoffs in 2 x 2 matrix games, for instance, Broom
(2005) compares the time average of the population state and
the interior Nash equilibrium of the average payoff matrix and
shows that they can be arbitrarily far apart. With periodic payoffs,
even stable periodic orbits can be found from arbitrary starting
points (Uyttendaele et al.,, 2012). On the other hand, it is shown
in Stollmeier and Nagler (2018) that under the effects of ran-
dom environmental noise, an evolutionary game involving two
strategies with a strategy having a higher expected payoff at any
frequency than the other can reach a stationary distribution with
both strategies co-existing.

In a matrix game, unless stochastic fluctuations in the en-
vironment are small enough to be ignored, it is more accurate
to use random payoffs than constant payoffs. In particular, the
introduction of random payoffs extends the classical PD game to a
randomized PD game. In order to reveal how environmental noise
can generally affect the evolutionary game dynamics in an infinite
population, the concepts of stochastic evolutionary stability (SES)
and stochastic convergence stability (SCS) have been investigated
(Zheng et al., 2017, 2018). Applying these concepts to a one-round
randomized PD game in a well-mixed population, it can be shown
that the evolution of cooperation tends to be more easily favored
by natural selection if the coefficients of variation of the payoffs
are smaller for cooperation than for defection (Li et al., 2019).

On the other hand, in a population genetics framework for a
large finite population, Karlin and Levikson (1974) have shown
that, when the mean and variance of frequency-independent
genotypic fitnesses are of the same order given by the inverse of
the population size, the effect of the variance matters. Actually,
variability in selection, meaning fluctuating selection intensities,
produces a “drift effect” away from the fixation states.

In order to study the effect of stochastic fluctuations in a
context of an evolutionary game in a large finite population,
we consider in this paper a matrix game with random payoffs
for two players using one of two strategies. After ascertaining a
diffusion approximation for this model, we focus on the Random-
ized Prisoner’s Dilemma (RPD) with cooperation and defection as
strategies, and we consider the probability of ultimate fixation
of either strategy as a single mutant. Conditions that favor the
evolution of cooperation are examined in detail in the case of
independent payoffs such that the average effects of cooperation
and defection are additive. A RPD game with random additive
effects of cooperation and defection on the payoffs as well as a
repeated RPD game are also studied.

2. The model

We consider a randomized matrix game with two strategies

in a finite population of fixed finite size N. The two possible pure
strategies used by the individuals in the population are denoted
by S; and S;. At time t > 0 corresponding to some generation,
the frequencies of S; and S, are given by x(t) and 1 — x(t),
respectively, while their payoffs in pairwise interactions are given
by the entries of the 2 x 2 random game matrix
n(t)  ma(t) o)
n3(t) na(t) )"
Here, n1(t) and n(t) are the payoffs to strategy S; against strate-
gies S; and S,, respectively, while 73(t) and n4(t) are the corre-
sponding payoffs to strategy S, against the same two strategies.
We assume that the value of these payoffs are random vari-
ables with values that are always larger than —1 and probability
distributions that do not depend on time ¢t > 0.

In addition, we assume that these payoffs have expected val-
ues, variances and covariances of order given by the inverse of the
population size, which will be taken later on as the time interval
between two successive generations (see below). More precisely,
‘we assume

ni(t) = N~ + &(0), (2)
where E(§(t)) = 0, Var(§(t)) = ofN"" and Cov(&(t), §(t)) =

a,,N’l, for i, j ..., 4 with i # j. Therefore, we have

E((t)) = N ™", (33)
ECi(ef) = ofN™" +o(N™"), (3b)
E(ni(t)nj(t)) = oyN~" + o(N71), (30)

so that u;, o and oy represent population-scaled parameters
for the expected value, variance and covariance of the payoffs,

respectively, fori,j =1, ..., 4 withi # j. Moreover, it is assumed
that

E(61(6)62(0)/&5(0)"Ea(t)") = o(N 1), (4)
so that

E(m(6)na(6) ns(0)"na(t)") = o(N~"), (5)

for non-negative integers k, I, m, n such that k+ 1+ m+n > 3.

We suppose that the payoffs have additive effects on fitness
understood as relative reproductive success with a baseline value
equal to 1. Assuming random pairwise interactions, the mean
fitness of strategy S; at time ¢t > 0 can be expressed as

I (t) = 14 x()m(t) + (1 — x(0)na(t), (6)
and the corresponding mean fitness of strategy S, as
Ta(t) = 1+ x(t)n3(t) + (1 — x(t))na(t). 7

Note that these quantities are always positive since we assume
ni(t) > —1fori=1,...,4.

Now, we consider discrete non-overlapping generations as in
the Wright-Fisher model and we measure time in number of N
generations. Then, At = N~! represents the time interval from
one generation to the next. Given that the frequency of strategy
Sp is x(t) at time t > 0 corresponding to some generation, the
frequency of Sy in the next generation, x(t+At), is distributed as a
binomial random variable divided by N. Actually, the conditional
probability distribution is given by

X(t + At)|x(t) ~ %B(N,x’(t)), (8)
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where B(N, x/(t)) denotes a binomial distribution of parameters
N and x'(t) with
- MmO
(O (£) + (1 — x(6)M(t)
being the probability for an offspring to have been produced by
an individual using strategy S; at time t > 0. Note that x'(t) is
a random variable even if the value of x(t) is known, since IT;(t)
and II,(t) depend on the random payoffs n;(t) fori=1,...,4.

X(t) (9)

3. Diffusion approximation

Let Ax = x(t + At) — x(t) be the change in the frequency
of individuals that use strategy S; from time t to time t + At.
Given x(t) = x, the first, second and fourth moments of Ax can
be calculated as (see Appendix A for details)

E(AX|X(t) = X) = m(x) At + o( At), (10)
E((Ax)?|x(t) = x) = v(X)At + o(At) (11)
and

E((Ax)*X(t) = x) = o(At), (12)
where

m(x) = x(1 —X)(llvz — Wa +X(M1 — M2 — M3+ M4)

+x(013 — 02) + X(1 — X)X(2034 — 014 — 023 + 024 — 0F)

+22(1 = X)(=2012 + 014 + 023 — 013 + 02)

+(1 = X%07 - 02)) (13)
and
o(x) = x(1— x)(l +23(1 = x)o? + 02 — 2013)

+x(1—x)P(07 + 07 — 2024)

+2€(1 = X{ors + 034 — 014 — 03))- (14)
The above conditions ascertain a diffusion approximation with
drift function m(x) and diffusion function v(x) in the limit of
a large population with the population size N as unit of time
(Kimura, 1964; Ewens, 2004).

In the diffusion approximation, the probability density func-

tion of S;-frequency evaluated at x at time t > 0 given a value p

at time 0, denoted by f(x, p, t), satisfies the forward Kolmogorov
(Fokker-Planck) equation

fprt) 8 9 [o(f(xp, 1)
Tt = T Mflep.Ol+ oo . (15)
as well as the backward Kolmogorov equation
Wpt)  fxp.t) | v(p) 9} (xp,t)

T i e i (16)

Since no mutation is considered in the model at hand, the two
boundaries x = 0 and x = 1 are absorbing states.

Let u(p, t) denote the probability that strategy S, is fixed by
time ¢t > 0 so that x(t) = 1 given an initial frequency x(0) = p.
This probability satisfies the backward Kolmogorov equation, that
is,

au(p, t) du(p, t) | v(p) 3u(p, t)
= m(p) + = =
at ap 2 ap’
with the boundary conditions u(0,t) = 0 and u(1,t) = 1. By
letting t — oo, the limit

(17)

u(p) = lim u(p, t) (18)

represents the probability of ultimate fixation of strategy Sy given
an initial frequency x(0) = p. As t — oo, the left-hand side in (17)
tends to O so that we have
dup) | () Pu(p)

dp 2 dp?
with the boundary conditions u(0) = 0 and u(1) = 1. The solution
of this ordinary differential equation is known to be (Ewens,
2004; Risken, 1992)

0 =m(p) (19)

Py (y)d
up) = S YO @0
oy
where
_ Y m(x)
Vi) =exp (—2 fn W‘i‘)‘ @1

Note that the probability of ultimate fixation of strategy S, is
given by

I, vy
Jo vy’
since there is ultimate fixation of strategy S; or S, with probabil-
ity 1.

