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W. J. Ewens, following G. R. Price, has stressed that Fisher's fundamental theorem of natural
selection about the increase in mean fitness is of general validity without any restrictive
assumptions on the mating system, the fitness parameters, or the numbers of loci and alleles
involved, but that it concerns only a partial change in mean fitness. This partial change is
obtained by replacing the actual genotypic fitnesses by the corresponding additive genetic
values and by keeping these values fixed in the change of the mean with respect to changes in
genotype frequencies. We propose an alternate interpretation for this partial change which
uses partial changes in genotype frequencies directly consequent on changes in gene frequen-
cies, the fitness parameters being kept constant. We argue that this interpretation agrees more
closely with Fisher's own explanations. Moreover, this approach leads to a decomposition for
the total change in mean fitness which explains, unifies, and extends previous decompositions.
We consider a wide range of models, from discrete-time selection models with nonoverlapping
generations to continuous-time models with overlapping generations and age effects on
viability and fecundity, which is the original framework for Fisher's fundamental theorem.
] 1997 Academic Press

1. INTRODUCTION

Fisher (1930, p. 35; 1958, p. 37) stated his Fundamental
Theorem of Natural Selection (FTNS) for a continuous-
time model in the form:

``The rate of increase in fitness of any organism at any
time is equal to its genetic variance in fitness at that
time.''

There were no restrictive assumptions on the mating
system, the fitness parameters, or the genetic back-
ground. It was shown later by Kimura (1958) that, for
such a model, the total rate of change in population
fitness involves two additional terms, the first one due to

changes in individual fitness parameters, if any, and the
second one due to dominance and epistatic effects of
genes on fitness which come into play unless there is
random combination of genes in individuals. Moreover,
unlike the genetic variance in fitness, either of these
two terms may be negative and therefore may cause a
decrease in population fitness. This could suggest that the
FTNS is only an approximate result for the total change
in population fitness. Another view is to consider that the
FTNS is rigorously exact if it is correctly interpreted
as claimed by Fisher (1958, p. 38): ``The rigour of the
demonstration requires that the terms employed should
be used strictly as defined.'' We adhere entirely to this
view.

The terms employed by Fisher (1958) in his derivation
of the FTNS are average excess, average effect, genetic
variance, Malthusian parameter, and reproductive value.
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It is clear that what is meant by genetic variance, that is,
the variance of the genetic value which is ``the value of the
genotype as best predicted from the genes present'' (idem,
p. 35), is what we call today genic variance or additive
genetic variance. Given any quantitative individual
measurement, this is the variance of the additive genetic
value or genic value, which is the sum of the average
effects of the genes present in the individual. With
multiple allelomorphism, the average effect, also called
today the additive effect, is defined by Fisher as ``the
amount of the difference produced, on the average, in the
total measurement of the population, [by] substituting
any chosen gene for a random selection of the genes
homologous with it'' (idem, p. 35). The values of the
average effects are obtained by the least-squares method
as ``the best additive system for predicting the genotypic
value from the actual genes present in any individual''
(idem, p. 35). The avarege effect must be distinguished
from the average excess which is the difference between
the average measurement in ``all the individuals carrying
any one gene, counting the homozygotes twice'' (idem,
p. 34) and the average measurement in the whole popu-
lation.

Average effect and average excess can be applied to the
Malthusian parameter: ``Any group of individuals selec-
ted as bearers of a particular gene, and consequently the
genes themselves, will have [relative] rates of increase
which may differ from the average'' (idem, p. 37). The
relative rate of increase, which represents a decrease if it
is negative, corresponds to a logarithmic rate of increase
in a population with overlapping generations and is
defined by the Malthusian parameter ``implicit in any
given system of rates of death and reproduction'' (idem,
p. 26). This parameter satisfies Lotka's (1922) equation
for the given system and ``measures the relative rate of
increase or decrease of a population when in the steady
state [with respect to age distribution] appropriate to
any such system'' (idem, p. 26). This rate has to be dis-
tinguished from the expectation of offspring of a newly-
born individual, but ``must be positive if the expectation
of offspring exceeds unity, and must be negative if it
falls short of unity'' (idem, p. 26). Moreover, ``owing to
bisexual reproduction [. . .], each living offspring will be
credited to both parents, and it will seem proper to credit
each with one half in respect of each offspring'' (idem,
p. 24).

There is an alternate interpretation for the Malthusian
parameter: if individuals of each age are assigned
an appropriate value, called its reproductive value
and defined as ``the present value of [its] future off-
spring'' (idem, p. 27), then ``whatever may be the age con-
stitution of a population, its total reproductive value will

increase or decrease according to the correct Malthusian
rate'' (idem, p. 29). Therefore the Malthusian parameter
``measures fitness by the objective fact of representation
in future generations'' (idem, p. 37). Moreover, it ``will in
general be different for each different genotype'' (idem,
p. 50), to which correspond specific rates of death and
reproduction.

