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ABSTRACT

We consider a Prisoner’s Dilemma (PD) that is repeated with some probability 1 — p only between coop-
erators as a result of an opting-out strategy adopted by all individuals. The population is made of N pairs
of individuals and is updated at every time step by a birth-death event according to a Moran model.
Assuming an intensity of selection of order 1/N and taking 2N? birth-death events as unit of time, a dif-
fusion approximation exhibiting two time scales, a fast one for pair frequencies and a slow one for coop-
eration (C) and defection (D) frequencies, is ascertained in the limit of a large population size. This
diffusion approximation is applied to an additive PD game, cooperation by an individual incurring a cost
c to the individual but providing a benefit b to the opponent. This is used to obtain the probability of ulti-
mate fixation of C introduced as a single mutant in an all D population under selection, which can be com-
pared to the probability under neutrality, 1/(2N), as well as the corresponding probability for a single D
introduced in an all C population under selection. This gives conditions for cooperation to be favored by
selection. We show that these conditions are satisfied when the benefit-to-cost ratio, b/c, exceeds some
increasing function of p that is approximately given by (1 + ,/p)/(1 — /p). This condition is more strin-
gent, however, than the condition for tit-for-tat (TFT) to be favored against always-defect (AIlID) in the

absence of opting-out.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In a two-player two-strategy game known as the Prisoner’s
Dilemma (PD), in which cooperation and defection, denoted by C
and D, respectively, are used by individuals in pairwise interac-
tions, the payoffs are given by the entries of a 2 x 2 matrix

b
( « T ) o

Tpc Tpp

Here, m; represents the payoff to an individual using strategy i
against an individual using strategy j where i, j belong to the set
of strategies {C,D}. In a PD game, cooperation against cooperation
pays more than defection against defection, but less than defection
against cooperation, while cooperation against defection pays the
least. Thus, the entries of the payoff matrix satisfy the inequalities
Tipc > T > Tpp > Tep (Poundstone, 1992). In particular, if cooper-
ation and defection have additive effects on the payoff with coop-
eration by an individual incurring a cost ¢ to the individual but
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providing a benefit b to the opponent, then we have mcc =b —c,
Tlep = —C, Tipc = b and 7pp = 0. We call this case the additive PD
game.

In a one-round PD game with defection paying more than coop-
eration against both defection and cooperation, defection is the
only rational choice and the only Nash equilibrium (NE) (see, e.g.,
Hofbauer and Sigmund, 1998; Nowak, 2006a). In a repeated PD
game, however, with a fixed positive probability of repeating the
interaction between the same players from one round to the next
that does not depend on the strategies in use, the tit-for-tat (TFT)
strategy starting with cooperation becomes a Nash equilibrium
against the always-defect (AlID) strategy (actually against any
other strategy) if the expected number of rounds of the game is
large enough (Axelrod and Hamilton, 1981; Axelrod, 1984). This
can be seen as an effect of direct reciprocity (Trivers, 1971), since
TFT against TFT leads to reciprocal cooperation and TFT or AlID
against AlID to reciprocal defection at least after the first round.

In the framework of a repeated PD game, many other strategies
than TFT and AlID can be used and be successful (Bendor and
Swistak, 1995; Sandholm, 2010; van Veelen, 2012b; Garcia and
van Veelen, 2016). This is even more so if every round of the game,
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not only the players can choose to cooperate or to defect, but also
to stay or to leave for the next round contingently on the past. In
this case, a rational strategy is to repeat the interaction with a
cooperator as long as possible, but to end it with a defector as soon
as possible. This is known as the opting-out or out-for-tat (OFT)
strategy (Hayashi, 1993; Schuessler, 1989; Aktipis, 2004;
Fujiwara-Greve and Okuno-Fujiwara, 2009; 1zquierdo et al., 2010,
2014; Fujiwara-Greve et al,, 2015). As a result, an interaction
between two cooperators may be continued with some probability,
while an interaction between two defectors or between one defec-
tor and one cooperator may never be repeated. This can be seen as
a mechanism that creates direct reciprocity by which the evolution
and maintenance of cooperation can be favored by selection
(Zhang et al., 2016, 2017; Kurokawa, 2019).

The opting-out strategy is akin to assortment of cooperative
acts in social space, where cooperative behaviour is a repeatable
trait of individuals, and cooperative individuals associate and
interact with each other disproportionately more than with defec-
tors (see, e.g., Eshel and Cavalli-Sforza, 1982; van Veelen et al.,
2012a). There is some evidence that individuals from a range of
species show stability in their level of cooperativeness
(Bergmiiller et al., 2010) and that animal social network structures
may show significant within-population heterogeneity in social tie
strengths (Krause et al.,, 2015). Recent empirical investigations in
wild Trinidadian guppies (Poecilia reticulata) support the hypothe-
sis that assortment by repeatable cooperativeness may be an
important feature for the evolution and persistence of non-kin
cooperation in real-world populations (Brask et al., 2019; Croft
et al, 2015).

In this paper, we will consider a Prisoner’s Dilemma (PD) with
cooperation (C) or defection (D) as only possible strategies in a sin-
gle interaction between two individuals at any given time step.
Moreover, as a result of an opting-out strategy adopted by all indi-
viduals, a pairwise interaction will certainly not be repeated from
one time step to the next unless the two interacting individuals are
both cooperators, in which case the interaction will be repeated
with some fixed probability 1 — p. The population will be assumed
to be made of N pairs of individuals and be updated at every time
step by a birth-death event according to a Moran model. With
appropriate scalings of the intensity of selection and time with
respect to the population size, we will establish a diffusion approx-
imation in the limit of a large population that shows that two time
scales come into play, a fast one for pair frequencies and a slow one
for C and D frequencies. This diffusion approximation will be
applied to an additive PD game, cooperation by an individual
incurring a cost ¢ to the individual but providing a benefit b to
the interacting partner, and used to obtain the probability of
ultimate fixation of C introduced as a single mutant in an all D
population under selection. This probability will be compared to
the probability under neutrality, which is 1/(2N), as well as the
corresponding probability for a single D introduced in an all C
population under selection. This will provide conditions for
cooperation to be favored by selection.

