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The evolution of cooperation in Prisoner’s Dilemmas with additive random cost and benefit for
cooperation cannot be accounted for by Hamilton’s rule based on mean effects transferred from
recipients to donors weighted by coefficients of relatedness, which defines inclusive fitness in a
constant environment. Extensions that involve higher moments of stochastic effects are possible,
however, and these are connected to a concept of random inclusive fitness that is frequency-
dependent. This is shown in the setting of pairwise interactions in a haploid population with the same
coefficient of relatedness between interacting players. In an infinite population, fixation of cooperation
is stochastically stable if a mean geometric inclusive fitness of defection when rare is negative, while
fixation of defection is stochastically unstable if a mean geometric inclusive fitness of cooperation
when rare is positive, and these conditions are generally not equivalent. In a finite population, the
probability for cooperation to ultimately fix when represented once exceeds the probability under
neutrality or the corresponding probability for defection if the mean inclusive fitness of cooperation
when its frequency is 1/3 or 1/2, respectively, exceeds 1. All these results rely on the simplifying
assumption of a linear fitness function. It is argued that meaningful applications of random inclusive
fitness in complex settings (multi-player game, diploidy, population structure) would generally require
conditions of weak selection and additive gene action.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Since its introduction by Hamilton (1964), inclusive fitness
has remained one of the main topics in theoretical population
biology, but also a subject of controversies (Allen et al., 2013;
Frank, 2013; Gardner and West, 2014; Birch and Okasha, 2015;
Nowak et al., 2017). The original idea behind the concept of
inclusive fitness is to transfer fitness effects of behaviors from
recipients to donors weighted by coefficients of relatedness. The
concept is best illustrated by Hamilton'’s rule for the evolution of
altruism. The rule states that altruism can evolve if the inequality
—c + rb > 0 holds, where c is the cost of an altruistic act by a
donor, b is the benefit of an altruistic act by a recipient, and r is
a coefficient of relatedness between the donor and the recipient.
The inequality ensures that the inclusive fitness of an altruistic
individual, given by 1 — ¢ + rb, exceeds the inclusive fitness of a
selfish individual, given by 1. Here, we assume only two possible
behaviors, altruism and selfishness, and the same coefficient of
relatedness between a donor and a recipient. More generally,
any number of behaviors and any number of recipients with
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different coefficients of relatedness between actors and recipients
can be considered. Moreover, the inclusive fitness effect of an
individual on a baseline value equal to 1 is assumed to be a linear
combination of weighted fitness effects of the behavior of this
individual on all the individuals affected by this behavior.
Fitness effects used in the original definition of inclusive fit-
ness are additive. This is the case exactly in linear models but
only approximately in more general models. Actually, it has been
shown that Hamilton’s rule with fixed cost, benefit and coefficient
of relatedness can predict initial increase and stable fixation of
altruism determined at a single locus in random mating popu-
lations with any fixed kin-group-structure if the fitness functions
are linear (Matessi and Karlin, 1984). In these population genetics
models for diploid populations without inbreeding, the coefficient
of relatedness at an autosomal locus is given by the expected
fraction of genes in the recipient that are identical by descent
(ib.d.) to one or more genes in the donor. More generally, the
coefficient of relatedness has been defined as a regression coef-
ficient, and even more generally as a covariance ratio, that can
be expressed in terms of identity coefficients or pedigree indices
when selection is weak (Hamilton, 1970; Michod and Hamilton,
1980; Uyenoyama, 1984; Grafen, 1985; Lessard, 1992). Under this
assumption and with additive gene action on trait value deter-
mined at a single locus, it has been shown that inclusive fitness
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can predict if a population strategy is convergence stable (Taylor,
1989a,b) in the sense that a population fixed at a nearby strategy
is invaded only by a mutant that brings the population closer to
it (Eshel, 1983; Christiansen, 1991).

An alternative approach is to consider that the quantities in
Hamilton’s rule are not necessarily constants but the best possible
approximations at any given time. The favorite candidates are
obtained by linear regression, the coefficient of relatedness R
being defined as the slope of the regression of the trait value in
the recipients on the trait value of the donor, and the cost C and
benefit B as the slopes of the regression of the fitness value on
the trait values of the donor and recipients, respectively (Queller,
1992; Frank, 1995; Gardner et al., 2011; Rousset, 2015). Note that
R, C and B can be viewed as generalized versions of r, ¢ and b,
respectively. Then, —C + RB gives the slope of the regression
of the fitness value on the trait value, which is positive when
the change in the average trait value increases, at least in the
case of additive gene action on trait value, owing to the Price
covariance formula (Price, 1970). The meaning and scope of this
result have been challenged, however, since this is a particular
causal interpretation of changes and all quantities are related
to each other through the population state including the social
interaction structure (Nowak et al., 2017).