Measuring fitness by the Malthusian parameter, the
FTNS concerns ``the rate of increase in fitness due to all
changes in gene ratio'' (idem, p. 37) or ``the rate of
increase in the mean value [. . .] produced by Natural
Selection'' (idem, pp. 45�46). This rate of increase in pop-
ulation fitness, or the mean fitness, ``is exactly equal to
the genetic variance of fitness [. . .] which the population
exhibits'' (idem, p. 37). Changes in gene ratio and effects
of natural selection refer only to changes in the gene
frequency structure. In order to ease the interpretation
of the FTNS, the gene frequencies ``should strictly be
evaluated at any instant by the enumeration, not
necessarily of the census population, but of all indivi-
duals having reproductive value, weighted according to
the reproductive value of each. [Moreover] the theorem
is exact only for idealized populations, in which for-
tuitous fluctuations in genetic composition have been
excluded'' (idem, p. 38). Therefore the population is
assumed to be infinite and, in calculating averages, the
individuals are weighted by their reproductive value
according to their age.

Several passages in Fisher's (1958) book suggest that
the FTNS accounts only for a partial change in popula-
tion fitness. The first one concerns the effects of genetic
dominance in relation with the mating pattern: ``In addi-
tion to the genetic variance [. . .], a second element com-
prised in the total genotypic variance [. . .], ascribable to
dominance, is also in a sense capable of exerting
evolutionary effects, not through any direct effect on the
gene ratios, but through its possible influence on the
breeding system'' (idem, p. 40). The second passage is
about deterioration in the environment: ``Against the
action of Natural Selection in constantly increasing the
fitness of every organism [. . .], is to be set off the very
considerable item of the deterioration of its inorganic
and organic environment'' (idem, p. 45). Such deteriora-
tion is typically caused by mutations, geological and
climatological changes, and more numerous enemies
and competitors. The last passage concerns changes in
population size: ``An increase in numbers of any
organism will impair its environment'' (idem, p. 45). This
is the deleterious effect of overcrowding which will be
responsible for the population fitness not to always
increase or decrease but rather to approach a constant
value.
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As explained by Kimura (1958, p. 165), deterioration
in environment in a broad sense might include not
only any change in the fitnesses of the different possible
genotypes under changing external (physical and
biological) conditions, but also any change in the mating
system in conjunction with dominance and epistatic
effects of genes defining the genetical environment. Price
(1972, p. 133) incorporates the change in the mean fitness
due to population pressure into the change due to what
he calls the environment change effects. Moreover, he
attributes the change due to natural selection to ``the
additive or linear effects of changes in gene frequencies''
(idem, p. 130). He interprets this change as the change in
the mean (additive) genetic value, keeping fixed the
average effects, or more precisely, the partial regression
coefficients of fitness on the frequencies of the allelo-
morphic genes in the members of the population, which
are linearly related to the average effects. But he doubts
that Fisher would have accepted this interpretation since,
although Fisher could have presented his theorem in this
way, he did not. Moreover, in Price's clarification of
Fisher's derivation of the FTNS, the central statement
that ``any increase dp in the frequency of the chosen gene
will be accompanied by an increase 2: dp in the average
fitness of the species'' (Fisher, 1958, p. 37), where : is the
average effect of the chosen gene, is simply replaced by an
equation (Price, 1972, Eq. 5.8) which states that 2: is the
partial derivative of the mean fitness with respect to the
frequency of the chosen gene, keeping the environment
unchanged. This equation is fundamental to showing
that the rate of change in the mean fitness due to natural
selection is given by the additive genetic variance in fit-
ness. Finally, Price (1972, p. 139) does not use weighting
by reproductive value the way Fisher suggests since he
thinks that this leads to a ``mathematical inconsistency''
(Price and Smith, 1972).

Ewens (1989) accepts Price's (1972) interpretation of
the FTNS and claims that the FTNS is not specifically a
continuous-time result. He introduces the partial change
in mean fitness obtained by replacing the fitnesses of the
different possible genotypes in the mean by the corre-
sponding additive genetic values and by keeping these
values fixed in the change of the mean with respect to
changes in genotype frequencies. Then he shows that,
with discrete, nonoverlapping generations, the partial
change in mean fitness from the current generation to the
next generation is equal to the additive genetic variance
in fitness divided by the mean fitness. This is shown to be
true with viability selection from conception to maturity
determined at one or several loci (Ewens, 1989; see
Ewens, 1992, and Castilloux and Lessard, 1995, for
correction of Eq. 26) as long as mating and reproduction

do not change gene frequencies from the current genera-
tion at the time of maturity to the next generation at the
time of conception. This is also true with fecundity selec-
tion determined at one or several loci if mating does not
change gene frequencies in the current generation from
the time of conception to the time of reproduction and if
neither meiotic drive nor gametic selection takes place
(Lessard and Castilloux, 1995).