2. The model

Consider a population of N pairs of interacting individuals in
which each individual is either a cooperator, C, or a defector, D.
The population state and its changes from time t to time t + At, a
time interval of length At = 1/(2N1), are represented in Fig. 1.

At time t, which corresponds to the end of one round of the PD
game followed by updating, the number of CC pairs in the popula-
tion is NP¢c, while the number of CD pairs is NP, and the number
of DD pairs NPpp. Then, x = Pcc + Pep/2 is the frequency of C in the
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population, and 1 — x is the frequency of D. Note that pairs are not
ordered so that a CD pair means a pair made of one C and one D.

Suppose that all individuals in the population adopt the opting-
out strategy so that only the individuals paired with a C partner are
interested in continuing their interaction with the same partner in
the time interval [t,t + At]. As a result, all CD pairs and DD pairs
break apart, while each CC pair breaks apart with some probability
p and, therefore, stays unbroken with probability 1— p. The
parameter p is assumed to be a positive constant. Then the number
of free D individuals is

Np = NPy + 2NPpp = 2N(1 — x), )
while the number of free C individuals is
Nc = NPgp + 2R = 2R + 2N(x — Pc), (3)

where R stands for the number of broken CC pairs. This number is a
random variable that follows a binomial distribution with parame-
ters NPc and p.
Now assume that all free individuals form new pairs at random.
The number of these is
Nc+Np
2
while the conditional expected frequencies of CC,CD and DD among
these are

= NP+ NPpp +R, (4)

Nc(Ne—1) 2NcNp
(Nc+Np)(Nc+Np—1)" (Nc +Np)(Nc +Np —1)" ©)
Np(Np —1)

(Ne +No)(Nc +Np— 1)

respectively. Besides, there are Noc = NPcc — R unbroken CC pairs.
All together, we still have N pairs of individuals for the next round
of the PD game.

Let the random variables g, qs, and qp, represent the
frequencies of CC, CD and DD in the set made of all new pairs
and all unbroken CC pairs. Note that ge +qq/2=x and
Gpp + qep/2 = 1 — x, which means that the frequencies of C and D
in the population are unchanged. On the other hand, the expected
values of g, g and g, are given by

_ (1- X)Z ~1/2
E(Qcc)72X*1+77(17P)PH+O(N ), (62)
_ 2(1-x)° ny
E(qep) = 2(1 7x)7m+o(n ), (6b)
_ (- X)Z -1/2
Ela) = 7= =gy + O(N 7). (6¢)
while their variances are all of order N', that is,
Var(qee) = 0(N7), (72)
Var(ge) = O(N™"), (7b)
Var(q,,) = O(N"). (70)

These results are shown in Appendix A.

The update of the population at the end of the time interval
[t,t + At] is obtained by a birth-death event according to a Moran
model in a context of evolutionary game theory (see, e.g., Hofbauer
and Sigmund, 1998; Ewens, 2004; Nowak et al., 2004; Ohtsuki
et al., 2006). One individual is chosen with probability proportional
to fitness to produce an offspring identical to itself and one individ-
ual is chosen at random to be replaced by the offspring.

Here, the fitness of an i-strategist in interaction with a j-
strategist is given in the form

wij = 1+ sm;;, 8)
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frequencies Pcc, Pep, Pop
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with Pcc+Pep/2=x

Fig. 1. Changes of the population state in a time interval (¢, + At].

where 1 stands for a baseline fitness, s = ¢N "' represents an inten-
sity of selection, and 7; denotes the payoff to i against j for i,j in
{C,D} as given in (1) for a one-round PD game. Note that CC,CD
and DD pairs are then in frequencies g, qc, and qpp, respectively,
and wpc # Wep in CD pairs since 7tpc # mep. Therefore, the offspring
produced is a cooperator with conditional probability

Pr(C)

- 2qeWec +HipWep
2qccWec 4o Wep +9coWoc +20ppWon

9

:x+§((1—x)A—xB)+o(N"). @

and a defector with conditional probability
2

Pr(D) = ZQC(W(‘C*:LDWVZgi;zDW‘Zf:‘ZUDDWDD (10)

=1-x-g((1-x)A—=xB) +0(N’1),
where
A=qectice + Ly ()
and
B=Gopton + 2L oc. (12)

Note that Pr(C) and Pr(D) are both random variables whose
main terms are linear functions of q¢¢, q¢p and qpp.

On the other hand, the offspring produced replaces a cooperator
with probability x, and a defector with probability 1 — x. Actually, it
replaces a cooperator in a CC pair with probability .- or a CD pair
with probability q.,/2, while it replaces a defector in a DD pair
with probability gy, or a CD pair with probability g,/2.

Following the replacement of an individual by the offspring, the
frequencies of CC,CD and DD among the N pairs are denoted by

P, Py and Py, respectively, and the frequency of Cin these pairs
is Pc + Pep/2 = x'. This gives the population state at the beginning
of the next time interval which corresponds to time

t+At=t+ 1/(2N2) with 2N time intervals as unit of time. Note

that P¢p and Ppp can be expressed in terms of x and P, so that x
and Pcc can be used to describe the population state.