Another important issue is the validity of Hamilton’s rule
under stochastic perturbations. In natural populations, random
fluctuations is the rule rather than the exception, and these affect
fitness. As recalled by Grafen (1999), stochasticity caused by
random fluctuations in population or deme size (demographic
stochasticity) is different from stochasticity caused by random
fluctuations in selection parameters (environmental stochastic-
ity). Demographic stochasticity can be traced back to an early
study of the effect of within-generation variance in offspring
number due to Gillespie (1974). It was applied to sex ratio evolu-
tion in finite as well as infinite populations (see, e.g., Courteau and
Lessard (1999), Lessard (2005)). Since then, demographic fluc-
tuations in subdivided finite populations, mainly island models,
have been dealt with using an inclusive fitness approach to kin
selection (Rousset and Billiard, 2000; Rousset and Ronce, 2004;
Lehmann and Balloux, 2007). See also Taylor et al. (2007), Lessard
(2009) for further results on inclusive fitness in finite structured
populations. As for environmental stochasticity, refer to Gillespie
(1973), Karlin and Levikson (1974), Karlin and Liberman (1974)
for early contributions on the effect of between-generation vari-
ance in selection parameters, and McNamara (1995), Zheng et al.
(2017), Li and Lessard (2020) for more recent studies in the
context of evolutionary game theory. This paper deals with impli-
cations of these studies on inclusive fitness theory and Hamilton'’s
rule.

In the next sections, we will be addressing the following
question: Is there a way to define a concept of random inclusive
fitness that accounts for random fitness values in kin selection
models? We will try to find the answer in the simplest possible
setting, that is, a linear model in a haploid population. This is
the case for a Prisoner’s Dilemma (PD) with additive random
cost and benefit for cooperation in pairwise interactions that
occur between cooperators or between defectors in the same
proportions as their frequencies with some fixed probability r,
and between individuals chosen at random and independently
with the complementary probability 1 —r. Then, the parameter r
corresponds to the coefficient of relatedness between interacting
individuals and the above question can be addressed. This will
be done first in the case of an infinite population with condi-
tions on stochastic local stability of fixation states (Karlin and
Liberman, 1974; Zheng et al., 2017, 2018), and second in the case
of a finite population with fixation probabilities obtained from
a diffusion approximation allowing for random noise in selection
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parameters (Karlin and Levikson, 1974; Li and Lessard, 2020). This
will be followed by discussion sections on the implications of the
results for inclusive fitness and Hamilton’s rule in a stochastic
environment in more general settings.

2. Randomized PD game in an infinite population

We consider a PD game in an infinite haploid population un-
dergoing discrete, non-overlapping generations with two strate-
gies in use, cooperation (C) and defection (D). In a pairwise
interaction between two individuals in the same generation, co-
operation by an individual incurs a cost ¢ to the individual and
provides a benefit b to the other individual, while defection
incurs no cost and provides no benefit. Moreover, cost and ben-
efit are additive so that the payoffs to C and D against C and
D, respectively, are given by b — ¢, —c, b and 0, respectively.
Here, b and c take constant values within each generation but
change at random and independently from one generation to
another. Finally, interactions occur between individuals chosen
at random and independently in the same generation with some
fixed probability 1 — r < 1, and individuals chosen at random
but using the same strategy with the complementary probability
r > 0. This can be achieved by partial sib-sib interactions or
partial assortment of strategies. The parameter r can be viewed
as a measure of population structure. Here we suppose that r
remains constant over successive generations which is a highly
simplifying assumption.

In a given generation, let x be the frequency of C so that
1 — x is the frequency of D. Then the average payoffs to C
and D, respectively, are given by the linear functions m¢(x) =
(1 —=r)xb + rb — c and np(x) = (1 — r)xb. Assuming that cost
and benefit are scaled so that the payoff corresponds to a small
enough positive or negative change in fitness from a baseline
value 1, the frequencies of C and D in the next generation are
proportional to x(1 + m¢(x)) and (1 — x)(1 + 7p(x)), respectively.
Defining u = x/(1 — x), in which case x = u/(1 + u), we get a
recurrence equation from the given generation to the next one
which can be expressed in the form

, ue + B
— 1
u u<uy+8>, (1)
where
a BY _(1—c+b 1—c+r1b @)
y &) \1+b—r1b 1 :

Note that the same recurrence equation is obtained if the fit-
nesses of C and D in a two-player game are given by the entries of
the above matrix and all pairwise interactions occur at random.
This matrix corresponds to an effective payoff matrix (Nowak,
2006; Lessard, 2011a).

3. Stochastic local stability conditions

An equilibrium X is said to be stochastically locally stable (SLS),
or more simply stochastically stable, if for any € > 0 there exists
8o > 0 such that

P(x > X) >1—¢€ assoonas |x—X| < .