Fisher (1941) has explained the meaning of his FTNS
in a paper entitled ``Average Excess and Average Effect
of a Gene Substitution.'' This title should suggest that
the key elements to understanding the fundamental
theorem are to be found in these two concepts. Fisher
(1941, pp. 53�54) writes: ``The average excess of any
measurement in respect of any gene substitution [. . .] is
defined directly in terms of the numbers and mean
measurements of the [. . .] genotypes [. . .] into which
the population may be divided. [It] is not, however, to
be ascribed to the gene substitution. [The] average
effect of a given gene substitution [is conceived] as the
actual increase in the total of the measurements of a
population, when without change in the environment,
or in the mating system, the gene substitution is
experimentally brought about, as it might be by muta-
tion. [. . .] A change in the proportion of any pair of
genes itself constitutes a change in the environment in
which individuals of the species find themselves. [The]
effect that is wanted is only that due to the change in the
frequencies of the different possible genotypes, not
including any change in the average measurement of a
given genotype, which the change in gene frequency may
in fact bring about. [Since] the number of genotypes
greatly exceeds the number of gene ratios on which their
frequencies depend, we are concerned only with those
changes of genotype frequency directly consequent on
the proposed change of gene ratio, in the actual condi-
tion of the population. [. . .] The direct mathematical
measure of the average effect of a proposed gene sub-
stitution is the partial regression, in the population as
actually constituted, of the genotypic measurement on
the numbers 0, 1, or 2 of the allelomorphic genes in each
genotype.''

The average effect of a gene substitution on a quan-
titative character must be such that, in a constant
environment, including a ``constant genic environment''
(idem, p. 56), the increase in the total measurement of the
population will be just the average effect times the
number of substituted genes. Constant environment
guarantees fixed genotypic values and constant genic
environment is assured when ``the change in genotypic
frequencies [is] ascribable only to change in gene ratio''
(idem, p. 56). With two allelomorphic genes determining
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a single factor at an autosomal locus in a diploid popula-
tion, this is shown to be the case when

dP
P

+
dR
R

=
2 dQ

Q
, (1)

where 2Q is the frequency of the heterozygote (Q being
the frequency of each of the ordered heterozygotes), P
and R are the frequencies of the two homozygotes, and
2 dQ, dP, and dR represent instantaneous changes in
these frequencies. This holds when the ratio

Q2

PR
=* (2)

remains constant. When the different genotypes are in
Hardy�Weinberg proportions, this ratio * is identically
equal to 1.

With the above definition of average effect applied to
fitness in a diploid population, ``the increase of average
fitness of the population ascribable to a change in gene
frequency dp will be 2: dp'' (idem, p. 57), where : is the
average effect of the substituted gene. On the other hand,
if we ``choose as the metrical variable characteristic of the
different genotypes, the Malthusian parameter of popula-
tion increase [. . .] measuring the survival value of each''
(idem, p. 56), which represents fitness, then the average
excess of any substituted gene is related to its change in
frequency due to natural selection such that ``the rate
of increase in the average value of the Malthusian
parameter ascribable to natural selection [. . .] will be
[. . .] equal to the genetic variance of fitness'' (idem,
p. 57), if all allelomorphic genes of each factor and all
factors are taken into consideration.

Kempthorne (1957, Chap. 16), recognizing that he has
been unable to follow Fisher's derivation of the FTNS,
analyzes a one-locus model assuming discrete, non-
overlapping generations and constant reproductive
values defined as the numbers of offspring minus 1,
crediting each parent with one-half of its actual offspring.
Identifying fitness with the natural logarithm of 1 plus
the reproductive value, he ascertains Fisher's theorem for
the case of two alleles ``provided that the mating system
is such that Q2�PR remains constant'' (Kempthorne,
1957, p. 360). He proves this assertion by showing that
the change in the mean dominance deviation in
reproductive value through the changes in the genotypic
frequencies, keeping the dominance deviations fixed,
is 0 when

2 2Q
Q

=
2P
P

+
2R
R

, (3)

which is a discrete-time analogue of Eq. (1), where 2 2Q,
2P, and 2R represent changes from the current genera-
tion to the next generation in the genotypic frequencies
2Q, P, and R, and by assuming weak selection, which
guarantees small changes in the genotypic frequencies
and simple approximate relations between fitness and
reproductive value as defined above.

Kempthorne (1957) also gives, under the same
assumptions, an approximate expression for the total
change in mean fitness for the case of multiple alleles at
a single locus, using multiallelic analogues of Fisher's
(1941) ratio * to keep track of changes in the mating
system. Kimura (1958) obtains an equivalent expression
for a continuous-time model, using coefficients of depar-
ture from random combinations of genes, represented by
% and defined as the frequencies of the ordered genotypes
divided by the products of the corresponding gene
frequencies. The formula is extended to take into account
changes in fitness parameters and genetic determination
at two or more loci. For one-locus models, the formula is
exact in continuous time, while it is only approximate in
discrete time, since smaller-order terms are ignored in
this case. Li (1969) gives an exact formula for this case,
but he assumes random mating. Crow (1979) incor-
porates weighting by reproductive values according to
age for the case of age-structured populations. For two-
locus and multilocus models, the formula can be ex-
tended to an exact formula, not only for the change in
mean fitness but also for the change in the mean of any
quantitative character correlated with fitness, by adding
extra terms to Kimura's formula in continuous time to
take into account all epistatic effects (see, e.g., Crow and
Nagylaki, 1976, and Nagylaki, 1989, for the case of two
loci), or by assuming no epistasis and random mating in
discrete time (Nagylaki, 1989, 1991).