3. Diffusion approximation

Let Ax =X —x and APcc = P — Pcc be the changes in the fre-
quencies of C and CC, respectively, from time ¢ to time t + At with

At=1 /(ZNZ). Given these frequencies at time t, the first, second

and fourth moments of Ax are approximated as (see Appendix B
for details)

E() = 5 mx Pac) +0(N ?), 13)
1 -

E((Ax)2) =Wv(x)+o(N 2) (14)
and

E((ax)") =o(N?), (15)
respectively, where

m(x, Pcc) = 0E((1 - X)A — xB) (16)
and

v(x) =x(1-Xx). 17)

Moreover, we have

E(APcc)

:(x—P(c)z—chc(l 72X+PCC)+O(N"/2) as)

1= (- p)Pcc
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and
Var(AP) = O(N") (19)

for the mean and variance, respectively, of the change AP(c. On the
other hand, in an infinite population in the absence of selection, the
frequency of Cremains constant, while the frequency of CC converges
uniformly to an equilibrium value P¢. in [0, 1]. This equilibrium value
is obtained by solving the equation E(AP¢c) = 0, which gives

. P VP2 +4x(1 -x)p(1 - p)
Pee=xt o305y~ 21-p) @
for p in [0,1), and Pg. = x? for p = 1, where x is the frequency of C
(see Appendix C for details). Note that the expression for P in (20)
tends to x? as p tends to 1 so that we use only this expression in the
rest of the paper.

The conditions (13)-(15) and (18)-(20) show that there are two
time scales at work in the discrete-time Markov chain for the pop-
ulation state, the variable Pcc changing more rapidly than the vari-
able x. Moreover, as N — oo, these conditions ascertain that the
Markov chain converges to a diffusion approximation with
m(x) = m(x,Pg) as drift function, and #(x) = x(1 —x) as diffusion
function (Ethier and Nagylaki, 1980).

Using (6) with Pcc =Py and the equality (see (81) in
Appendix C)

%:P‘“—MJA (21)
leads to

E(qec) = Pec +O(N72), (223)
E(qe) = 2¢— 2P + O(N7), (22b)
E(@op) =12+ P + O(N7). (22¢)

Let us summarize.

Result 1. Consider a PD game with payoff matrix (1) for N pairs of
individuals so that, as a result of opting-out from one round to the
next, all pairs break apart to form new pairs at random but a random
proportion of CC pairs whose mean is 1 — p < 1. Assume one birth—
death event at the end of each round with the probability of giving
birth proportional to 1 plus the payoff times o /N and the probability of
dying given by 1/(2N). Taking 2N? birth-death events as unit of time
and letting N — oo, the Markov chain of the frequency of C converges
to a diffusion with v(x) = x(1 — x) as diffusion function and

m(x) = 6 (x(1 —X)(%tcc — o) — (X — Pc)
(1 = X)(Ttec — Tep) +X(Tpe — Toop)))

as drift function, where P¢. is given by (20).

(23)

In the diffusion approximation, it is known (see, e.g., Kimura,
1964; Risken, 1992; Ewens, 2004) that the probability density
function of C evaluated at x at time t > 0 given an initial value p
at time 0, denoted by f(x, p,t), satisfies the forward Kolmogorov
(Fokker-Planck) equation

Af (x,p,t) 9 & (v(X)f(x,p,t)
TERD S mxp.0) + o (LFRD) 2

as well as the backward Kolmogorov equation
ofpt) _ o 0fp.t) | v(p) Pf(xp,t)
P A e i

In the case at hand with no mutation, the two boundaries x = 0
and x = 1 are absorbing states.

(25)
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Moreover, if u(p,t) denotes the probability that C is fixed by
time t > 0 so that x(t) = 1 given an initial frequency x(0) = p, then
it is known that this fixation probability satisfies the backward Kol-
mogorov equation, that is,

Z?ugi,t) —m(p) au‘(ai, t) +@ 622;1;, t)y
with the boundary conditions u(0,t) = 0 and u(1,t) = 1. By letting
t — oo, the limit

u(p) = lim,_ocu(p, 1) @7
represents the probability of ultimate fixation of C given an initial

frequency x(0) = p. As t — oo, the left-hand side in (26) tends to 0
so that we have

(26)

d @
0=m(p)%+@—d"’ff) (28)

with the boundary conditions u(0) = 0 and u(1) = 1. The solution of
this ordinary differential equation is known to be (see, e.g., Ewens,
2004)

J3 v()dy

b vy 29
T @)
where

W(y) = exp (72 /D ! %dx). (30)

Note that the probability of ultimate fixation of D is given
by 1—u(p), since there is ultimate fixation of C or D with
probability 1.

4. Additive PD game

Consider an additive Prisoner's Dilemma (PD) where a coopera-
tor pays a fixed cost ¢ > 0 while its partner receives a fixed benefit
b > c. The payoff matrix (1) takes the form

e Tep b-c —c
= . 31
(ﬂoc ﬂDD) ( b 0 ) @
Substituting the above payoffs into m(x) in Result 1 yields
mx) =0 (x(1—-x)(b—c)—b(x—Py))

=o(x1 -0 -0 -J2), @2
where
f(x,p) =1/p* +4x(1 =x)p(1 - p) - p. (33)

This function defines a concave surface on the domain
[0,1] x [0,1] with f(x, p) > 0 inside this domain and f(x, p) = 0 on
its boundary.