3)

This means that the probability for x to tend to X over time is as
close to 1 as we want if the initial value of x is close enough to
% (Karlin and Liberman, 1974). On the other hand, % is said to be
stochastically locally unstable (SLU), or more simply stochastically
unstable, if

(4)

P(x —> &) =0 assoonas |x —&| > 0.
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In this case, X cannot be reached with probability 1 from any
initial value of x different from X (Karlin and Liberman, 1974).
For technical reasons, we assume that «, 8, y and § in (21) are
uniformly bounded below and above by some positive constants,
which is the case if the random variables b and c are bounded
below and above by some small enough positive constants. Then
it can be shown (see Appendix A.1) that the equilibrium X = 0,
which corresponds to D-fixation, is stochastically stable if

E(log(1—c+1b)) <0, (5)

and stochastically unstable if the inequality is reversed. Simi-
larly, the equilibrium X = 1, which corresponds to C-fixation, is
stochastically stable if

1+b—r1b
= (s (775)

=E(log{1+ ¢ r b <0
- J 1—c+b 1—c+b ’

and stochastically unstable if the inequality is reversed.

Note that Hamilton’s rule in the form —c + rb > 0 almost
surely is sufficient for D-fixation to be stochastically unstable
and C-fixation to be stochastically stable, but it is generally not
necessary unless b and c are constants. Consider, for instance, the
case where b and ¢ have expected values, variances and covari-
ance given by wps, K¢S, crbzs, ols and oS = poyacs, respectively,
while all higher moments are negligible compared to s > 0.
Then, a Taylor expansion of the logarithm function yields the
approximations

(6)

2 2.2
+r —2r
E (log (1 — c 4 b)) ~ (—uc oy — b PobIe ) s

2
(7)

and

1+b—r1b
E(l _
(s (F5555))

0% + (2r —r?)o? — 2popo,

%<uc—rub+ e+ 2)" p“)S- (8)

Therefore, for s small enough, D-fixation is stochastically unstable
if the expression in parentheses in (7) is positive, while C-fixation
is stochastically stable if the expression in parentheses in (8) is
negative. Comparing these two expressions, we conclude that the
condition for C-fixation to be stochastically stable implies the
condition for D-fixation to be stochastically unstable if ro, —
po. > 0, while it is the opposite if the inequality is reversed.

4. Randomized PD game in a finite population

We now consider a haploid population of finite size N. In
anticipation of a diffusion approximation, we assume that the
benefit b and cost ¢ for cooperation in any given generation
have expected values, variances and covariance given by uN~!,
ucN7L 62N71, 62N~1 and o, N~! = poyo N7, respectively,
while all higher moments are negligible compared to N~!. Such a
scaling for temporally varying selection parameters can be traced
back to Karlin and Levikson (1974). It is in agreement with the
scaling in the previous section with s instead of N~! and makes
the variability in selection parameters not to vanish in the limit
of a large population size.

Let the frequency of C in a given generation be x and the
frequency of C in the next generation be x'. Assuming a Wright-
Fisher model with pairwise interactions occurring among an in-
finite number of offspring, the random variable x'N follows a
conditional binomial distribution with parameters N and
P X(1 + mc(x))

1+ xme(x) + (1 — x)mp(x)

(9)
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Taking N generations as unit of time, the difference Ax = x’ — x
is the change in the frequency of C from time t corresponding to
the given generation to time t 4+ At corresponding to the next
generation with At = N~!. Calculations (see Appendix A.2) show
that the moments of Ax satisfy E(Ax) ~ m(x)At, where

m(x) = X(1 — x) (—pc + rpp — x(oZ +rof — (14 1)poyoc))
(10)
and E((Ax)?) ~ v(x)At, where

v(x) = x(1 —x) (14 x(1 = x)(0? + r’of — 2rpoyoc)) (11)

while E((Ax)*) is negligible compared to At. These properties
characterize a diffusion approximation with drift function m(x)
and diffusion function v(x) in the limit of a large population size.

5. Fixation probabilities

In the diffusion approximation, it is known (Ewens, 2004; Li
and Lessard, 2020) that the probability of ultimate fixation of C
from an initial frequency N~! is given by

1 Y m(x)
Fc = (N/(; exp (—2/0 mdx) dy)

Similarly, the probability of ultimate fixation of D from an initial
frequency N~! is given by

_ 1 1 m(x)
o o] 4)9)

Since the probability of ultimate fixation in the absence of selec-
tion is equal to the initial frequency, the evolution of cooperation
is said to be favored by selection if Fr > N~! (Nowak et al,
2004). Analogously, the evolution of cooperation is more favored
by selection than the evolution of defection if Fc > Fp, while
the evolution of defection is disfavored by selection if F < N~.
Note that the condition for Fc > Fp in the absence of mutation
coincides with the condition for the average abundance of C to
exceed the average abundance of D in the stationary state under
symmetric recurrent mutation in the limit of a low mutation
rate (Rousset and Billiard, 2000; Rousset, 2003; Fudenberg and
Imhof, 2006).