4. Randomized Prisoner’s Dilemma (RPD)

1-up)= (22)

Consider a random game matrix (1) with independent payoffs
whose expected values determine a classical Prisoner’s Dilemma
(PD). In this case, the population-scaled parameters in (3) verify
oj = 0fori,j = 1,...,4 with i # j, since the payoffs are
uncorrelated, and

1o R R S
(s )= 2) @
withT > R > P > S and 2R > T + S, which defines a PD
game. Then, we have a randomized Prisoner’s Dilemma (RPD)
with strategies S; and S, corresponding to cooperation (C) and
defection (D), respectively.

Suppose that cooperation is introduced as a single mutant
in an all defecting population so that the initial frequency of
cooperation in the population of size N is p = N~' If the
probability of ultimate fixation of cooperation, denoted by Fr =
u(N~1), exceeds the value N~, which is the fixation probability
under neutrality, then we say that the evolution of cooperation is
favored by selection. Analogously, Fp = 1—u(1— N~') represents
the probability of ultimate fixation of a single defecting mutant
in an all cooperating population, and we say that the evolution of
defection is disfavored (not favored) by selection if Fp is less than
N~ (Nowak et al., 2004). Moreover, if Fc > Fp, then the invasion
of a single cooperating mutant in an all defecting population is
more likely than the reverse situation. In such a case, we say that
the evolution of cooperation is more favored by selection than the
evolution of defection. Finally, if all three conditions are satisfied,
which occurs when Fc > N~! > Fp, then we say that the evolution
of cooperation is fully favored by selection.

Assuming the population size N large enough and using the
diffusion approximation for the fixation probability, namely (20),
the condition for the evolution of cooperation to be favored by
selection becomes
Fo= & =L (24)
Nfyyoyy N

Since ¥(0) = 1, this condition is equivalent to

1
fo Yy < 1. (25)
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Moreover, owing to (13), (14) and (21), we have

Yy
v =exp (—2 / g(x)ax) 26)
0

for 0 <y < 1, where
_mw
W =" @)

with drift function
m(x) =x(1— X)(ILZ — ta+x(p1 — p2 — p3 + pa)
— (Po? +x(1 - xP02 — (1 —x)o2 — (1 —x)ga}))

(28)

and diffusion function

w(x) = (1 —x)(1 +2(1=x)(0? +02)+x(1 %02 +02 ) (29)

Note that the function g(x) actually depends on the population-

?cjlt;d expicted values and variances of the payoffs, 4; and o for

Similarly, the condition for the evolution of defection not to
be favored by selection takes the form

¥(1) #(1) 1

Ppp=— =2 o (30)
"IN voy T Nfebay N
where
) _ !

oly) = Ok exp (2/; g(x)dx) . (31)
Since ¢(1) = 1, this condition is equivalent to

1 1
/0 ¢(y)dy > 1, thatis, /0 Yy > ¥(1). (32)
Moreover, since Fp = ¥(1)Fc, the condition
V() =90)" <1 (33)

ensures that Fc > Fp, in which case selection favors more the
evolution of cooperation than the evolution of defection.
Let h(x) = g(x) when 6 = 0 for i = 1, ..., 4. Then we have

h(X) = pa — pa + X(u1 — p2 — w3 + pa). (34)

Since w4 > @y and p3 > pq in the PD game (23), the function
h(x) is always negative for 0 < x < 1. Therefore, in the case where
o? =0fori=1,...,4, we have g(x) = h(x) < 0 in (26) so that
¥(y) and ¢(y) are both strictly increasing functions with respect
to y with ¥(0) = ¢(1) = 1. Therefore, we have ¥(y) > 1 and
¢(y) < 1for 0 < y < 1. In this case, conditions (25), (32) and
(33) can never be satisfied. This means that the evolution of co-
operation can never be favored by selection. This is in agreement
with what is known for the classical PD game with deterministic
payoffs (Maynard Smith, 1982; Nowak, 2006).

For the RPD game with independent payoffs, we consider the
partial derivatives of g(x) with respect to the variances of the
payoffs. It can be shown (see Appendix B for details) that

ag(x)

35
307 (35)
and
9,
g();) 36)
doy

for 0 < x < 1. This implies that g(x) for 0 < x < 1 increases
as o2 or o} increases. Therefore, ¥/(y) in (26) for 0 < y < 1,
and its integral from O to 1 in (24) and (25), decrease as 032 or

541 increases. On the other hand, ¢(y) in (31) for 0 < y < 1,
and its integral from O to 1 in (30) and (32), increase as 031 or a}
increases.

Let us summarize our findings.

Conclusion 1. In a RPD game with independent payoffs, increasing
the variance of at least one payoff for defection, that is, 67 or o,
increases the probability of ultimate fixation of cooperation intro-
duced as a single mutant in an all defecting population, F, while it
decreases the probability of ultimate fixation of defection introduced
as a single mutant in an all cooperating population, Fp.

5. RPD with independent payoffs

In this section, we focus on a RPD game with independent
payoffs whose expected values are such that

(i w)=Co %)

This payoff matrix determines an additive PD game in which
cooperation (C) incurs a fixed cost ¢ > 0 to the individual
adopting it, but provides a fixed benefit b > 0 to the opponent,
while defection (D) incurs no cost at all.

In this case, the function h(x) in (34) is given by h(x) = —c.
Moreover, if ¢ < 1, then it can be shown (see Appendix B for
details) that the function g(x) in (27) satisfies

9g(x)

0 38
1T < (38)
and
8l _, (39)
Bazz

for0 <x <1
This leads to the following complementary result.

Conclusion 2. In a RPD game with independent payoffs whose
population-scaled expected values determine an additive PD game
in the form (37) with cost of cooperation ¢ < 1, diminishing the
variance of at least one payoff for cooperation, that is, af or 022,
increases the probability of ultimate fixation of cooperation intro-
duced as a single mutant in an all defecting population, Fc, while it
decreases the probability of ultimate fixation of defection introduced
as a single mutant in an all cooperating population, Fp.

In the rest of this section, we investigate some special cases
of the RPD with additive expected payoffs to exhibit conditions
under which the evolution of cooperation could be favored by
selection.

51 Casel: 0l =0} =02=0,0}=02>0

This is a situation where the variance of the payoff for defec-
tion against defection is significantly larger than the variances of
all the other payoffs.

With h(x) = —c, the function g(x) in (27) takes the form

—c4+(1—x)0?

1+x(1—xPo2’ (40)

gi(x) = glx) =
This function satisfies g(0) = o% — ¢, g(1) = —c, g(0) =
—0%(3+ 02 —c) and g'(1) = 0 (see Appendix C for details).

If 62 < ¢, then g(x) < 0 for 0 < x < 1. In this case, the
function ¥(y) in (26) satisfies ¥(y) > 1 for 0 < y < 1, which
entails /) y(y)dy > 1, that is, Fc < 1/N.