A ``simplied version of Fisher's fundamental theorem
of natural selection'' for populations undergoing discrete,
nonoverlapping generations, which is due to Li (1955),
states that the increase in the mean genotypic fitness from
the beginning to the end of the current generation as a
result of differential survival rates is equal to the
genotypic variance in fitness, or the total variance in
fitness, at the beginning of the current generation divided
by the mean fitness (that is, the total coefficient of
variation in fitness). This version ``excludes the round of
mating, which is included in Fisher's theorem'' as claimed
by Turner (1970) in his review on changes in mean fitness
under natural selection. Nevertheless, this is interpreted
differently by Denniston (1978), who includes the round
of mating but defines the fitness of a genotype as the
ratio, in numbers, of individuals of this genotype in the
next generation to those in the current generation. In a
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continuous-time version, this corresponds to defining the
Malthusian parameter for a genotype as its geometric
rate of increase or decrease in number. This definition has
been occasionally attributed to Fisher by some authors
(see, e.g., Kimura, 1956, and Charlesworth, 1970) and
even used from time to time (see, e.g., Emlen, 1970), but
it remains unconventional. Denniston (1978) studies the
implications of using this definition on the decomposition
of the mean fitness and the decomposition of the mean of
any quantitative character correlated with fitness.

For a recent review on the FTNS with historic
perspectives, we refer the reader to Edwards (1994). See
also Frank and Slatkin (1992) for the evolutionary
significance of the FTNS in an ecological context.

In this paper, we study the change in mean fitness,
formalizing ideas that have been put forward by Fisher
(1941), but that are still misunderstood. The starting
point is the analysis of the average excess and average
effect of a gene substitution with respect to genotypic fit-
ness, defined as the mean number of offspring produced
by individuals of each genotype from the beginning to the
end of the current generation, and genotypic growth
rate, defined as the ratio, in numbers, of individuals of
each genotype in the next generation to those of the
same genotype in the current generation, in populations
undergoing discrete, nonoverlapping generations. Then
we propose an interpretation of the FTNS which is
more consistent than ever with Fisher's writings and we
deduce a decomposition for the total change in mean
fitness which extends, unifies, and enlightens previous
decompositions. We begin with a basic discrete-time,
multiallele multilocus selection model with nonoverlap-
ping generations, and we end up with a continuous-time
model with overlapping generations and age effects on
viability and fecundity, which corresponds to the original
framework for Fisher's (1930) FTNS.

2. BASIC MODEL AND DEFINITIONS

Let zygotic selection in an infinite diploid sexual pop-
ulation be determined at L autosomal loci with possible
alleles A1 , ..., An1

at locus 1, An1+1 , ..., An2
at locus 2, ...,

and AnL&1+1 , ..., AnL
at locus L. Generations of the pop-

ulation are discrete and nonoverlapping, segregation of
genes is Mendelian and there is no gametic selection. The
recombination scheme is general and mating is not
assumed to be random.

A typical gamete is represented by a nL-dimensional
vector

!=(!1 , ..., !n1
, !n1+1 , ..., !n2

, ..., !nL&1+1 , ..., !nL
),

where !i=1 if allele Ai is present at locus l, for nl&1

+1�i�nl and 1�l�L (with n0=0), and !i=0
otherwise. Since a genotype corresponds to a couple of
parental gametes, a typical genotype is represented by a
vector

g=(!(m), !( f )),

where !(m) is a paternal gamete and !( f ) is a maternal
gamete. Note that g is an ordered genotype since we keep
track of the origins of the gametes. The frequency of g in
the population at the beginning of the current generation
is denoted by x(g). It is assumed that

x(g)>0,

for every possible g.
Let the fitness of g, denoted by w(g), be interpreted as

the mean number of offspring produced by individuals
whose genotype is g, from the beginning to the end of the
current generation. In this interpretation, we use the con-
vention that every successful gamete counts for half an
offspring since every offspring is made of two parental
gametes. Moreover, this definition incorporates viability
as well as fecundity differences.

Fitness as defined above is a Darwinian fitness since it
measures ``success in leaving progeny'' (Darwin, 1956,
p. 64). Moreover, the mean fitness in the population at
the current generation is

w� =:
g

x(g)w(g). (4)

Note that w� gives the growth rate of the population from
the current generation to the next generation since w� is
the mean number of offspring per individual of the
current generation. Note also that

x(g)*=
x(g)w(g)

w�
(5)

is the frequency of g in the parents of the offspring at the
beginning of the next generation, counted as many times
as their mean number of offspring. This is the probability
that a gene chosen at random at any of the given loci in
an offspring chosen at random at the beginning of the
next generation comes from a parent of genotype g.