Under the assumption that the scaled expected values and
variances of the payoffs, us, e, abz and acz, are small enough, it
can be shown (see Appendix A.2) that the conditions for Fc >
N~!, Fc > Fp and Fp < N~ ! reduce in the case at hand to

-1
(12)

-1
(13)

—He + Ty — X (62 + 10 — (1+T1)poyoc) > 0 (14)

for xo = 1/3, 1/2 and 2/3, respectively. Therefore, if 62 + ro? —
(1 4 r)poyo, > 0 holds, then Fc > N~! is implied by Fc > Fp
which is implied by F, < N~!, while the implications are in the
opposite direction if the inequality is reversed.

6. Implications for inclusive fitness and Hamilton’s rule

When the additive cost and benefit for cooperation in a Pris-
oner’s Dilemma (PD) are constant, which means that they are
given by their expected values ups and u.s, since then their
variances os and o2s vanish, Hamilton’s rule for the evolution
of cooperation takes the form —u. + ru, > 0, where r is the
coefficient of relatedness between two interacting individuals. In
an infinite haploid population, this is the condition for coopera-
tion to be stochastically locally stable, actually deterministically
locally stable, and defection to be stochastically locally unstable,
actually deterministically locally unstable. In a haploid population
of fixed finite size N, this is also the condition for selection to
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favor the evolution of cooperation (Fc > N~!), favor more the
evolution of cooperation than the evolution of defection (Fc >
Fp), and disfavor the evolution of defection (F; < N~!). Then,
Hamilton’s rule fully accounts for the evolution of cooperation
based on local stability properties in an infinite population or
fixation probabilities in a finite population. Actually, this conclu-
sion holds for structured haploid populations as long as fitness
effects are small, constant and additive (Rousset and Billiard,
2000; Taylor et al., 2007; Ohtsuki, 2010; Lessard, 2011a,b).

When the cost ¢ and benefit b for cooperation are not constant,
however, not only the conditions for the above evolutionary prop-
erties do not reduce to rup — e > 0, but they are all different.
The main reasons appear to be that inclusive fitness is a relative
concept and that the expected value of a non-linear function of a
random variable is generally not equal to this function evaluated
at the expected value of the random variable.

The expression 1—c+rb seems to be suitable for the inclusive
fitness of C in an all D population with the fitness of D set
equal to 1. But then, what would be a suitable expression for the
inclusive fitness of D in an all C population with the fitness of C
set equal to 1? It occurs that it is not 1/(1 — ¢ + rb), but rather
1+c/(1—c+b)—rb/(1—c+b), where c/(1— c+ b) represents
the benefit for defection and b/(1— c + b) its cost. Not only these
benefit and cost are non-linear functions with respect to b and c,
but benefit and cost depend on the population state even in the
simplest setting.

7. Geometric mean inclusive fitness

The stochastic local stability or instability of D-fixation in an
infinite population following the introduction of C does not rely
on the sign of the expected value of the random variable 1—c+rb,
which is 1 — ucs 4+ rups where ups and u.s are the expected
values of b and c, respectively. It rather depends on the sign of
the expected value of its logarithm, which happens not to be
log (1 — ¢S + rups) since the logarithm function is non-linear.
Actually, with alfs and o?2s being the variances b and ¢, and
popo.s their covariance, while all higher moments are of smaller
order, the expected value of log (1 — ¢ + rb) is approximated by
(=#c +rup + (062 + r’0f — 2rpopoc)/2) s. This expected value
represents the geometric mean selective advantage or disad-
vantage of C near D-fixation and, by analogy with the concept
of geometric mean fitness (Ewens, 2004), it can be called its
geometric mean inclusive fitness.

Then, the condition for D-fixation to be stochastically unstable
is that the geometric mean inclusive fitness of C near D-fixation
is positive, which reduces to

2
o2 + 1’0} — 2rpoyo.
2

This is the condition for non extinction of C with probability 1
following its introduction. This condition is related to the condi-
tion for initial increase of C in the deterministic case and, more
generally, to the use of inclusive fitness to determine convergence
stable strategies (Taylor, 1989a,b). It can be seen as an extension
of Hamilton’s rule for the evolution of cooperation in a stochastic
environment. Note, however, that this is not the condition for
C-fixation to be stochastically stable, given by

e > 0. (15)

o2+ (2r — r?)o? — 2poyo.

Me —THp+ 2 >0,

which is the condition for the geometric mean inclusive fitness
of D near C-fixation to be negative.