On the other hand, if 6> > c, then we have g'(x) < 0 for
0 < x < 1. In this case, g(x) is a strictly decreasing function from
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Fig. 1. Curves of g(x) and y(y) in cases 1 to 5. The population-scaled expected cost c for cooperation is set to 1. In each panel, the curve in Blue is for the threshold
value of o such that g(x) < 0 for 0 < x < 1, while the curves in Red, Green and Purple are for the threshold values o2, o2, and o2, respectively (except for case

5 where there are no o2 and o2,

2

2 ). Panels (a) and (b) represent g(x) and () in case 1, and 50 on up to case 5. In case 4, the value of o7 is set to 05. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

o?—c>0atx=0to—c < 0atx=1, while y(y) is a strictly
convex function for 0 < y < 1. The unique point x* between 0
and 1 where g(x) crosses the x axis is the global minimum point
of ¥(y) for 0 < y < 1 (see Fig. 1a,b). Since ¥(0) = 1 with
¥'(0) = —2g(0) = —2(0® — c) < 0, the condition ¥(1) < 1,
which implies Fc > Fp, guarantees also that fﬂl Y (y)dy < 1, which
implies Fc > 1/N.

Let o2, be the value of 02 > ¢ such that fo] g(x)dx = 0, that is,
¥(1) = 1. Recall that g(x) is strictly increasing as a function of o
owing to (36). Consequently, the condition 02 > o2, is necessary
and sufficient to have fol g(x)dx > 0, that is, ¥(1) < 1, which
implies Fc > Fp.

Now, let o2 be the value of o2 strictly comprised between ¢
and o2, such that fo1 ¥(y)dy = 1. Then we have fol Y(y)dy < 1
for 02 < o2 < o2,. We conclude that Fc > 1/N as soon as
ot>ol>c.

2,, be the value of 0? > o2, such that f; ¢(y)dy =
1. Then we have fu] ¢(y)dy > 1 for 02 > o?,. This means that
Fp < 1/N if and only if 6 > o2, (see Appendix E for details).
If 02/16 is small, in which case x(1 — x)>0'2 is small for 0 <
x < 1, we have the approximation

Finally, let o2

gx)~ —c + (1 —x)’0? (41)

for 0 < x < 1. Moreover, using the approximation ¢* ~ 1 + z for
z small enough, we get

"y
¥y) = exp (—2 f g(x)ax)
0

3 1
~ 142cy —20° (y— VY- Zy‘*) (42)
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o? Ol
Fe <1/N Fe>1/N Fe>1/N
Fp, > 1/N Fp > 1/N Fp < 1/N
c?=c <« > o
Fe < Fp Fe > Fp
o2

Fig. 2. Relationships between o2, o2,

o2, and Fc, Fy in cases 1, 3 and 4. The regions where the fixation probabilities Fc and Fp are larger or smaller than N~! and

where Fc is larger or smaller than Fp are given according to the position of o2 with respect to the increasing threshold values o2, o7, and o2,. In case 2, these

threshold values are decreasing.

Table 1

Comparison between the numerical values and the approximate values of o2, o

2, 02, in cases 1 to 5. The

population-scaled expected cost ¢ for cooperation is set to 1 or 0.5. The value of o7 in case 4 is set to 0.5. The
approximate values are given first followed by the numerical values in brackets.

c=1, 05=0.5 ¢=0.5, 63=0.5
a? o2 [ a? 73 [
Case 1| 25 (2.66) 4 (4.34) 10 (10.92) 1.25 (1.29) 2 (2.08) 5 (5.21)
Case2| 15 (222) 12 (14.96) 10 (10.96) 7.5 (9.25) 6 (6.76) 5 (5.26)
Case3| 214 (2.13) 3 (2.95) 5 (4.91) 1.07 (1.07) 15 (1.49) 25 (247)
Case4| 236 (2.34) 3.5 (3.44) 6.17 (6.07) 1.29 (1.28) 2 (1.97) 3.66 (3.43)
Case5| 3.75 (3.67) 1.88 (1.86)

and

1
¢(y) = exp (2 f g(X)dX)
y

3 1 1
~1+2(y—1)—20%(y— = Byt 3
+2c(y— 1) - 20 (y YHr-pi-g) @
for 0 <y < 1. Then, ¥(1) = 1 when
o =0l ~4c, (44)
while fol ¥(y)dy = 1 when
5c
2ol 45
ot =oln 45)
and fo‘ é(y)dy = 1 when
o? =02, ~ 10c. (46)

Here, we have ¢ < 0? < 02, <02, with Fc > N~!, Fc > Fp and
Fp < N~' when 0? > 02, 0% > 0, and 0% > o2, respectively
(see Fig. 2 for a schematic representation of the situation and
Table 1 for some particular values).

Our result suggests that the evolution of cooperation tends to
be fully favored by selection with an increase of the variance of
the payoff for defection against defection.

52 Case 2: o} =0} =0} =0,0}=02>0

Here, the variance of the payoff for defection against coop-
eration is significantly larger than the variances of all the other
payoffs.

In this case, the function g(x) in (27) becomes

—c +x¥(1 —x)o?
1+x3(1—x)a2

This function satisfies g(0) = —c, g(1) = —c, g'(0) = 0 and
g(1)=—(c+1)o?

&%) = glx) = (47)

Note that x*(1 — x) < 4/27 for 0 < x < 1, so that g(x) < 0
for 0 < x < 1if 0 < (27/4)c. Proceeding as in the previous
case, this entails fn1 Y(y)dy > 1, that is, F < 1/N. Actually, this
inequality is reversed only when o > o2 > (27/4)c, where o2
is the value of o such that f; y(y)dy = 1.

If ¢2/16 is small, then

g(x)~ —c +x*(1 —x)o? (48)

for 0 < x < 1, from which

V() ~ 142y — 20° (%f - %y‘) (49)

and

600 ~ 1+ 20y — 1) — 202 (1y3 — iy i) (50)
EM 12

for 0 <y < 1. Then, ¥(1) = 1 when

o2 =2 ~ 12, (51)

while [ ¥(y)dy = 1 when

o? =02~ 15¢ (52)

and [ (y)dy = 1 when

o2 =02, ~10c. (53)

Note that 02 and o2, are larger in case 2 than in case 1 and satisfy
the inequalities 62 > o2, > o2, > c (see Fig. 1c,d and Table 1).
The conditions for Fc > 1/N, Fc > Fp and Fp < 1/N remain the
same as in the previous case, that is, 02 > 02,02 > 02 and 0% >
o2, respectively, but these conditions hold in a reverse order
as the variance of the payoff for defection against cooperation
increases.

We conclude that selection tends to fully favor the evolution of
cooperation when the variance of the payoff for defection against

cooperation increases.
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53 Case3io} =0} =0,0}=0}=0>>0

This is a situation where the payoffs for defection have a
certain level of uncertainty while the payoffs for cooperation are
much less variable.

In this case, the function g(x) in (27) takes the form

—c+(1-%) (€ + (1 - xP) 02

1+x(1-x) (@ +(1-x?)0? 4

&%) =gx) =
This function satisfies g(0) = o2 — ¢, g(1) =
—0%(34+0%—c)and g'(1) = —(c + 1)o%.
Analogously to case 1, we have g(x) < 0for0 < x < 1
when o2 < c. On the other hand, if 02 > c, then g(x) is a
decreasing function, while ¥(y) and ¢(y) are convex functions
on [0, 1] (see Appendix C for details). Therefore, three threshuld
values of o satisfying the inequalities ¢ < az < o2 -
can be found (see Appendix E for details). As in case 1, 1f o? a’
and am are the values of o2 such that fo yy)dy=1v¢(1)=1
and fo ¢(y)dy = 1, respectively, then Fc > 1/N, Fc > Fp and
Fp < 1/N when 62 > 02, 0% > 02 and 02 > o2, respectively,
with ¢ < 62 < 0 < 02, (see Appendix E and Figs. 1e,f and 2).
If 02/16 is small, we have the approximation

g~ —c+(1-x)(+(1-x7)0? (55)

for 0 < x < 1, from which

—c, g'(0) =

3 4 1
Yy~ 1+ 2y — 207 (y75y2+5y375y‘) (56)
and
3 4 1 1
~142(y—1)-20% (y—2y*+ -y ——y* = =) (57
)~ 14+2c(y— 1) a(y Yty =y 3>()

for 0 <y < 1. Then, ¥(1) = 1 when

ol =0l ~3c, (58)
while ﬁ] ¥(y)dy = 1 when
15¢
2=l — 59
o’ =0 7 (59)
and J ¢(y)dy = 1 when
o’ =02, ~5c. (60)

Comparisons between numerical and approximate values are
made in Table 1.
Note that

&%) — &%)

_ (14 ex)(1 —x)x%0?
T (T x(1—xP0?) (1+x(1—x) (2 +
for 0 < x < 1. Thus, we have

'y Yy
¥3(y) = exp (72 fo gz(XJdX) < exp (—2 /0 gl(x)dx) =(y)

(62)

=27 >0 (61)

and

1 1
$3(y) = exp (z / g;(x)dx) > exp (2 / gl(X)dX) =¢1(y) (63)
y y

for 0 < y < 1. This implies that the probability of ultimate
fixation of cooperation (defection) introduced as a single mutant
in case 3 is larger (smaller) than in case 1 for all values of 2 > 0.
Moreover, the values 02, 02, and o2, are smaller in case 3 than
in case 1.