The frequency of g in the offspring at the beginning of
the next generation, denoted by x(g)$, is generally dif-
ferent from x(g)* because of sexual reproduction with
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segregation and recombination of genes. Nevertheless, it
can always be written in a form analogous to (5), that is,

x(g)$=
x(g)W (g)

W�
, (6)

where W (g) represents the growth rate in the number of
individuals of genotype g from the current generation to
the next generation, and

W� =:
g

x(g)W (g)=w� . (7)

The genotypic growth rate W (g) is mathematically defined
by the formula

W (g)=_x(g)$

x(g)& w� ,

which corresponds to the ratio, in numbers, of individ-
uals of genotype g in the next generation to those in the
current generation. This ratio may be a complex function
of the state of the population involving many parameters
for survival, mating, and fecundity, not to mention re-
combination. But it can be used as a definition, though
unconventional, of fitness (see Denniston, 1978, and
references therein). Equation (7) means that the mean
genotypic growth rate is equal to the growth rate of the
population.

3. CHANGES IN GENE FREQUENCIES

If the frequency of an allele Ai at a given locus in
genotype g is represented by f (g)

i (with possible values 0,
1�2, and 1), then the frequency of Ai in the population at
the beginning of the current generation, denoted by pi , is

pi= f� i=:
g

x(g) f (g)
i . (8)

Note that

:
nl

i=nl&1+1

f (g)
i =1 and :

nl

i=nl&1+1

pi=1, (9)

for l=1, ..., L.
The frequency of Ai in the offspring at the beginning of

the next generation, denoted by pi$ , will be the same as
the frequency of Ai in the parents of those offspring,

counted as many times as their mean number of off-
spring, since we assume Mendelian segregation of genes
and no gametic selection. Then we have

pi$=:
g

x(g)*f (g)
i .

Using (5) and (8), we find that the change in the fre-
quency of Ai from the current generation to the next
generation is

2pi=pi$& pi=
cov( fi , w)

w�
, (10)

where

cov( fi , w)=:
g

x(g) f (g)
i w(g)& f� i w� .

This is Price's (1970) covariance formula for the change
in the frequency of an allele, which is a special case, in
discrete time, of the Secondary Theorem of Natural
Selection (STNS) proposed by Robertson (1966) for the
change in a quantitative character correlated with fitness.
The above formula for the change in the frequency of an
allele was also noted by Li (1967), but under the assump-
tion of random union of gametes. We will refer to it as the
Li�Price covariance formula.

The frequency of Ai in the offspring at the beginning of
the next generation is also given by the equation

pi$=:
g

x(g)$ f (g)
i .

Then, using (6) and (8), we get also

2pi=
cov( fi , W )

W�
. (11)

Therefore the Li�Price covariance formula for the change
in the frequency of an allele holds if fitness is defined by
(6). Note that, in this case, the assumptions of Mendelian
segregation and no gametic selection do not have to be
made.

Note also that Eqs. (10) and (11) can be written in the
form

w� 2pi= pi ai , (12)

where ai stands for the average genotypic excess in fitness
of allele Ai as defined by Fisher (1958, p. 34). This excess
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is the same if fitness is defined by (5) or (6), as already
noted by Denniston (1978), and is given by

ai=
cov( fi , w)

f� i
=

cov( fi , W )

f� i
.

This is the deviation of the marginal fitness of Ai from the
mean fitness in the population. Equation (12) is a dis-
crete-time analogue of an equation in continuous time
given by Fisher (1958, p. 37). Therefore the Li�Price
covariance formula (10) can be traced back to Fisher's
works and, for this reason, it will be called the Fisher�Li�
Price covariance formula.

4. ADDITIVE ALLELIC EFFECTS ON
FITNESS

Following Fisher (1958, p. 35), the average effects, or
additive effects, of the genes on fitness and the corre-
sponding genetic values, or additive fitnesses, of the
genotypes are obtained by the least-squares method. We
write the fitness w(g), defined by (5), minus its mean in the
form

w(g)&w� =:(g)+$(g), (13)

where

:(g)=2 :
i

f (g)
i :i (14)

is such that

_2
$=:

g

x(g)[$(g)]2 (15)

is minimum under the constraints

:
nl

i=nl&1+1

pi :i=0, for l=1, ..., L. (16)

Then :i is the additive effect of Ai on w, :(g) is the corre-
sponding additive fitness of g, and $(g) is a residual
addend incorporating dominance and epistatic effects of
genes. Note that the constraints (16) imply that

:� =:
g

x(g): (g)=0 (17)

and then, by (13),

$� =:
g

x(g)$(g)=0. (18)

Defining the function

S=_2
$+4 :

L

l=1

*l :
nl

i=nl&1+1

pi :i ,

where *1 , ..., *L are Lagrange multipliers, the partial
derivative of S with respect to :i is 0 if and only if

:
g

x(g) f (g)
i $(g)&pi *l=0, (19)

where nl&1�i�nl and 1�l�L. Summing over i from
nl&1+1 to nl in (19) and using (9) yield

*l=$� ,

for l=1, ..., L. Then (19) becomes

cov( fi , $)=0. (20)

Owing to (13) and (14), this is equivalent to

cov( fi , w)=cov( fi , :)=2 :
j

cov( fi , fj) :j , (21)

where

cov( fi , fj)=:
g

x (g) f (g)
i f (g)

j &pi pj .