(16)
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8. Frequency-dependent inclusive fitness

In a finite population, fixation probabilities depend on all
possible population states from the initial state up to fixation.
In a diffusion approximation, these probabilities are expressed in
terms of integrals that involve the drift and diffusion functions.
These in turn depend on the first and second scaled moments of
b and c. In particular, the drift function m(x) in (10), which gives
the conditional expected rate of change of C frequency, is positive
for 0 < x < 1if and only if

—te + 1y — x (02 +r0f — (1+r1)poyoc) > 0. (17)

This is the condition for the expected value of the function
c(1—x) b(1 —x)
1+ (b —ck 1+ (b —ck

to exceed 1 in a large enough population. This expression can be
interpreted as the inclusive fitness of C when its frequency in the
population is x. In this interpretation, c¢(1 — x)/(1 4 (b — c)x) and
b(1—x)/(1+(b—c)x) represent the cost and benefit, respectively,
of substituting one individual chosen at random with a C indi-
vidual. These cost and benefit are inversely proportional to the
current average fitness in the population given by 1+4(b—c)x. This
agrees with the previous expressions for inclusive fitness when
x=0o0rx=1.

Note that the inclusive fitness effect of C satisfies

(1 — X)(rc(®) — 7o(x)

14 xme(x) + (1 — X)p(x)”

Therefore, saying that the expected value of ¢c(x) exceeds 1 is
an alternative way of saying that the expected value of the ex-
pression on the right-hand side of the above equation is positive.
Moreover, we have x’ X¢c(x) from one generation to the
next so that the inclusive fitness of C is an expression for the
geometric growth factor of C frequency in discrete time, while the
inclusive fitness effect of C is an expression for the corresponding
exponential growth rate in continuous time.

If b and c are constant with scaled values u;, and p. satisfying
rup, — e > 0, then the conditional expected rate of change
in the frequency of C is always positive. In this case, it is not
surprising that the probability of ultimate fixation of a single C
exceeds its initial frequency (Fc > N~!) as well as the probability
of ultimate fixation of a single D by symmetry (Fc > Fp), which is
itself less than its initial frequency (Fp < N~!). In the general
case, the scaled variances of the payoffs and their correlation
coefficient can change the sign of the drift function with respect
to the frequency of C. Then, the conditions for Fc > N~!, Fc > Fp
and Fp < N~! are no longer the same. When the scaled first
and second moments of the payoffs are small, these conditions
turn out to be that the mean inclusive fitness of C exceeds 1
when its frequency in a large population is 1/3, 1/2 and 2/3,
respectively. The first and last conditions are related to the one-
third law of evolution and the middle one to the concept of
risk dominance (Nowak et al., 2004; Lessard, 2005; Imhof and
Nowak, 2006; Ohtsuki et al., 2006; Lessard, 2011b). They are all
consequences of the fact that the expected inclusive fitness of C
in a large population is a linear function of the frequency of C. It is
worth noting, however, that these conditions have been obtained
under the assumption of small scaled first and second moments of
the payoffs, which is more restrictive than the mere assumption
of weak selection.

(18)

pc(x)=1-

e(x)— 1= (19)

9. Public goods game in a diploid population

A diploid population with additive gene action is similar to
a haploid population, and a public goods game in the form of a
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linear n-player Prisoner’s Dilemma (Archetti and Scheuring, 2012)
similar to a two-player game. This is the case with two alleles
C and D so that CC individuals always cooperate, DD individuals
always defect, and CD individuals cooperate or defect with the
same probability 1/2, and with groups of n individuals so that
cooperation incurs a cost 2c to the individual but provides a
benefit 2b equally shared among all the other individuals in the
same group. Assuming random mating and groups of n offspring
formed so that the coefficient of relatedness between two off-
spring in the same group is constant and given by r, it can be
shown (see Appendix A.3) that the inclusive fitnesses of C and D
take the previous forms with 1+ 2(b — c)x instead of 1+ (b —c)x
as average fitness when the frequency of C is x. This holds when
b and c are constants as well as random variables.

10. Generalized Hamilton’s rule

In a generalized version of Hamilton’s rule (Queller, 1992;
Frank, 1995; Gardner et al., 2011; Rousset, 2015), cost and benefit
of a trait under selection in a constant environment have been
defined as the slopes of the plane obtained by least squares
regression of fitness on the trait value of an individual and the av-
erage trait value of its partners, denoted by C and B, respectively.
Then the change in the average trait value can be expressed as the
variance of the trait value times —C + RB divided by the average
fitness, where R is the slope of the least squares regression line
of the average trait value of an individual’s partners on the trait
value of the individual. This leads to the generalized Hamilton’s
rule —C + RB > 0 for an increase in the average trait value.

As it is often the case with least squares methods, the interpre-
tation of the generalized Hamilton’s rule can be criticized (Allen
et al., 2013; Nowak et al,, 2017). Not only is the form of the
expression predetermined, but all three quantities in it are sum-
mary statistics of the entire population state and structure. In
the simplified haploid model that we have considered where the
trait value is the frequency of C, that is, 1 for a C individual and
0 otherwise, the quantities C, B and R correspond to c,b and
r, respectively, which are a priori defined independently of the
population state as cost, benefit and coefficient of relatedness,
respectively. In general, however, these quantities depend on the
joint probability distribution of trait value and average trait value
of partners in the whole population, and their meaning beyond
the analogy with a simplified model is unclear. This would be
all the more so in a stochastic environment with a condition
for an increase in the expected average trait value that could
be expressed, by extending our results, as —E(C) + RE(B) large
enough, actually larger than some function of variances and co-
variances of fitness values under the assumption of small random
perturbations over successive generations.