In conclusion, increasing the variance in both 0.32 and af is

always more favorable for the evolution of cooperation than
increasing the variance in only one of them.

54. Case4: 0} =0} =0l >0,02=0}=02>0

Here, this is an example where the variances of the payoffs
for cooperation are fixed while the variances of the payoffs for
defection are changing.

With the given variances, the function g(x) in (27) takes the
form

84(x) =g (x)
(=)@ A+ -2 o —x(¥* +(1-xP) of 4
- 1+x(1—x) (2 +(1-x2) (62 + 02) (64)

which satisfies g(0) = 02 — ¢, g(1) = —c — cr

In this case, the functions g(x) v(y) (see Flg 1g,h) and ¢(y),
and the threshold values of o2, namely o2, 02, and o2, have
the same properties as in cases 1 and 3 (see Appendices C and E,
and Fig. 2). Moreover, if (62 + 62)/16 is small, then we have the
approximation

gX)~ —c+(1-2)(F +(1-x?) 0 —x (& + (1 - x)?) 0§ (65)
for 0 < x < 1, from which
3 4 1
V) & 142y =207 (y = Sy oy — oyt
2 3 2
1 2 1
202 (22— 234 Lyt 66
+Uo(2y ¥ 3y (66)
and
3 44, 1 1
P~ 1+ 2y~ 1)~ (yffy +3y 77},47,)
1 2 1
+2ag( V-4 y"—f) (67)
for 0 <y < 1. Then, ¥(1) = 1 when
o? =02 ~3c +GD, (68)

while fo ¥(y)dy = 1 when

15¢ + 305
ol=oln et 3oy (69)
7
1
and f; ¢(y)dy = 1 when
15¢ + 703
ol = f*x%fo' (70)

Some values are given in Table 1. Since the threshold values
o2, 62, and o2, for o? increase with o, these results reveal
that larger is the value of o7, larger must be the value of o2
for selection to favor the evolution of cooperation in any sense.
Moreover, note that 02, > o2, > 0@

The main cunclusron is that a hrgher level of uncertainty in
the payoffs for defection than in the payoffs for cooperation is
required for the evolution of cooperation to be fully favored by
selection. This is somehow in agreement with results that can be
found for the RPD in an infinite population (Li et al., 2019).

55. Case 5: 0t =0} =02=02=02>0

This is a situation where all the variances of the payoffs are of
the same magnitude.
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With all variances equal to o2, the function g(x) in (27) takes
the form

—c+(1-2) (@ +(1—x?)o?

1+2x(1—x) (¢ + (1 —x2) 02’ on

&5(x) = glx) =
which satisfies g(0) = 02 — ¢, g(1) = —c — 2.

In this case, results (35) and (36) can no longer determine the
monotonicity of g(x) with respect to o. Actually, it may be an
increasing function for x near 0, and a decreasing function for x
near 1. Nevertheless, it can be shown that y(y) is decreasing with
respect to o for y € (0, 1], which guarantees the existence of
o2, while 62, and o2, do not exist (see Appendices D and E, and
Fig. 1ij).

If 2/16 is small, then we have the approximation

g~ —c+(1-2%) (¥ +(1-x7) 0> (72)
for 0 < x < 1, from which
Y(y)~ 142y — 202 (y — 297 +2y° —y*) (73)
for 0 <y < 1. Then, fﬂl ¥(y)dy = 1 when
15¢
2oogln —. 74
o’ =0} 2 (74)

Note that o2 is the only threshold value of o2 in this case (see
Table 1 for particular values).

Therefore, the evolution of cooperation can be favored by
selection, that is, F- > N~', but cannot be fully favored, which
means that we cannot have F- > N~! > Fp. This is in agreement
with the conclusion in case 4.

6. RPD with additive payoffs

In this section, we consider a RPD game with additive payoffs.
At time t > 0, cooperation (C) incurs a random cost c(t) > 0 to
the individual adopting it, but provides a random benefit b(t) > 0
to the opponent, while defection (D) incurs no cost at all, so that
the random payoff matrix takes the form

m(t) m(t)) _ (b(t) —c(t)  —c(t) 75)
n3(t)  na(t) b(t) o)
The main difference with the model in the previous section is that

the payoffs are not independent.
Here, c(t) and b(t) are assumed to be random variables with

E(b(t)) = upN~' > 0, (76a)
E(c(t)) = ucN~' > 0, (76b)
Var(b(t)) = oZN71, (76¢)
Var(c(t)) = 0N, (76d)
Cov(b, c) = opN1, (76e)

so that the population-scaled parameters in (3) for the means,
variances and covariances of the payoffs are given by

M1 = My — e, (772)
2 = —[he, (77b)
13 = Wb, (77¢)
e =0, (77d)
and

17]2 = 0,72 + 03 — 20pc, (78a)
o =02, (78b)
032 = o,,z, (78¢)

012 = 02 — O, (78d)
013 = OF — O, (78e)
023 = —0yc, (78f)
o =0u=0u=0;=0. (78g)
Substituting the above expressions into (13) and (14) yields
m(x) = x(1— X) (—pc + Xope — 02)) (79)
and

v(x) = x(1—x) (1+x(1—x)o?) (80)

as drift function and diffusion function, respectively. Note that crb2
does not come into play in these functions.
If pic, a} and oy are of the same small enough order, then

'y

Y
~1 —2f (=t + X(ovc — 02)) dx
0

= 1+2ucy — (one — 02) ¥ (81)

as in Lessard (2005). Therefore, the conditions

1 1
f Yy <1, ¥(1) <1, / Yy > ¥(1), (82)
0 0
become
3
Ohe =07 > 3e, O =0 >2e, Ohe =0l > Spe, (83

respectively. These are the conditions for selection to favor the
evolution of C, favor more the evolution of C than the evolution
of D, and disfavor the evolution of D, respectively. Since . > 0,
these conditions can hold only if opc > crf, in which case the first
condition is the most stringent one and the third condition the
least stringent one.

In the particular case b(t) = rc(t) where r > 0 is a constant,
the above conditions reduce to

He He 3 (ke
r>1+3(a—z), r>1+2(d—2), r>1+5(a),(34)

c ¢

respectively. These conditions can hold for r > 1 if o2 is large
enough compared to .. Moreover, it can be shown that at least
the second condition does not depend on the assumption that o2
and oy, are small and of the same order (see Appendix F).