Now, let Fc = u((ZN)") be the probability of ultimate fixation
of Cintroduced as a single mutant in an all D population of size 2N.
The corresponding fixation probability for a single D introduced in
an all C population is Fp =1 —u(l - (2N) ‘). The evolution of

cooperation is said to be favored by selection if Fc > (2N)~', where
(2N)™" is the fixation probability under neutrality. Similarly, the
evolution of defection is said to be unfavored by selection if
Fp < (2N)™". On the other hand, the evolution of cooperation is said
to be more favored by selection than the evolution of defection if
Fc > Fp. Finally, if the three conditions are simultaneously



C. Liand S. Lessard

satisfied, that is, Fc > (ZN)" > Fp, then the evolution of coopera-
tion is said to be fully favored by selection (Nowak et al., 2004;
Li and Lessard, 2020).

When the population size 2N is big enough, the conditions to
have Fc > (2N)™!, Fp < (2N)!, F¢ > Fp, take the form

1
[ vy <1, (34a)
1
j) Y(y)dy > ¥(1), (34b)
w(1) <1, (34c)
respectively (Li and Lessard, 2020). Here, we have
"y

v = exp (-2 [ gwa), (35)
where
8 =18 = ac((b/c—1) - ;L)

(36)

= - 2 —
—ﬂ‘c(r(l \/1+Aax(lfx)+]) 1)’

with the notation r=b/c>1 for the benefit-to-cost ratio and
a=(1/p) —1>0 for the expected number of times that each CC
pair continues to interact.

In the extreme case a =0 (or p = 1 which means no repeated
interactions between cooperators), we have g(x) = —ac¢ < 0 which
implies that y(y) is a strictly increasing function of y in [0, 1] with
¥(0) = 1. None of the conditions in (34) is satisfied. Cooperation is
never favored by selection, while defection always is. This is
exactly the case of the classic PD game. On the other hand, in the
limit as a — oo (or p = 0 which means permanent CC pairs), we
have g(x) =o(b—c) >0 which implies that y(y) is a strictly
decreasing function of y in [0,1] with y(0) = 1. All conditions in
(34) are satisfied. Cooperation is fully favored by selection. This
is easy to understand since, in this case, CC pairs never break apart
and their number can only increase.

Analogously, in the extreme case r = 1, we get —oc < g(x) <0
for x in [0, 1] and, therefore, y(y) is a strictly increasing function
of y in [0, 1] with y(0) = 1, which implies that none of the condi-
tions in (34) is satisfied and cooperation can never be favored by
selection. In this case, cooperators pay as much as they give and
the game is actually no longer a PD game. On the other hand, for
any given a > 0, we have g(x) > 0 for x in [0,1] if r > 0 is large
enough, which implies that y(y) is a strictly decreasing function
of y in [0, 1] with y(0) = 1. In this case, the conditions in (34) are
all satisfied and cooperation is fully favored by selection.

In the general case 0 < p < 1and r > 1, the expression of g(x) in
(36) shows that dg(x)/0a > 0 and dg(x)/dr > 0. This implies that
Y(y) is a strictly decreasing function of a and r for every y in
[0,1]. This leads to the following conclusion.

Result 2. Consider an additive PD game with payoff matrix (31) in
the framework of Result 1 with 0<p<1. In a large enough
population, increasing the value of r=b/c>10ora=1/p-1>0
(or decreasing the value of p) increases (decreases, respectively) the
probability of ultimate fixation of cooperation (defection, respectively)
introduced as a single mutant in an all defecting (cooperating,
respectively) population, F¢ (Fp, respectively).

The proof of this result is straightforward by using the
approximations
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Fem (ZN/Q1 exp (—2 /jyg(x)dx)dy>4,
Fp~ (ZNA1 exp (2 /y]g(x)dx)dy)il,

for N large enough.

Moreover, g(x) is a symmetric function, that is, g(x) = g(1 —x)
holds for x in [0,1]. When F¢ = Fp, that is, ¥(1) =1, we have
Ja g(x)dx = 0 from which

S gdx = [} g(x)dx — fi‘,y g(x)dx

(37a)

(37b)

=~ [ -xd(1 ~x) 38)
= o 81 -
=g gtxdx.

In this case, we have
Tv)dy = Ruy)dy+ [ vy)dy = ) +9(1-y)dy
= ﬁ.’f (exp (-2 f3 g(x)dx) +exp (—2_[0' ’yg(x)dx) ) dy (39)

= jé (exp (-2 [y g(x)dx) +exp (2 [3 g(x)dx))dy
>2fldy=1,

with an equality if and only if g(x) = 0 on [0, 1], which means ¢ = 0
(no selection). Otherwise, f; ¥(y)dy > 1 = (1), which means that
Fc=Fp < (2N)™" owing to (34a,b,c). From the previous analysis in
the extreme cases and Result 2, we know that increasing the value
of a from 0 to oo, or the value of r from 1 to oo, will increase F from
a value smaller than (2N)' to a value larger than (2N)~, and will
decrease Fp in the opposite direction. But when F¢ and F; are equal,
their values are less than (2N)~'. This implies that Fj crosses the
value (ZN)" first, then equals F¢ and finally F¢ crosses the value
(2N)™". Thus we get the following corollary of Result 2.

Result 3. In the setting of Result 2, as the value of r =b/c>1 or
a=1/p—1> 0 increases, the conditions (34b), (34c) and (34a) for
Fp < (2N)™',Fc > Fp and F¢ > (2N)™', respectively, are satisfied in
this order. In particular, when cooperation is favored by selection, it is
necessarily fully favored by selection.

The fixation probabilities Fc and Fp as functions of p and
r = b/c, respectively, are showed in Fig. 2 for particular values of
c,o and N. This illustrates the effect of decreasing p or increasing
r on these probabilities.