Using (16), Eq. (21) can also be written in the form

cov( fi , w)=2 :
j

fi fj :j , (22)

where

fi fj=:
g

x(g) f (g)
i f (g)

j .

This is the probability that two genes chosen at random
and independently, in the same individual chosen at ran-
dom in the population at the beginning of the current
generation, the first one at the locus of Ai and the second
one at the locus of Aj , will be Ai and Aj in this order.

From (14) and (20), we have

cov(:, $)=2 :
i

cov( fi , $):i=0, (23)
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from which

_2
w=_2

:+_2
$ ,

where

_2
w=:

g

x(g)[w(g)&w� ]2

is the total variance of w,

_2
:=4 :

i, j

cov( fi , fj) :i :j=4 :
i, j

fi fj :i :j (24)

is the corresponding additive genetic variance, and _2
$ is

the residual variance given in (15).
Finally, combining Eqs. (21) and (22) with the Fisher�

Li�Price covariance formula (10) leads to

w� 2pi=2 :
j

Cij :j , (25)

where

Cij=cov( fi , fj) for all i, j

or

Cij=fi fj for all i, j.

In vector notation, (25) for i=1, ..., nL takes the form

w� 2p=2C:, (26)

from which the additive genetic variance (24) is given by

_2
:=4:TC:=2w� :T 2p. (27)

This equation, with the constraints (16), characterizes
the additive allelic effects on w. It can be shown that :
satisfying (26) and (16) exists and is unique. Moreover,
the critical point : is actually a minimum point of S
under the constraints (16) (see Lessard and Castilloux,
1995).

Owing to (7) and (11), we get, surprisingly, the same
equation (26) if the genotypic growth rate W (g) defined
by (6) is used as fitness. We conclude that the additive
allelic effects on W are the same as the additive allelic
effects on w. Therefore, if we write

W (g)&W� =:(g)+=(g), (28)

where :(g) is the additive fitness defined by (14), (16), and
(26), then the residual addend =(g) has mean =� =0 and its
variance

_2
= =:

g

x(g)[=(g)]2

is minimum under the constraints (16). This entails

cov( fi , =)=0, (29)

for every i, and then

cov(:, =)=0, (30)

from which the total variance of W satisfies

_2
W=_2

:+_2
= . (31)

5. CHANGE IN MEAN FITNESS

The total change in the mean fitness of the population
from the current generation to the next generation can be
decomposed as

2w� =:
g

[2x(g)] w (g)+:
g

x (g)[2w (g)]

+:
g

[2x(g)][2w(g)], (32)

where 2x(g) and 2w(g) stand for the total changes in the
frequency and the fitness of genotype g, respectively,
from the current generation to the next generation. The
last two terms correspond to partial changes due at least
in part to changes in the environment, since they vanish
if the genotypic fitnesses are constant from the current
generation to the next generation, while the first term
represents a partial change due only to changes in
genotype frequencies.

From Eq. (6), the change in the frequency of genotype
g from the current generation to the next generation can
be expressed as

2x(g)=x (g)$&x (g)=
x(g)[W (g)&W� ]

W�

and, owing to Eq. (28) on the growth rate of genotype g,
can be decomposed as

2x(g)=[2x(g)]:+[2x(g)]= , (33)
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where

[2x(g)]:=
x(g):(g)

W�

and

[2x(g)]==
x (g)=(g)

W�
,

W� being the growth rate of the population from the
current generation to the next generation, :(g) being the
additive growth rate of genotype g, and =(g) being the
associated residual addend. The first term in this decom-
position represents the change ascribable only to changes
in gene frequencies. Note that when =(g)=0, the relative
change in the frequency of genotype g from the current
generation to the next generation, namely 2x(g)�x (g), is
given by :(g)�W� , which is linear with respect to gene fre-
quencies in g owing to (14).

The above decomposition for the change in genotype
frequencies leads to the following one for the first term on
the right side of (32),

:
g

[2x(g)] w(g)=:
g

[2x (g)]: w(g)+:
g

[2x (g)]= w(g),

(34)

where, owing to (7), (17), (18), (23), and (30), we have

:
g

[2x(g)]: w(g)=:
g

x(g):(g)w(g)

W�

=:
g

x(g):(g)[w� +:(g)+$(g)]
w�

=
:� w� +_2

:+cov(:, $)
w�

=
_2

:

w�
(35)

and

:
g

[2x(g)]= w(g)=:
g

x(g)=(g)w(g)

W�

=:
g

x(g)=(g)[w� +:(g)+$(g)]
w�

=
=� w� +cov(=, :)+cov(=, $)

w�

=
cov(=, $)

w�
. (36)

The first term is the change in the mean fitness due only
to changes in gene frequencies. The second term is a
change due to changes in the genic environment.