7. Repeated RPD

We turn now our attention to a RPD game that is repeated a
random number of times. There are two pure actions, coopera-
tion (C) and defection (D), and the payoffs in a single round of
interaction between two players at time t > 0 are given by the
random game matrix

R(t) S(t)

(T(r) D) ®5)
Here, R(t) and S(t) are the payoffs to action C against C and D,
respectively, while T(t) and P(t) are the corresponding payoffs to
action D against the same two actions. These payoffs are assumed
to be independent random variables whose distributions do not
depend on time t > 0. Moreover, their expected values determine
a classical PD game. Actually, we assume
E(R(t)) = ugN~' > 0

E(S(t) = usN™' > 0,

(86a)
(86b)
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E(T(t)) = urN~' > 0,
E(P(t)) = upN™' > 0,

(86¢)
(86d)

with ur > pug > pp > ps and 2ug > ur + wps. Finally, at
each time t > 0, the number of rounds of interaction between
the same two players is a random variable n(t) > 1 that is
independent of R(t), S(t), T(t) and P(t).

In this repeated RPD game, we consider two strategies, Tit-
for-Tat (TFT) and Always-Defect (AlID). In a pairwise interaction,
a TFT-strategist uses action C in the first round and, in each of the
next rounds, copies the action previously used by the opponent.
On the other hand, an AllID-strategist uses action D in all the
rounds. Thus, the payoffs to these two strategies at time t > 0
are given by

m(t)  na(t)
n3(t)  na(t)
_ ( n()R(t)

() + (n(t) — DP(E)
T(t) + (n(t) — 1P(t) ) @7

n(t)P(t)

Moreover, the population-scaled parameters (3) for the means,
variances and covariances of the these payoffs take the form

1 = pugE(n(t)), (88a)
= ps + upE(n(t) — 1), (88b)
= pr + weE(n(t) — 1), (88¢)
= wpE(n(t)), (88d)

and

of = o E(n(t)), (89a)

07 = o¢ + opE((n(t) — 1), (89b)

o] = o} +oFE((n(t) — 1), (89¢)

o} = ofE(n(t)), (89d)

oy = opE(n(t) — 1), (89)

024 = 034 = oFE(n(t)(n(t) — 1)), (89f)

op=o0op3=014=0, (89g)

where 67 = NVar(R(t)), 02 = NVar(S(t)), 6 =
o = NVar(P(t)).
Substituting the above expressions into (13) and (14) yields

NVar(T(t)) and

m(x) =x(1 —X)(Ms — mp +x(ug — ps — pur + pp)
+ X(pr — ep)E(n(t) — 1)
—x azE(n(t)z) —x(1— x)zas +x2(1— x)crr2
+(1-x)of
x E(((n(t) = Dx + 1= x)((n(t) = 1)1 +x) + 1 — x)))
(90)
and

u(x) =x(1— x)(l +23(1 = x)oZE((t)?) + X(1 — x)%0?

+23(1 = 007 +x(1 — oPE((n(t) — T+ 1— x)2)>
(91)

as drift function and diffusion function, respectively. Assuming
that ug, us, ur and wp, as well as U,?, 052, UTZ and 0,3, are of the
same small enough order, we have
Y om(x
-2 / () dx (92)
0

_ me
s = (-2 [ er) ~ (1=

as in Lessard (2005). Then, the condition for the evolution of TFT
to be favored by selection when introduced as a single mutant,
which is given by

1
[ vour < (3)
becomes
/ / mx) g0y > 0. (94)
x(1—

Using the expression of m(x) given in (90), this condition can be
written in the form

1 1
us — pp + 5(#x — ks — pr +pp) + *(ﬂﬁ — pp)E(n(t) — 1)

1
— EE(n(t)z)a,g (75 + UT + CPUP >0, (95)

10
where

1oy
cp = 2E((n(t) — 1)2)/; fo (1 = x)x(1 + x)dxdy

1
+ 2E(n(t) — 1)[ /y(l — X)%(1 4 2x)dxdy
0 0

1 ry
+2f [(l—x)xdxdy
0 0

_7 C19y4 LEm) — 1)+ 2
= 30E((n(t) 1°)+ 10E(n(t) N+ 5> 0. (96)

If all the variances of the payoffs vanish, then the condition (95)
corresponds to the one-third law of evolution (Nowak et al., 2004;
Lessard, 2005), since it says then that the mean payoff to TFT
exceeds the mean payoff to AlID when the frequency of TFT
is equal to 1/3. Note that this condition holds if the expected
number of rounds E(n(t)) is large enough, since pug > wp. On the
other hand, when the variances of the payoffs do not vanish, we
see that an increase of o7 and o7, or a decrease of o and o7,
makes it easier for the evolution of TFT to be favored by selection.
Similarly, from

#() = exp (zf ﬂdx) z1+2f1 m g, (97)

v(x) y X(1-x)

the condition for the evolution of AlID not to be favored by
selection when introduced as a single mutant, that is,

1
fo 0y = 1, 98)

reduces to

[ o] [ oo

which is equlvalent to

2 2
Ms — pp + —(ux — ps — pr + pp) + —(ILR — pp)E(n(t) — 1)

(100)

755

B 100'1 +cpop > 0,

2
- B —
where

4 3 1
cp = —E((n(t) — 1) + —E(n(t) — 1)+ — > 0. 101
? = 7o E(n(E) = 1)%) + o E(n(t) = 1) + 0 > (101)
Therefore, an increase of o and o7, or a decrease of o and o2,
makes it also easier for the evolution of AllD not to be favored by
selection.
Finally, we have

1
wlm]—z[n mdx<1 (102)
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when
1
m(x) 1
Y k= s — (g — s —
fo XA-% X = pus — pp + 2(MR s — AT + ip)

+ 2 (115 — e JECH(E) — 1)

2
- 1E(n(r)2)a,§ - la; + la,Z +cpo > 0,
4 12 12
(103)
where
1 S 1 1
o = ZE(((t) = 1)+ SEm(O) — 1+ 5 > 0. (104)

This means that an increase of o and o7, or a decrease of o

and asz, makes it easier for selection to favor more the evolution
of TFT than the evolution of AlID.

8. Discussion

Environmental noise in the payoffs of a matrix game may have
important effects on the evolutionary dynamics, and even change
the outcome of evolution. As a matter of fact, the dynamics
is driven not only by the expected values of the payoffs but
also by their variances. Variability in payoffs can push the time
average of a population state far from its interior Nash equilib-
rium (Broom, 2005) or even change the stability of a fixation
state (Stollmeier and Nagler, 2018). In the case of a deterministic
one-round Prisoner’s Dilemma (PD), where all the payoffs are
constant, cooperation can never be favored by natural selection.
However, introducing uncertainty in the payoffs makes it possible
for cooperation to be favored.

Assuming a Randomized Prisoner’s Dilemma (RPD) with in-
dependent payoffs in a large finite population, we have shown
that, if the means and variances of the payoffs are of the same
order of magnitude given by the inverse of the population size
N, increasing the variance in the payoffs for defection, tends to
promote the evolution of cooperation (Conclusion 1). Moreover,
if the payoffs have additive expected values, decreasing the vari-
ance in the payoffs for cooperation, at least for an expected cost
for cooperation small enough, has the same effect (Conclusion 2).
More precisely, increasing the variance of the payoff for defection
against defection (case 1) increases the probability of ultimate
fixation of cooperation introduced as a single mutant, F¢, while
increasing the variance of the payoff for defection against co-
operation (case 2) decreases the probability of ultimate fixation
of defection introduced as a single mutant, F,. Increasing both
variances simultaneously (cases 3 and 4) enhances the effect.

In particular, we have shown that the evolution of cooperation
is fully favored by selection, in the sense that Fc > N~' >
Fp, where N~! is the probability of ultimate fixation of a sin-
gle mutant under neutrality, if the population-scaled variance
of the payoffs for defection against cooperation and defection,
a2, exceeds (15c + 707)/3, where of is the population-scaled
variance of the payoffs for cooperation against cooperation and
defection (case 4 and case 3 for aaz = 0). Moreover, as o2 is
increased, the conditions for - > N~', Fc > Fp, and Fp <
N~! are satisfied when 0? > o2, 0® > o2, and 02 > o2,
respectively, where o2, 02, and o2, represent three increasing
threshold values (Fig. 2). These are the conditions for selection
to favor the evolution of cooperation, favor more the evolution of
cooperation than the evolution of defection, and disfavor the evo-
lution of defection, respectively. We have analogous conditions
with increasing threshold values when only the population-scaled
variance of the payoff for defection against defection is increased
(case 1), and with decreasing threshold values when only the

population-scaled variance of the payoff for defection against
cooperation is increased (case 2).