In order to get explicit conditions on the parameters of the
model for cooperation to be favored by selection, we use the
inequalities (see Appendix D for details)

(1 -Xx)(VP - p) <fxp) < VA -X)(VP - p),

where the lower bound is the limit of f(x, p) as p — 0 and the upper
bound the limit of f(x, p) as p — 1. Panels (a), (b) and (c) in Fig. 3
illustrate the surfaces determined by f(x,p),4x(1 - x)(vp - p)
and +/4x(T —x)(y/p — p), respectively. Panels (d) and (e) show the
transverse sections where f(x, p) approaches the upper bound when
p is close to 0 and the lower bound when p is close to 1,
respectively.

Now, substituting g(x) given in (36) in the expression of y(y)
given in (35) yields
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Fig. 2. Fixation probabilities Fc and Fy as functions of p and r = b/c. The numerical values of the expressions given in Eq. (37) are showed in the case ¢ = 1, @ = 1, N = 100 with

respect to p and r on two different scales.

5 L %))

Panel (f) in Fig. 3 shows that the lower bound of f(x, p) gives a
good approximation of the integral in (41) for y = 1. Using this
lower bound in this equation yields the approximation

20,
1+vp)" )

which is a monotonic function of y starting with the value 1 at

Y(y) = exp (Uc(—Z(r—l)y+ (41)

() ~exp (ﬁzac(r 1ot )

¥(y) ~ exp (—20’:((r —-1)y— ri(n/z —arcsin(1 — Zy)))).

T+vp
(45)

Using this approximation in (34c), this approximation would
have to be less than 1 at y = 1 for selection to favor more cooper-
ation than defection, which is the case if and only if

y = 0. Using this approximation for y(y) in (34), this
would have to be a strictly decreasing function for cooperation to be
favored by selection in any sense, which is the case if and only if

1+vp

r> s 43
- “@3)
or equivalently

r-1\°
p<(i51) - (44)

The right-hand side in (43) is a lower threshold value for r,
while the right-hand side in (44) is an upper threshold value for
p. Analogously, using the upper bound of f(x,p) in (41) yields
the approximation

14p
i w2 (46)
or equi 1y
r—1 2
o< (@) “

The right-hand side in (46) is an upper threshold value for r,
while the right-hand side in (47) is a lower threshold value for p.
Note that the right-hand side in (46) goes to oo as
p — (m—1)"? ~ 0.218. As shown in panel (f) of Fig. 3, the approx-
imation of f(x, p) by the upper bound is not that good unless p is
small enough.

The values of r or p such that Fp= (2N)".Fc =Fp and
Fc= (ZN)", respectively, are illustrated in Fig. 4 in the case c =1
and ¢ = 1. The relative positions of the three curves using the exact
expression of f(x, p) given in (33) are in agreement with Result 3
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figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Conditions for cooperation to be favored by selection in the additive PD game in the case ¢ = 1 and ¢ = 1. In panel (a), the red curve stands for the exact numerical solutions
of Fp = (2N) !, Fc = Fp and Fc = (2N) ', which are almost identical, while the blue and green curves stand for approximations obtained by using the lower and upper bounds
of f(x, p) plotted in Fig. 3. Panel (b) is a magnification of the three curves for a small region of the domain in panel (a) at the start of the dashed arrow. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

but very close to each other. These curves are compared to the two
curves obtained by using the lower and upper bounds of f(x, p)
given in (40). These correspond to the boundaries of the regions
defined by (43) and (46), respectively. It can be seen that the first
one based on the lower bound gives a good approximation. The
form of the curves suggests that the conditions
Fp < (2N)"',Fc > Fp and Fc > (2N)" take all the form r greater
than some increasing function of p, and the approximation
obtained from the lower bound of f(x, p) that this function is close
to the one given in (43).

5. Discussion

Direct reciprocity is one of the most important mechanisms that
can promote the evolution of cooperation (Trivers, 1971; Axelrod
and Hamilton, 1981; Axelrod, 1984). In the case of repeated rounds
of a two-player Prisoner’s Dilemma (PD) game, for instance, tit-for-

tat (TFT) starting with cooperation is a form of reciprocity and it is
known to be a Nash equilibrium against always-defect (AlID), and
any other strategy, if the probability of repetition from one round
to the next is large enough (Nowak et al., 2004; Nowak and
Sigmund, 2007). In this paper, we have considered the situation
where the PD game can be repeated from one round to the next
only if both players are willing to continue their interaction, which
occurs with probability 1 — p only when both cooperate. This is a
rational choice when all players practice what is known as the
opting-out strategy. Then cooperation (C) is equivalent to out-
for-tat (OFT) starting with cooperation, which cooperates in the
first round and opts out with probability 1 if the other defects
and probability 1 — /T — p if the other cooperates, and defection
(D) to defect-and-run (DNR), which defects in the first round and
opts out afterwards. This setting creates a kind of assortment that
benefits cooperation over defection and should promote its evolu-
tion (Hayashi, 1993; Schuessler, 1989; Aktipis, 2004; Fujiwara-
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Greve and Okuno-Fujiwara, 2009; Izquierdo et al., 2010, 2014;
Fujiwara-Greve et al., 2015).