In addition, the generalized Hamilton’s rule requires that the
trait value is linear with respect to type frequencies so that its
average change is given by the covariance between the trait value
and fitness divided by the average fitness, which is known as the
Price covariance formula (Price, 1970; Frank, 1995). In a popu-
lation genetics framework, this situation corresponds to additive
gene action on trait value. In general, the change in an average
trait value in a diploid population is not given by this formula but
only approximated under weak selection by the additive genetic
covariance divided by the average fitness (Nagylaki, 1993). This is
known as the asymptotic secondary theorem of natural selection.
Without the assumption of weak selection, this approximation
can be considered as a partial change in average trait value, but
then its interpretation is as controversial as Fisher’s (Fisher, 1930)
fundamental theorem for the change in average fitness (Price,
1972; Ewens, 1989; Lessard, 1997; Edwards, 2002; Ewens and
Lessard, 2015; Grafen, 2018; Lessard and Ewens, 2019).

as
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11. Further remarks

It may look surprising that the drift function in a diffusion
approximation for a strategy frequency in a finite population is
determined by a mean inclusive fitness, while the stochastic local
stability or instability of a fixation state in an infinite population
depends on a geometric mean inclusive fitness. The reason may
be that the recurrence equation from one generation to the next
one involved in the latter case makes it a multiplicative model,
while random sampling in each generation in the former case
makes it an additive model. When inclusive fitness is determin-
istic, its mean is larger than 1 if and only if its geometric mean is
positive. When inclusive fitness is stochastic, this is not generally
the case. It was pointed out in McNamara (1995), Grafen (1999)
that a geometric mean fitness in a stochastic environment is
maximized when an arithmetic mean reproductive value is maxi-
mized. The exact meaning of this property and its implication for
inclusive fitness remain to be examined.

Being frequency-dependent, inclusive fitness in a stochastic
environment as well as in a deterministic environment can be
best used to study local dynamic properties such as evolutionary
stability (Maynard Smith and Price, 1973; Maynard Smith, 1974),
convergence stability (Eshel, 1983, 1996; Christiansen, 1991;
Rousset, 2003) and neighborhood invasibility (Apaloo, 1997).
Moreover, let us recall that inclusive fitness was originally intro-
duced in a population genetics framework as an alternative linear
function that accounts for a linear neighbor modulated fitness
function (Hamilton, 1964). This is tantamount to the validity of
Hamilton’s rule under weak selection. Then, identity measures
between interacting individuals converge rapidly, while type
frequencies change slowly. With further additivity assumptions
on fitness or trait value, these two timescales make possible
meaningful inclusive fitness formulations as shown at least for
populations structured in families, groups or demes in a de-
terministic environment (Matessi and Karlin, 1984; Uyenoyama,
1984; Lessard and Rocheleau, 2004; Taylor et al., 2007; Ohtsuki,
2010; Lessard, 2011a). Under weak selection without additivity
assumptions, inclusive fitness formulations may still be possible
by introducing extended identity measures but then they become
intricate and difficult to interpret (see, e.g., Lessard (1992, 2009)
and references therein). Not to mention that, in the case of
age-structured populations and more generally class-structured
populations, there are disagreements on the definition of fitness
itself, and a fortiori on the definition of inclusive fitness, based on
reproductive values (Grafen, 2015a,b; Lessard and Soares, 2016,
2018; Soares and Lessard, 2020). In all cases, there are conditions
for inclusive fitness to capture the direction of evolution and
these generally go beyond local approximations.

Another view is to consider that, like Fisher (1930) fundamen-
tal theorem, the inclusive fitness effect is actually a partial effect
as best predicted by least squares from the genes present at any
given time in a population in a constant environment including a
constant genic environment. But then, inclusive fitness captures
only one aspect of evolution, the one concerned with the instan-
taneous effect of gene frequency changes under the constraint
that the population structure is unchanged, and its biological
meaning in general settings remains unclear.