Our results are in agreement with the fact that, in the case of a
RPD in an infinite population, a larger variance of the payoffs for
defection is required for C-fixation to be stochastically locally sta-
ble and D-fixation stochastically locally unstable (Li et al., 2019).
On the other hand, they are significantly different from results
obtained with constant payoffs in finite populations. For instance,
in the case of a PD game in a graph-structured population and the
case of a repeated PD game in a well-mixed population (Nowak
et al,, 2004; Nowak, 2006), the condition Fc > N~! is sufficient
for Fc > N~!' > Fp.

Note that more uncertainty in the payoffs for defection than
for cooperation makes sense. Among the reasons, defectors are
more isolated than cooperators and may not share with others
increments or decrements of surrounding resources caused by
variations in the environment. They may also suffer from pun-
ishment or lack of reward from others. Even if the expected
payoffs may still be higher for defection than for cooperation,
their variances may also be higher.

On the other hand, when increasing the variance of all the
payoffs (case 5), we have shown that selection can favor the
evolution of both cooperation and defection in the sense that
Fc > N™'and F, > N~'. Note that, since genotypic fitnesses
in a random mating diploid population can be viewed as payoffs
in random pairwise interactions of haploid individuals (in which
case the payoff matrix is symmetric), our results extend previ-
ous results stated without proofs for population genetics models
(Karlin and Levikson, 1974). Increasing the variance of the payoffs
for defection (cooperation, respectively) pushes the system away
from fixation of defection (cooperation, respectively), and at the
same time promotes fixation of cooperation (defection, respec-
tively). When the variance of all the payoffs increases, the system
state is more likely to stay away from fixation. The conclusion
might be of general validity in agreement with the claim found in
Karlin and Levikson (1974) that “variance in selection intensities
compensate for the unfavorable initial frequency of an allele”.

Of further interest is the effect of the variances of the cost and
benefit in a RPD with additive payoffs which are not indepen-
dent. At least when the population-scaled means and variances
of the cost and benefit, as well as their population-scaled co-
variance, are of the same small enough order, the conditions
for e > N™'\, Fc > Fp and F; < N~! take the form op. —
o2 > 3uc, opc — 02 > 2uc and ope — 02 > 3puc/2, respec-
tively, where p. is the population-scaled expected cost, o} the
population-scaled covariance between the cost and benefit, and
U} the population-scaled variance of the cost. The first condition
is the most stringent one and the last condition the least strin-
gent one, but they all require that opc > o2 since pc > 0. Of
course, this does not occur if the cost and benefit are constants
or independent random variables.

In the case of a repeated RPD game, the payoffs to TFT and
AlID in pairwise interactions with a random number of rounds
between the same players are generally not independent even if
the payoffs to cooperation and defection are independent in each
round. Assuming that the population-scaled means and variances
of these payoffs are of the same small enough order, we have
shown that an increase in the variances of the payoffs for defec-
tion, or a decrease in the variances of the payoffs for cooperation,
makes it easier for Fjr > N~ Fr > Fyp and Fyp < N1
to hold. Since fixation of TFT means fixation of cooperation, the
conclusion is that these conditions tend to promote the evolution
of cooperation in agreement with our results for a one-round RPD
game.

As a final remark, our results are based on a diffusion approx-
imation that has been ascertained for a randomized matrix game
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with payoffs that have expected values, variances and covariances
of order given by the inverse of a large population size N. This ap-
proximation can be used to study not only fixation probabilities,
but any dynamical properties.
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dix A. Conditional of Ax

First fourth moments of a binomial distribution

Let X be a random variable such that NX follows a binomial
distribution of parameters N and x, denoted by B(N, x). The first
moment of % is E(X) = x. As for the second moment, we have

2 S (LY (Mg et
K@) =) v) L fa=x

=0

'32 I:Zx(l—l)( )x(l XN

i=0

+§( )x(l )"**}

N-2 NE i X
|:N(N—1)lezz:(liz) 21 —x)V }+ﬁ
:N;1X2+7

:xﬂ-u. (105)

Analogously, using the above expression for E(¥?), the third mo-
ment is given by

N S\ 3
23y — ' N ior i
E(x)_ZO(N> (i)x(l x)
x(N—1)2|:N

i=1

(e
|

(i—12+20(-1)+1
(N —1)?

l)*(lfl)j|

+o(N°1).

7

)((N—l)2 x(l—x)

2+

3x%(1—x)
— 3
=X +7N

Finally, as for the fourth moment, we find
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=
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(i—1P+3(—12+3(i—-1)+1
b

(x’+ LG _x)

=x+ +o(N7"). (107)

First conditional moments of Ax

Given that x(t) = x, the frequency change Ax = x(t+ At)—x(t)
has the same probability distribution as X — x, where Nx ~
B(N, x'). Here, the parameter

XTI,

(1 om ae®
is a random variable with
I = 1+xm +(1-x)n2 (109)
and
I, = 1+ xn3 + (1= X)n4, (110)

where n; has mean N~'y;, variance N~'6? + o(N~") and covari-
ance N~'oj; + o(N~!) with n; for i,j = 1,..., 4 with j # i. Note

that

x(1+ Py
= <1+—P3) (1)
where
Py =xm1 + (1= x)n2, (112a)
Py =xn3 + (1 —x)na, (112b)
P3 = xP; + (1 - X)P,. (112¢)

The random variables P; for j = 1,2 are homogeneous linear
functions of 91, . .., 14, while P; is a homogeneous linear function
of P; and P,. Thus, the moments of P; and P, satisfy

E(P1) = N"" (xp1 + (1= x)a) , (113a)
E(P,) = N7" (s + (1 — X)pa) (113b)
E(P}) = N~" (¥*0f + (1 — x)’07 + 2x(1 — x)o1,) + o(N "),
(113c)
E(P}) = N7 (03 + (1 — )0 + 2x(1 — X)o34) + o(N™1),
(113d)
E(P1Py) = N~ (o013 +X(1 — X)(014 + 023) + (1 — x)024)
+o(N71), (113e)
and
E(P{P;) = o(N"") (114)

as soon as k, | are non-negative integers such that k + [ > 3.
Therefore, we have

E(X) = E(x(1+ P1)(1— P+ P3)) + o(N"")
=E (X+x(1—x)(P; — Py) +x(1 — X)(P, — Py)
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X (XPy + (1 —x)P,) ) +o(N~")

=x+x(1 - x)(E(P,) — E(P,))
+x(1 — x)(—xE(P) + (1 — X)E(P§) + (2x — 1)E(P1P,))
+o(N7")

X(1—x
g(ﬂsz +x(p1 — p2 — p3 +;L4))

Jrx(lw—x)(

=x+
—xo? —x(1 - x)*0? — 2x*(1 — x)on
+ 241 = x)07 + (1 — %P0 + 2x(1 — x)%034
+(@x = 1) (Pora + (1 = x)owa + 02) + (1~ xPo) )
+o(N71). (115)
Since
E(Ax|x(t) = x) = E(X — x) = E(X) — x = E(xX') — x,
the first conditional moment of Ax is given by

x(lN— x)(

(116)

E(Ax|x(t) = x) = M2 — Mg

+X(M1 — W2 — M3 +ll«4)

+x%(013 — 07) + X(1 = x)(2034 — 014 — 023
+ 024 — 03)

+2(1 = x)(~2012 + 014 + 023 — 013 + o)
+(1 =%} —024))

+o(N7"), (117)
while its second conditional moment can be expressed as
E((AXP[X(t) = x) = E((X — x)?)