A theoretical study of the effects of the opting-out strategy on
the continuous-time dynamics for a repeated PD game in an infi-
nite population can be found in Zheng et al. (2017). In that paper,
the results are based on an analysis of the replicator equation for
the C and D frequencies under the assumption of instantaneous
equilibrium pair frequencies. In this paper, we have considered
the effects of opting-out in a finite population in discrete time
and in the limit of a large population size. We have shown that
the dynamics of the population state over successive birth-death
events according to a Moran model is approximated by a
continuous-time diffusion if the intensity of selection and time
are appropriately scaled with respect to the population size (Result
1). This has been ascertained by verifying conditions given in Ethier
and Nagylaki (1980) for Markov chains with two time scales, here a
fast one for pair frequencies and a slow one for C and D frequencies.
Note that the drift function in this diffusion approximation given
by m(x) in (32), where x is the frequency of C, corresponds to the
growth rate of x given by the replicator equation in Zheng et al.
(2017). In the diffusion approximation, however, the boundaries
x=0 and x =1 are absorbing states that can be reached from
any other state, while a stationary distribution with coexistence
of C and D is precluded unless a certain level of mutation is
introduced.

Assuming an additive PD game with cooperation by an individ-
ual incurring a cost ¢ to the individual but providing a benefit b to
the opponent, we have shown that increasing the benefit-to-cost
ratio, r = b/c, or the expected number of repetitions of the PD
game for a CC pair, a=1/p — 1, makes it easier for the evolution
of cooperation to be favored by selection, or for the evolution of
defection to be unfavored by selection, or for the evolution of coop-
eration to be more favored by selection than the evolution of defec-
tion (Result 2). Here, this is understood in the sense that the
probability of ultimate fixation of C introduced as a single mutant
in an all D population under selection, F¢, exceeds what it would be
under neutrality, which is given by its initial frequency, or that the
probability of ultimate fixation of D introduced as a single mutant
in an all C population under selection, Fp, is less than its initial fre-
quency, or that the former probability exceeds the latter. Note that
the first condition is the most stringent one and the second condi-
tion the least stringent one (Result 3). Moreover, the three condi-
tions take the form r greater than some increasing function of p
that has been shown to be approximated by (1+./p)/(1 - /p)
(see Fig. 4).

The condition r > (1+/p)/(1 — \/p) for selection to favor the
evolution of cooperation in any sense in the case of an additive
PD game with opting-out in a large finite population is equivalent
to p < (b—c)*/(b+c)*. This happens to be the condition for the
coexistence of Cand D at a stable interior equilibrium in an infinite
population (Zheng et al., 2017). Note that, in this case, C is not a
Nash equilibrium and a stable coexistence with D is the only pos-
sibility for its maintenance in an infinite population (Fujiwara-
Greve et al., 2015). Moreover, the condition for Fc > Fp in a finite
population in the absence of mutation is expected to be the condi-
tion for C to be more abundant on average than D in the stationary
state of a finite population under symmetric recurrent mutation in
the limit of a low mutation rate (Antal et al., 2009).

In addition, let us recall that the condition for selection to favor
the evolution of TFT starting with cooperation against AllD in a
large finite population is r > (1 +2p)/(1 — p), which is equivalent
to p < (r—1)/(r +2) (Nowak et al., 2004; see Table 1 in Nowak,
2006b). This condition guarantees convergence to the fixation state
of TFT in an infinite population as soon as TFT frequency is larger
than 1/3. Moreover, since we have the inequality
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(1++p)/(1=P) > (1+2p)/(1 - p) for pin (0, 1), this condition
is implied by the condition for selection to favor the evolution of
OFT starting with cooperation against DNR in a large finite popula-
tion. In other words, the condition for selection to favor the evolu-
tion of cooperation in a finite population is more stringent with
opting-out than without opting-out. This is somehow in agreement
with experimental results (Zhang et al., 2016) showing a higher
level of cooperation in groups without the possibility of opting-
out than in groups using opting-out. However, this does not neces-
sarily mean that TFT is more successful than OFT in promoting the
evolution of cooperation. When both strategies are available,
Monte Carlo simulations (Izquierdo et al, 2010; Zheng et al,
2017) have shown that OFT can prevail more often than TFT. With
the possibility of opting-out, many more strategies are possible
and the paths to establish cooperation may be very complex and
involve indirect invasion of neutrally stable strategies (Bendor
and Swistak, 1995; Sandholm, 2010; van Veelen, 2012b; Garcia
and van Veelen, 2016).

The opting-out strategy provides an opportunity not only for
cooperators to find cooperative partners but also for defectors
who have an even greater advantage to do so. Moreover, ending
an interaction with someone might incur a cost since there is a risk
of not finding a new partner. In our model, there is no cost for
opting-out. A cost could affect cooperators and defectors to differ-
ent degrees and, therefore, the level of cooperation reached in the
population.

Finally, the work in this paper has focussed on a two-player
game. Kurokawa (2019) has studied the effect of opting-out on a
three-player game in an infinite population. Extensions to n-
player public goods game would be of interest.
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Appendix A. Mean and variance of pair frequencies after re-
pairing of free individuals

The Egs. (2) and (3) for the numbers of free C and D individuals
can be written into the form

N¢ =Ny, (48a)
Np = NB, (48b)
Nc +Np = 2Na, (48¢)
where

=2 iro<2, (492)
B=Pep+2Ppp=2(1-%) <2, (49b)

+ R

a:%:ﬁwmwmgn (49¢)
with R being a binomial random variable with parameters NPc
and p.