12. Summary

In two-player Prisoner’s Dilemmas with a fixed coefficient of
relatedness r between players and additive random cost ¢ and
benefit b for cooperation, stochastic local stability of cooperation
once fixed in an infinite population depends on the sign of a
geometric mean inclusive fitness of defection in an all coop-
erating population. This sign can be different from the sign of
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the geometric mean inclusive fitness of cooperation in an all
defecting population that determines stochastic local instability
of defection. The geometric mean inclusive fitness is not linear
with respect to mean cost and benefit unless cost and benefit
are constant. Moreover, these generally depend on the population
state. In a population of large finite size under weak selection, the
probability of ultimate fixation of cooperation when introduced
as a single mutant exceeds what it would be under neutrality if
the mean inclusive fitness of cooperation when its frequency is
1/3 exceeds 1. Moreover, this fixation probability for cooperation
exceeds the corresponding one for defection if the mean inclusive
fitness of cooperation when its frequency is 1/2 exceeds 1. These
provide new interpretations of the one-third law of evolution
and risk dominance, respectively. The conditions obtained for the
evolution of cooperation depend on higher moments of cost and
benefit in different ways, and each one can be considered as
an extension of Hamilton’s rule for the evolution of cooperation
when additive cost and benefit are constant. The results apply as
well to a multi-player public goods game in a diploid population
with additive gene action. They shed light on possible inclusive
fitness formulations in populations in a stochastic environment
under conditions of weak selection and additive gene action.
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Appendix

A.1. Stochastic local stability in two-player games

With pairwise interactions in an infinite haploid population
undergoing discrete, nonoverlapping generations, and two strate-
gies in use, C and D, let oy, Bk, ¥« and & be the fitnesses of C
and D in interaction with C and D, respectively, in generation
k. We assume throughout that the fitnesses in different genera-
tions are independent random variables that have the same joint
probability distribution. Moreover, they are uniformly bounded
below and above by some positive constants. Assuming random
pairwise interactions within generation, the frequency of C from
generation k to generation k + 1 is given by

xgo + Xi(1 — Xi)Br
x2og 4+ X(1 = %) B + vie) + (1 — X 28

Xk+1 = (20)
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Introducing the ratio uy = x/(1 — x), we have the recurrence
equation

urak + P
= ), 21
Uy = Uy (um ¥ 5k) (21)
which can be written in the form
8 —
Ukrr _ Pr (1 + Uy (0t ﬂka)) , (22)
uy Sk U Bk + Brdk

from which

1 1! 1! S —
flog(ﬂ> = 7210,;(&) +13 10g <1 n M) ‘
n Uo ni= Sk ni= ukBrvi + Bidi

(23)
Defining

oo (3).

the strong law of large numbers and Egorov’s theorem guarantee
that

1 n—1

— Zlog (%) - U
gy k

with probability 1, the convergence being uniform on a sample
set of probability as close to 1 as we want. A finer analysis that
takes into account the second term on the right-hand side in (23)

under the above assumptions (Karlin and Liberman, 1975; Zheng
et al,, 2017) shows that

=) >nu
n Up

1log

with probability 1 if © > 0 and up > 0, and with probability as
close to 1 as we want if 4 < 0 and ug is small enough. In the
former case, we have u, - 0 with probability 1, and then D-
fixation is stochastically locally unstable (SLU), while in the latter
case, we have u, — 0 with probability as close to 1 as we want,
and then D-fixation is stochastically locally stable (SLS). Similarly,
defining

-+(m(2)

we have that C-fixation is stochastically locally unstable if v > 0
and stochastically locally stable if v < 0.

(24)

(25)

(26)

(27)

A.2. Diffusion approximation for two-player games with random
payoffs

Let the average fitnesses of C and D in random pairwise
interactions among offspring produced in large number be in the
form 1+ 7mc(x) and 1+ 7p(x) when the frequency of C is x in the
parental generation of a haploid population of fixed finite size N
undergoing discrete, nonoverlapping generations according to a
Wright-Fisher model. Here, we assume that the average payoff
functions 7¢(x) and 7p(x) are random variables of expected val-
ues, variances and covariance given by ucN~!, upN~!, 62N,
02N~" and ocpN~, respectively, which actually all depend on
x, while all higher moments are functions o(N~'). We note that
the frequency of C in the next generation times N follows a
conditional binomial probability distribution of parameters N and

%= X(1+ 7c(x))
1+ xme(x) + (1 — x)7p(x)”

(28)
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Moreover, using the central moments of this conditional distri-
bution, the first and second moments of Ax = x’ — x, which
represents the change in the frequency of C, can be expressed as

E(Ax) = E ((x — %) + (X —x)) = E(X —x) (29)
and
(30)

Then, considering the power series of X in 7c(x) and 7p(x), the
assumptions on the moments of these variables lead to

B0 = L8 (e — iy —x02 — (1= 20000 + (1 - 0103) + o)
(31)
and
E((ax?) = X% (4 4 x(1 = x)(02 = 2000 + 02)) + o(N ).
(32)
Similarly, the fourth moment can be expressed as
E((Ax)*) =E (¥ —X)* + 4x — %)’(x —x)
+ 6(X —xP(x—x) + (X —x)"), (33)
from which
X(1—=X%) (14 (3N —6)x(1 —X)
E((Ax)") =E ( N ( \z
o n2ea oz
N 4(x — x)*(1 — 2%) +6()~c—x)>)
N
+E (& —x)*), (34)

which is a function o(N~—1). In the limit of a large population with
N generations as unit of time (Kimura, 1964; Karlin and Levikson,
1974; Karlin and Taylor, 1981; Ewens, 2004; Li and Lessard,
2020), these conditions characterize a diffusion approximation
with

m(x) = x(1-x) (uc — up — x0¢ — (1= 2X)ocp + (1 = x)op) (35)

as drift function and

v(x) = x(1—x) (14 x(1 —x) (6 — 20¢p + 07)) (36)
as diffusion function.