=E(@ — 2k + %)

—E (x’z + "“T_’()) — 2E() + ¥

_ . X(1-¥)

=E (X —x) )+E<T)

=E(¥ —x?)+ ’? +o(N71). (118)

Moreover, we have
E((X — ) = E((x(1 = )P, — P1)Ps — 1)°) + o(N ")
=E(}*(1 = x)*(P, —P1)?) + o(N"")
— x)2
= W(ﬂaf +02)+(1— 2o +02)
+2x(1 = x)(012 + 034)

— 28%013 — 2x(1 — X)(014 + 023) — 2(1 — x)zaz4)

+o(N7"). (119)
Therefore, we get
E((A%)*|x(t) = x)
= w (1423(1 = x)(0? + 0% — 2013)
+x(1—x(0F + 07 — 2024)
+222(1 — X)X(012 + 034 — 014 — 023)) + o(N"). (120)

Finally, the fourth conditional moment of Ax can be expressed as
E((Ax)*[x(t) = x) = E((& — x)*)
=E(¥ — 4x%° + 6x°% — 4x°% + 1)

_ 4 BX3(1—X)
=E (X + N )
B s 3X%(1-X)
4XE ()/ + N

X(1-x

+ 6x°E (x'z + %)

—4°E(X)+x* + o(N"")
=E(¥ —x")+ %E()((l — X)X —x))

+o(N7"). (121)
Note that
E((X — %" =E(x*(1 —x)*(P, — P1)*) + o(N"") = o(N"") (122)
and
E(X(1-X)¥ —x)?)

=E(X(1— X)W (1—x)*(P, — P1’) +o(N"") = O(N""), (123)
from which we conclude that E((Ax)*|x(t) = x) = o(N~").
Appendix B. Partial derivatives of g(x) with respect to o?

The function g(x) is defined as the drift function in (13) divided
by the diffusion function in (14), that is,

=1
h(x) — (o2 + x(1 — x)?0? — x3(1 —x)o? — (1 — x)’a3)
= , (124)
14231 = X)o7 +07) +x(1 = x)(07 +07)
where
h(x) = 2 — pa +x(u1 — p2 — w3 + pa)- (125)

Then the partial derivatives with respect to o > 0 for i =
1,...,4 are given by
ag(x) _ * (14 (1 —x)h(x) + x*(1 = x)o? + (1 — x)°07)

o7 (14280 - 207 +0) +x(1 —xP0F +02)°

(126a)

agx) _ (1 —x)? (14 (1 = x)h(x) + ¥(1 — x)o? + (1 — x)’03)
07 (1400 - 0o} + 03+ X1 - 2P} +0F))’
(126b)
201 — _ 342 202
Bg()z() __X (1—x) (1 - xh(x) + X0} + x(1 — x)03) L (1260
905 (14 23(1 = x)(0? +03) +x(1 = x)%(03 + 07))
dg00) _ (1—x) (1 — xh(x) + X0 + x(1 — xP02) (1264

30 (14231 = x)(02 + 02) +x(1 - x)%(02 + 02))°
Under the assumptions p4 > pz and u3 > w1, we have h(x) < 0
for 0 < x < 1, in which case

ag(x

2
03

(127)

and
9g(x) -0
3042
On the other hand, the conditions
Bg();) <0
o1

(128)

(129)

and

9,

5 _,
30}

(130)
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hold if and only if
1+x%(1—x)o? + (1 —x)°0?

h(x) > B

(131)

Since the right-hand member in (131) is less than —1 for 0 < x <
1, a sufficient condition for (129) and (130) to hold is h(x) > —1
on (0, 1).

dix C.
incases 1,3,4,5

icity of g(x) and of ¥(v), ¢(v)

In case 1, with 67 = 0} = 0Z = 0 and 07 = o? > 0, the
expression of g(x) takes the form
—c+(1—x)P0?
1+x(1—x)302’
whose derivative is given by

gx) = (132)

, 02(1— X2 [(c — 21— x)* — 032 + (2 — x)?) — 3]
) = - .
(1+x(1—x)0?)
(133)

If 62 > c, then g'(x) < 0 for 0 < x < 1. Thus, g(x) is a strictly
decreasing function on [0, 1].

In case 3, with 07 = 07 = 0 and 0 = 67 = 62 > 0, we have
—c+(1—x)ac?

1+x(1—x)ac?’ (134

g =

where a = x*4-(1—x)?. Under the condition 6> > c, the derivative

of g(x) for 0 < x < 1 is given by

2x — 3a+ ¢ (22 + (1 — 4x)a) — 0%a*(1 — x)?
(1+x(1 - xac?)’ '

g = (135)

where 2x — 3a = —6x® + 8x — 3 < —1/3 < 0 and
¢ (2¢ +(1—4x)a) — 0’d*(1 - x)
<c(2¥ +(1 - 4x)a) — ca®(1—x)?
=c(a(l—4x— (1—x* —x*(1 - x)%) + 2}
= (a(—~7 + 6x — 2¢%) + 2)
= o (—4x* + 16x° — 28x” + 20x - 5)
=—c (4x — 1)* +(2x — 1))
<0. (136)

Therefore, g'(x) < 0 for 0 < x < 1. Consequently, the function
&(x) is strictly decreasing on [0, 1].

In case 4, with 07 = 62 = 0¢ > 0,0? = 62 = 0% > 0 and
a=x*+(1—x)? we have
—c + (1 —x)ao? — xao}

1+x(1—x)a(c? +02) (137)

8(x) =
Under the condition o > c, the derivative of g(x) for 0 < x < 1
is given by

, 1
g=—
(1+x(1 = x)a(0? + 62))

x [(—6x2 +8x — 3)02 + (—6x — 4x — 1)o2

+(0? +0g) (—c(2x — 17 — o2a*(1 — x)* — oﬂzazxz)],
(138)

where —6x* +8x—3 < —1 <0, —6x —4x— 1 < 0 and
—c(2x — 1) —o%a®(1 —x)* — aazazx2

< —c((2x— 17 + (1 —x?) — oga*x’

= —af (4x — 1) + 2x — 1)°) — oga’s®

<0. (139)

Thus, g'(x) < 0 for 0 < x < 1, from which the function g(x) is
strictly decreasing on [0, 1].

Finally, in case 5, with 67 = 0 = 07 =07 =02 > ¢ > O and
a = x?+ (1 —x)?, the expression of g(x) takes the form

—c + (1 - 2x)ao?

8= 1+ 2x(1 —x)ac?’ (140)
whose derivative for 0 < x < 11is
£ = (—12¢ + 12x — 4)0% + 202 (c(1 ; 2x)° — o’a’) - 4)
(14 2x(1 = x)ac?)
where —12x*> + 12x —4 < —1 < 0 and
c(1—2xP —od® < —c ((2x —1%+ u3)
= —20¢* ((2x — 1) + 2a(x — 1))
<0. (142)

We conclude that g'(x) < 0 for 0 < x < 1, from which the
function g(x) is strictly decreasing on [0, 1].

In addition, with ¥(y) = exp (-2 foyg(x)dx) > 0, ¢(y) =
exp (2 fy‘ g(x)dx) > 0and g'(y) < 0for 0 <y < 1in cases
1,3, 4, 5, we have

V() =2v() 28°0) —£') > 0 (143)
and
¢'(y) = 20(y) (28°0") —£'B) > 0 (144)

on (0, 1), from which ¥(y) and ¢(y) are strictly convex functions
on [0,1].