The number of new pairs formed at random by all free individ-
ualis (Nc + Np)/2 = aN. Besides, there are Ncc = NPcc— R=N — aN
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unbroken CC pairs. The new pairs are obtained by pairing the
(2k — 1)-th and 2k-th free individuals chosen at random without
replacement for k=1,...,aN. Let Xccy, Xcox and Xppy be the ran-
dom variables that take the value 1 if the k-th new pair is of types
CC,CD and DD, respectively, and O otherwise, for k=1,...,aN.
Then the numbers of new CC, CD and DD pairs can be expressed as

aN
Yo = Xeck (50a)
=

aN,
Yo = ZXCD)O (50b)

k=1

aN
Yoo =Y Xk (50c)
=]

respectively. By symmetry, given N¢, Np and o, the first and second
conditional moments of Xcck, Xcpx and Xppy are given by

E(Xcce) = E(Xhcx) = E¥eer) = ZIZ;VZI;;” ]1, (51a)
[E(X‘”*)=[E(Xg"*) EXaa) = ZZaNZmZD 1 (51b)
E(Xbpk) = [E(ij)u k) =E(Xpp1) =%%, (51c)
E(XceXocu) = EXeerXoc2) = z'l;vzho’;vi 11 2'2\1722 2?5\1 33’ (51d)
EXcoseor) = E¥eoaXeoz) = 420:N2<xzp 12115\17 ]2 2'1’;\; 3519
E Ko1)o X002) =g 5 e, (51)

where I# k. In particular, with y =N¢/N and g = Np/N, the first
conditional moments lead to

Nc(Nc—1) _yN(yN-1)
EYee) = 30aN 1) = 2QaN 1)’ (523)
NcN, YNBN _ (2aN — pN)SN
Vo) = 5N 1= 3N 1= 2aN-1 (52b)
_Np(Np—1) _ BN(BN—1)
E(Yop) = % =52 —T1) (52¢)

Now, let g, g and qp, represent the random frequencies of
CC,CD and DD, respectively, among the «N new pairs and N — aN
unbroken CC pairs. Using the fact that an expected value of a con-
ditional expected value is the expected value, we have

Y, 1_(FPN-p
Eaon) =E(37) =§E(—2W 1),

Yoo (53a)
2N —
e ~£(72) - (5= 1Y) =1:~E(”fl’), (53b)

2aN 20N

1_(BN-
E(dcc) =1 -E(qep) — E(qpp) = 1 7/?+§E<§m7/;). (53c)
Note that
BN-B_, B-1N
2aN—1 ﬁm\ﬂgl (54)

Moreover, the expected value of this random variable is given
by

E(EN=8) _ 5
2aN —1) = 2(pPcc +Peo + Poo)

This is obviously true when = 0. On the other hand, when
B =Pcp +2Ppp > 0, we have Pop > 1/N or Ppp > 1/N, from which
o =R/N+Pep+Ppp > Pep + Ppp > 1/N. In this case, we have

+O(N’”2), (55)
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< B < Po+2Pp
S a—1/@2N) = Pop +Ppp — 1/(2N)
Pcp + Pop
Pcp + Ppp — 1/(2N)
Moreover, f=Pcp+ 2Ppp < 2(pPcc +Pep + Ppp). Using  these
inequalities and the Cauchy-Schwarz inequality yields

IE(H
wehrral)

( Ba-1/@N))

1_
«mzm|ﬁ N~ pPec P Poo

<4. (56)

2
~ 2(pPcc+Pap+Pop)

6(5-1/N)
)~ ﬂ"ml'mﬂ’uu

E

=1
-2

)

B(pPec—R/N+1/(2N) 1|
PPt N

< ZE( P[(KPZ,L‘PgN ‘+#> (57)
<4E(joPec -+ 4]+
<HE(PNPec — R +4
12
< (B((NPc—R?)) " 44
12
=) g

~o(u),

which proves Eq. (55). Using this equation and the equality
B =4(1 —x)? in (53) yields

__a-»? 172
E@m) = 71— pypec  ON7), (582)
_ 2(1- X)z —1/2
E(qep) *2(1*)‘)*%*0(1\’ )-, (58b)
_ (1- X)Z —1/2
E@e) =217 —p)Pcc”O(N ). (58¢)
Moreover, using the inequality 2a > B, we have

=Var(%)
=5z (E(Vho) - (E(Yon))")

#(o((Sm) ) - ()

E (0NN — (X001 Xon2) +aNE (X351 ) — (NE(Xon, )7
E(aN(aN — 1) % JN-t 2 N3 (59)

20N 2aN-1 22N-2 23

Var(gpp)

=1

=W
1

N

SN(EN-1) 2 N2 ((BN(EN-1)
AN ()
,E(“z JN(N-1) ( (IN-2)IN-3) _ BN(IN-1) ))

2aN(2aN-T) \ [2aN-2)(2aN-3) ~ 2aN(2aN-T),

JE(z ven-n (1
NZaN2aN~-1) 3 oo

1 SN(N-1) (BN-2)(BN-3) 1
SNE(%:N\M n(l ~ N2, z\)) <

which implies that Var(qp) =
inequality 2o > 7, we have

Var(qg) = Var(ym) = O(N").

O(N"). Analogously, using the
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Since qec + Gep + Gpp = 1, We also have

Var(qec) = Var(l - ey — Gop) < 2(Var(qep) + Var(gpp)) = O(N").

(61)

dix B. of ch in Cand CC
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Given gcc, gcp and gpp, the difference P — g takes the values
1/N and —1/N with conditional probabilities (g/2)Pr(C) and
qccPr(D), respectively, and O otherwise. Therefore, the difference
has an expected value O(N") and a variance O(N’z). Using this
and the expected values and variances of qc,qc and qp, given
in A dix A, we get

From time ¢ to time t -+ At, the frequencies of CC,CD and DD
pairs go from Pcc, Pep and Ppp, with x = Pcc + Pep/2 as frequency
of C, to P, Py, and Py, with X' = Pi + P /2 as frequency of C.
This follows first random re-pairing of free individuals, second

igl random ing of an indivi to produce an off-
spring with weight given by fitness, and third random sampling
of an individual to be replaced by the offspring. The random fre-
quencies of CC,CD and DD pairs after the first step are qec,qcqp
and qp, with x = g + gp/2, while according to (9) and (10), the
conditional probabilities to sample C and D at the second step are

o -
Pr(C)=x+N((1—x)A—xB)+a(N 1) (62)
and

—1-x-%(1-%A— 1
PrD)=1-x-5((1-%4A xB)+o(N ) (63)
respectively, where
A= gecTicc + q% e (64)
and
B = qppmtop + 2P 1. (65)

2

Obviously, the probabilities to sample C and D at the third step
are x and 1 — x, respectively.