Similarly, we get, for the last term on the right side
of (32),

:
g

[2x(g)][2w (g)]=
cov(:, 2w)

w�
+

cov(=, 2w)
w�

, (37)

so that the total change in mean fitness takes the form

2w� =
_2

:

w�
+

cov(=, $)
w�

+2w+
cov(:, 2w)

w�
+

cov(=, 2w)
w�

,

(38)

where

2w=:
g

x(g)[2w(g)]

is the mean of the changes in the genotypic fitnesses from
the current generation to the next generation. This is an
exact decomposition for discrete-time models with any
number of loci involved, which extends, using different
variables, Kempthorne's (1957) approximate decom-
position for one-locus models (see Section 8.2 for
details). The first term in this decomposition is inter-
preted in the light of (35), which agrees perfectly with
Fisher's (1930, 1941) writings about the fundamental
theorem of natural selection except that time is discrete
and generations are nonoverlapping.

6. DISCRETE-TIME MODEL WITH
OVERLAPPING GENERATIONS

6.1. Model without Age Effects

Let time be divided into nonoverlapping intervals of
length 2t. During such a time interval, individuals whose
genotype is g irrespective of their age produce a mean
number of offspring equal to .(g), counting half an
offspring for each successful gamete. At the end of the
time interval, the individuals die or survive. Let the
probability of surviving for an additional time period 2t
be s(g) for individuals of genotype g, whatever their age
may be. An individual who survives can be considered as
being produced by itself and as carrying two successful
gametes. With this convention, the parameter

w(g)=.(g)+s(g)
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represents the mean number of individuals at the
beginning of the next time period 2t produced by
individuals of genotype g at the beginning of the current
time period 2t.

Similarly, if 8(g) is the mean number of g offspring
among all offspring at the beginning of the next time
period 2t per g individual in the whole population at the
beginning of the current time period 2t, then

W (g)=8(g)+s(g)

is the mean number of individuals of genotype g
including those who survive at the beginning of the next
time period 2t per individual of genotype g at the
beginning of the current time period 2t.

The conclusions of the previous sections remain fully
valid with these genotypic fitnesses w(g) and genotypic
growth rates W (g) if we substitute ``current time interval''
for ``current generation'' and ``next time interval'' for
``next generation.''

6.2. Model with Age Effects

If the selection parameters, namely, the viability param-
eters, as well as the fecundity parameters, depend on
age, then we have recourse to the notion of reproductive
value. Let .(g)

k and s (g)
k be the mean number of offspring

and the survival probability, respectively, both over a
time period 2t, for individuals of genotype g in age class
((k&1) 2t, k 2t], represented by k, for k�1. Let w(g) be
the unique positive solution of the equation

:
k�1

L (g)
k . (g)

k

[w(g)]k =1, (39)

where L (g)
k is the probability that an individual of

genotype g reaches age class k, that is,

L(g)
k =s (g)

1 _ } } } _s (g)
k&1

for k�2 and L (g)
1 =1. Then the reproductive value of the

individuals of genotype g in age class k is defined as

v (g)
k =

[w(g)]k&1

L (g)
k

:
l�k

L (g)
l . (g)

l

[w(g)] l (40)

for k�2 and v (g)
1 =1. It can be checked that the repro-

ductive value satisfies the equation

. (g)
k +s (g)

k v (g)
k+1=w(g)v (g)

k . (41)

The left-side member of this equation represents the
mean reproductive value of the individuals in the popula-
tion at the beginning of the next time period 2t that are
produced by the individuals of genotype g in age class k
in the population at the beginning of the current time
period 2t, if we assume constant reproductive values from
the current time period 2t to the next time period 2t.
(This will be the case if the parameters .(g)

k and s (g)
k

remain constant.) The equality of this with the right-side
member of (41) means that w(g) is the mean amount of
reproductive value in the population at the beginning
of the next time period 2t that is produced, per unit of
reproductive value, by individuals of genotype g at the
beginning of the current time period 2t irrespective of their
age. This is to be used as the definition of genotypic fitness.

The parameter w(g) corresponds to the growth rate of
every age class with respect to g individuals if the fre-
quency of age class k among g individuals is proportional
to L (g)

k �[w(g)]k&1, which defines a steady age-distribu-
tion for g individuals. The growth rate of age class k with
respect to g individuals is interpreted as the ratio, in
numbers, of individuals in age class k at the beginning of
the next time period 2t produced by g individuals, to
individuals of genotype g in age class k at the beginning
of the current time period 2t. On the other hand, the
reproductive value is interpreted as the contribution ``to
the ancestry of future generations'' (Fisher, 1958, p. 27).
Note that, if the selection parameters do not depend on
age as in the previous subsection, then we get v (g)

k =1 for
every k�1 and w(g)=.(g)+s(g).