Appendix D. Monotonicity of y¥(y) as function of ¢2 in case 5

In case 5, with 6 = 07 = 0? = 0} = 02 > 0, we have
—c + (1 - 2x)ao?
1+ 2x(1 —x)ao?’

where a = x? + (1 — x)>. We show that, with respect to o > 0
and for every y € (0, 1], the function

20 = (145)

In 4
k(y) = 7%@/) = / g(x)dx (146)
0

is strictly increasing so that
Y (y) = exp (—2k(y)) (147)
is strictly decreasing. For y € (0, 1), we find
Ak o) Vaex(1—-x)—(2x—1

0) [ 80y [(9CA DBy
do o 00 o (1+2ax(1 - x)0?)

It is easy to check that the integrand in (148) is positive on [0, x*)
and negative on (x*, 1] with
L1 Varl-1
= —.
2 2c
This implies that the derivative in (148) is strictly increasing on
[0, x*) and strictly decreasing on (x*, 1]. Moreover, 9k(0)/d02 = 0

(149)
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and
ak(1) =/‘ aex(1—x)—(2x — 1))dx
d0” Jo (1+2ax(1 - x)02)
_ [Pa@a(—x-@2x-1)
B /.; (14201 —x)02)’
f‘ aex(1—x)—(2x — 1))dx
b (14201 - x)02)
_ [fa@al—x)—(@2x-1)
B fa (1+2a(1 - x)02)
f% a@a(l —x)+@2x-1)
o (1 + 2ax(1 — x)oz)2
_ [ 4acx(1 —x)
B /c; (14 2ax(1 —x)crz)z
We can conclude that 3k(y)/do? > 0 for y € (0, 1].

dx

dx

dx > 0. (150)

Appendix E. Existence of o2, 02, and 02,, in cases 1to 5

In cases 1 to 4, it is easy to check that
lim g(x)=x"". (151)
o200

From (35) and (36) shown in Appendix B, g(x) for 0 < x <
strictly increases with respect to o2 > 0 and, therefore, ¥(1
exp(—2 fol g(x)dx) strictly decreases. Moreover, when o2 = 0,

we have g(x) < 0 for every x € [0, 1]. This implies that ¥(1) > 1
for 02 > 0. On the other hand, owing to Fatou’s lemma, we have

o

o200

1 1 1
lim glx)dx = ligninff g(x)dx Zf lim g(x)dx.  (152)
0 o200 Jo 0 o200

Therefore, we get
1
lim ¢(1)= lim exp (—2/ g(x)dx)
o200 02500 0
1
< exp <—2] lim g(x)dx)
0 o2-00
1
= exp (—2/ x"dx)
o

=0. (153)

We conclude that the equation (1) = 1 has a unique solution
with respect to o > 0, denoted by ¢2,. Then, we have Fc > Fp
if and only if 02 > 02,

In cases 1, 3 and 4, where ¥(y) is a strictly convex function,
the conditions ¥(0) = 1 and ¥(1) = 1 when 0 = o2 entail
fo‘ ¥(y)dy < 1 when 0? = o2. Since this integral strictly
decreases with respect to o and fol Y¥(y)dy > 1 when o? =0,
the equation fo‘ ¥(y)dy = 1 has a unique solution with respect to
o2 between 0 and o2, denoted by o2. Then, we have Fc > N~!
if and only if 62 > o?2.

Moreover, we know that Fp = Fc > N~! wheno? = o2, Using
Fatou'’s lemma and the inequalities e* > 1+ x > x for x > 0, we
get

1
lim Fp = lim —
o2 azﬁOGN/.O o(y)dy

1 1 -1
= (N lim f exp (2 / g(x)dx) dy)
o2—00Jo 'y

-1

< (N/lexp (2/1 lim g(x)dx) dy)
0‘ 'y .,
= (N/; exp (22— 1) dy)

-1
< (ZN/]UI‘Z — l)dy)
0

=0. (154)
Owing to (35) and (36) proved in Appendix B, we know that
d(y) = exp (2 fy ! g(x)mc) is strictly increasing with respect to
0% > 0fory € [0,1). Therefore, Fp is a strictly decreasing
function of o'2. Thus, there must exist a threshold value of 0% >
o2, denoted by 62,,, which is the unique solution of the equation
J2 ¢y = 1.1f o> > 02, then Fy < N~".

In case 2, it is still possible to ascertain the existence of o2,
since fol ¥(y)dy > 1 when o2 = 0 and

1 1 'y
lim / w(y)dygf exp(—Z/ x"dx)dy:O,
o200 Jo 0 0

However, ¢ < 02 < o', can no longer be guaranteed.
In case 5, we have

—c + (1 - 2x)ac?

1+ 2x(1 — x)ac?

with a = x? + (1 — x)2. Moreover, we find

fn ' goodx = /0 ! g0+ / ' gt
2

1

B ,
:/Zg(x)dx+fig(1 — X)dx
[ [

5 ¢ + (1 —2x)ac?
= — T dx
b 1+ 2x(1—x)ac?

/'% —c + (2x — 1)ao?
o 1+ 2x(1 —x)ao?

1

2 1

=-2 / —————dx.
o 1+2x(1-x)ac?

Since the integrand in (157) is bounded by 1 and uniformly
converges to 0 as 02 — oo on [g, 1/2] for € > 0, we have

1

iim ¥(1,0%) = lim exp (—2] g(x)dx)
01

= exp (—2 lim f g(x)dx)
o200 Jo

1
2
=exp | 4c lim] %dx
o200y 1+ 2x(1—x)ao?

=1 (158)

From Appendix C, we already know that (1) is strictly decreas-
ing with respect to o2 for y € (0, 1]. Thus, we have ¥(1) > 1
for o> > 0, which implies that Eq. (33) can never be satisfied.
As a matter of fact, we always have Fc < Fp and o, does not
exist. Moreover, since ¢(y) is a strictly convex function on [0, 1]
with ¢(0) = ¥(1)~' < 1and ¢(1) = 1, we have ¢(y) < 1 for
y € [0, 1). This tells us that condition (32) can never be satisfied.
We always have F, > N~' and o2, does not exist. The only
threshold value of o2 in this case is o2, since y(y) is a strictly
convex function on [0, 1] and a strictly decreasing function with
respect to o for y € (0, 1] (see Appendix D). Its boundary value

(155)

gx) = (156)

(157)
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¥(0) = 1 with ¥/(0) = 2c — 20% < 0 for o2 large enough, along
with Eq. (158), guarantees the existence of o which is the unique
value of 02 > 0 such that ful Y(y)dy = 1.

Appendix F. Condition for ¥(1) < 1 in the additive RPD with
b(t) = re(t)

We consider an additive RPD game where the benefit b(t) is
linear with respect to the cost c(t), that is, b(t) = rc(t). Here, r
is a constant that represents the “benefit to cost ratio”. Then we
have oy, = ro?, from which
fe (0 = 1)

1+x(1-x)a2
Moreover, the denominator can be expressed as

2 2
14% (-"T +xag_x203)

8x) = (159)

1+x(1-x)o? 4

A\’ 1 ?
&)-(6-9-)
A 1 A 1
(2 (3)n) (3= (2-5)e). a0
where A = /4 + 2. Assuming g(x) in the form

S5

g(x) = - (161)
$+G-¥o
we have the equations
A o A o
S(E-Z)-s(2+F)== 162
1 (2 2 ) 2 (2 + 2 ) Hes (162)
(S1+ S)oc = (r — 1)o7, (163)
which are equivalent to
-2 —1)02
$i—S = w, (164)
S1 4S8 =(r—1)o. (165)
Thus, we get
Y
vo) = exp (<2 " scom)
51 A 1
= exp(—Z(—;ln (5 + (i —y) ac>
Sz In A 1
Mz \g7Y)e
S A o Sy A o
+a—rln(5 + 3) +Hn (E - 7)))
Sy 52
:(A+ac—20ry)"r (A—a¢+25cy)"r’ (166)
A+oc A—oc
from which
515,
A—o ) *
1= 167
v ( a M) (167)

Since A+ o > A — o, > 0, the condition /(1) < 1 is satisfied if
and only if S; — S, > 0, which means

(168)
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