B.1. Change in C frequency

The change in the frequency of C from time ¢ to time t + At, rep-
resented by Ax = x' — x, takes the values 1/(2N) and —1/(2N) with
conditional probabilities (1 — x)Pr(C) and xPr(D), respectively, and
0 otherwise. The expected value of this change is

E(Ax) =E(s (1 - X)Pr(C) — 5yxPr(D))

=35 E((1-X)A—xB) + o(N’Z). (66)
The second moment is given by
E((49?) =E(3 (1~ 0Pr(0) + 2xPr(D)) o

= lax(1-x) + o(N’z).

As for the fourth conditional moment, we have

E((Ax)‘) = E(ﬁ(l —X)Pr(C) + ﬁxl’r(D)) = a(N’a). (68)

B.2. Change in CC frequency
The change in the frequency of CC pairs from time t to time
t + At is given by

APcc = P = Pec = (Pec = Gec) + Gec — Pec (69)

E(APcc) = E(Pec — qec) +E(Gec) — Pec

:zx71+$‘l;)]’,,7fpcf+o(N ‘f’z)

— (=P pPec(1-2x4Pc) 172
= T0-pPe +O(N

(70)

and
Var(APcc) = Var((Pec — qec) + Gec) < 2(Var(Pec — qec) + Var(qec))
- O(N"). (71)

Appendix C. Convergence of CC frequency in an infinite neutral
population

In an infinite population with no selection, the frequency of Cin
[0,1], represented by x = Pcc + Pcp/2, remains constant since then
X —x=E(Ax) =0 (72)
owing to (66) as N — co. Moreover, the change in the frequency of
CC from time t to time t + At is given by
(% = Pcc)® = pPec(1 = 2x + Pec)

1-(1-p)Pcc
owing to (70) as N — oc. After algebraic manipulations, this leads to
the recurrence equation

(a-x* _
1= (1= p)Pcc

From the facts that Pcc,Pcp = 2(% — Pcc) and Ppp = 1 — 2X + Pcc
are all in [0, 1], we have the constraints
max{2x — 1,0} < Pec <X.

Pl — Pcc =E(APcc) = (73)

P

c=2x—1+

h(Pcc)- (74)

(75)
Note that h(0)=x2>0 and h(2x-1)>2x—1, so that

h(max{2x — 1,0}) > max{2x — 1,0}, while

-

1-(1-px
On the other hand, the first and second derivatives of h are

given by

h(x) =x— (76)

2
e a0 o
and
EhiPe) 20 -(1=pP _ 8
Py (1= (1-p)Pcc)’
respectively. By solving the equation h(Pcc) = Pcc, that is,
(1 - PP — (2x(1 - p) + p)Pec + ¥ =0, (79)

the only equilibrium point of h in the interval [max{2x — 1,0},x] is
found to be
p VP +4x(1-x)p(1-p)
a-p 21-p)
Owing to the above properties, this is a globally stable equilib-
rium point. At this equilibrium, we get from (74) that

Pie=x+s . (80)
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a-»?
1-(1-p)Pec

which simplifies the expressions for E(qc), E(qep) and E(gpp) in
(58).

=Py —2x+1, (81)

Actually, P is a uniformly globally stable equilibrium point. As
a matter of fact, applying the mean value theorem, there exists PCC

between P¢ and Pg. such that

Pye — Pie = h(Pcc) — h(Pyc) = (P, 7;1*)@ (82)
cc « . Cc, « cc, dp(c
with
W) a-xf0-p) _A-xF0-p) Ly e
dPec (17(17{,),3&) (1-(1-px)?

Iterating (82), we have
P = Peel < [Pec — Picl(1 = p)" < (1= p)" (84)

for all integers n > 1, with (1 — p)" — 0asn — oo.
Appendix D. Bounds of f(x, p)

For the additive PD game, the drift function m(x) is in the form

m) a'(x(l —x)b-c)— Zb(f](" ‘;)))), (85)
where
fx,p)=1/p* +4x(1 -x)p(1-p) - p

= ¢(4x(1-x),p)(VP - p) (86)
with

_Vprul—p -
$(u,p) = N Y (87)
for in [0,1. We have ¢(u,0)= and

u,
¢(u,1) = lim,_1¢(u, p) = u by applying L'Hopital's rule. Moreover.

o, p) _ (1-u)yp+u—+/p+ul-p) @8)
o 201~ NN N e

since

A-up+u<sv/(A-up+u=+/p+u(l-p) (89)

by Jensen’s inequality for the concave square root function on [0, 1].
Therefore, ¢(u, p) is a decreasing function of p from yuat p=0tou
at p =1 for every u in [0, 1].

We conclude that

VA1 -X)(VP - p) = f(x,p) = $p(4x(1 -X)

> 4x(1-X)(/F - p), (90)
the upper bound being the limit of f(x, p) as p — 0, and the lower
bound the limit of f(x, p) as p — 1 (see Fig. 3).

PP —P)
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