When the average payoff functions are in the form
wc(x)=x(1—r)b+1rb—c, mp(x)=x(1—-r)b, (37)

where b and c represent benefit and cost for cooperation that
have expected values, variances and covariance given by uN~!,
ucN"Y 02N, 62N~" and poyoN~', respectively, while all hig-
her moments are functions o(N~1), calculations lead to a diffusion
approximation with drift and diffusion functions given by

m(x) = x(1 — x)(—pc + rup — X0 +roy — (14 r)popoc)) (38)
and
v(x) = x(1 —x) (1+x(1 — x)(a + r’0} — 2rpoyo.)), (39)

respectively. The probability of ultimate fixation of C from a small
initial frequency N~ is given by
¥(0)

O R (40)
TN udy
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where

y
V() = exp (—2/0

Assuming up, e, abz and o2 small enough, we have the approxi-
mation

de) . (41)

v(x)
y

Y(y)~ 1—2f (—te+rup—x(02 +r0f —(1+1)popoc))dx, (42)
0

from which

1
Fc~N~! (1 — e + Ty — 3 (O’CZ + r(rb2 -1+ r)pabac)) .
(43)

Similarly, the probability of ultimate fixation of D from a small
initial frequency N™! is given by

¥ (1)

p= v (44)
N fo ¥()dy
and approximated by
2
Fp~ N~! (1 + pe — Tl + 3 (62 +roy —(1+ r)pabac)) .
(45)

A.3. Multi-player game in a randomly mating diploid population

We consider here a diploid population under random mating
in which C and D are two alleles segregating at a single locus.
These alleles have additive effects on the expression of coopera-
tion so that CC individuals cooperate, DD individuals defect, and
CD individuals cooperate half of the time and defect the other
half of the time. The model of interaction between individuals
is a public goods game that takes the form of a linear n-player
Prisoner’s Dilemma (Archetti and Scheuring, 2012). Interactions
occur within groups of n individuals in which cooperation by a
focal individual incurs a cost 2c¢ to this individual but provides
a benefit 2b equally shared by its n — 1 partners in the same
group. Groups are formed at random but with assortment so that,
with a fixed probability r and independently from one another,
any maternal or paternal gene in any partner is identical to the
corresponding gene in the focal individual, while it is chosen
at random and independently in the whole population with the
complementary probability 1—r. This ensures that the coefficient
of relatedness between a focal individual and any of its parters in
the same group is r. This is the case, for instance, if each group
is obtained by random sampling in a mixed pool of offspring
produced by the same parental pair and offspring produced by
all parental pairs (Matessi and Karlin, 1984). Finally, the effects
of cooperation on each member of a group are added to get its
payoff.

Under the above assumptions, the average payoffs to D and
C are given by mp(x) x(—c — rb + 2b) and mc(x) —Cc +
rb + mp(x), respectively, where x is the current frequency of C.
Taking 1+mp(x) and 1+7mc(x) as fitnesses of C and D, respectively,
the dynamics for u = x/(1 — x) in an infinite population under-
going discrete, nonoverlapping generations obeys the recurrence
equation

. (ua+p

= 4
u u(uy—+—8)’ (46)
where

a B\ _ ([ 1—-2c+2b 1—c+rb

(y 6)_(1—c+2b—rb 1 ) (47)
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With random cost and benefit, the analysis in the first section

shows that D-fixation is stochastically locally unstable if
E (log(1—c+1b)) >0, (48)

while C-fixation is stochastically locally stable if

E(log(l—c+2b—rb))
1—2c+2b
c b
=E(l°g(1+ 1—2c+2b_r1—2c+2b)> <0. 9

On the other hand, with random cost and benefit satisfying the
same assumptions as in the previous section in a population of
large finite size N, the frequency of C is described by a diffusion
approximation with

m(x) = x(1 — x)(—pc + rup — 2X(02 + 1o} — (1+1)payo.)) (50)
as drift function, and

v(x) = x(1 —x) (1+x(1 = x)(0? + r’o} — 2rpopoc)) (51)

as diffusion function. If up, s, 6 and o2 are small enough, then
the probability of ultimate fixation of a rare allele C or D exceeds
its initial frequency if and only if m(1/3) > 0 or m(2/3) > 0,
respectively, while the former exceeds the latter if and only if
m(1/2) > 0. Moreover, m(x) > 0 for 0 < x < 1 if and only if

E ( (1 — x)(7c(x) — 7p(x)) )
1+ xme(x) + (1 — x)7p(x)

=]E<1 c(1—x)

T 1+2(b—ck
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