Under the assumption of constant reproductive values,
let x (g)

k be the frequency of individuals of genotype g in
age class k counted as many times as their reproductive
value and x (g)*

k be the frequency of the same individuals
counted as many times as the mean reproductive value of
individuals in the population at the beginning of the next
time interval that are produced by them. Then we have

x(g)*
k =

x (g)
k w(g)

w�
,

where

w� =:
g

:
k�1

x (g)
k w(g).

It suffices to define

x(g)= :
k�1

x (g)
k
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and

x(g)*= :
k�1

x (g)*
k

for the conclusions of the previous section to apply,
mutatis mutandis, with ``current generation'' replaced by
``current time interval'' and ``next generation'' by ``next
time interval.''

Note that, in this case, the growth rate of genotype g
takes the form

W (g)=
1

x(g) :
k�1

_8 (g)
k +s (g)

k v (g)
k+1

v (g)
k & x (g)

k ,

where 8 (g)
k represents the mean number of g offspring,

among all offspring at the beginning of the next time
period 2t, per g individual in age class k at the beginning
of the current time period 2t.

7. CONTINUOUS-TIME MODEL WITH
OVERLAPPING GENERATIONS

7.1. Model without Age Effects

The continuous-time model without age effects is
obtained by setting

.(g)=b(g) 2t+o(2t),

8(g)=B(g) 2t+o(2t),

s(g)=1&d (g) 2t+o(2t)

(where o(2t) denotes any function of 2t such that
o(2t)�2t goes to 0 as 2t goes to 0) in the corresponding
discrete-time model with overlapping generations and by
letting 2t go to 0. The parameters b(g), B (g), and d (g) are
respectively the birth rate (the rate at which g individuals
give birth), the born rate (the rate at which g individuals
are born; Denniston, 1978), and the death rate (the rate
at which g individuals die). Then the fitness and the
growth rate of genotype g take the forms

w(g)=1+m (g) 2t+o(2t),

W (g)=1+M (g) 2t+o(2t),

where

m(g)=b(g)&d (g)

is the Malthusian parameter (Fisher, 1958, p. 26) for
genotype g, and

M (g)=B(g)&d (g)

is the relative rate of change in the frequency of genotype
g, that is, the derivative with respect to time of the
natural logarithm of x(g). The corresponding additive
value and residual addends are in the form

:(g)='(g) 2t+o(2t),

$ (g)=`(g) 2t+o(2t),

=(g)={(g) 2t+o(2t),

where '(g) is the additive value of both m(g) and M (g),
while ` (g) and {(g) are their respective residual addends.
Then, letting 2t go to 0, we get, for the frequency of
allele Ai ,

dpi

dt
=cov( fi , m)=cov( fi , M)=cov( fi , ') (42)

and, for the mean Malthusian parameter,

dm�
dt

=_2
'+cov(`, {)+

dm
dt

, (43)

where

dm
dt

=:
g

x(g) dm(g)

dt

and

_2
'=:

g _dx(g)

dt &'
m(g) (44)

with

_dx(g)

dt &'
=x(g)'(g).

Equation (43) corresponds to Kimura's (1958) decom-
position for the mean Malthusian parameter if an
appropriate change of variables is made (see Section 8.2
for details). Equation (44) specifies the interpretation to
give to the first term in this decomposition in order to be
in agreement with Fisher's (1930) FTNS.
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7.2. Model with Age Effects

For individuals of genotype g in age class k, let

.(g)
k 2t=b (g)

k 2t 2t+o(2t)

and

s (g)
k 2t=1&d (g)

k 2t 2t+o(2t)

be respectively the mean number of offspring from age
(k&1) 2t to age k 2t and the probability of living for an
additional time period 2t from age k 2t. Then the fitness
of genotype g is in the form

w(g)=1+m (g) 2t+o(2t),

where m(g) is the corresponding Malthusian parameter
(Fisher, 1958, p. 26), which satisfies the analogue of (39)
in continuous time

|
�

0
e&m(g)tL (g)

t . (g)
t dt=1 (45)

with

L (g)
u =e&�0

� dt
(g) dt,

that is,

d (g)
u =&

d
du

log L (g)
u ,

where . (g)
u and d (g)

u are limits of . (g)
k 2t and d (g)

k 2t , respec-
tively, as 2t goes to 0 and k goes to � such that k 2t goes
to u. In this case, the reproductive value of individuals of
genotype g at age u is

v (g)
u =

em(g) u

L (g)
u

|
�

u
e&m(g)tL (g)

t . (g)
t dt (46)

and satisfies the equation

m(g)v (g)
u du=dv (g)

u +(b (g)
u &d (g)

u v (g)
u ) du, (47)

which are the analogues of (40) and (41) in continuous
time given by Fisher (1958, pp. 27 and 30).

The parameter m(g), which is the real solution to
Lotka's (1922) Eq. (45), is also known as the intrinsic
rate of increase of genotype g (Norton, 1928). It must be

distinguished from the relative (geometric) rate of change
in the frequency of genotype g, which would correspond
to an unconventional definition of fitness (Denniston,
1978), although this interpretation has been occasionally
given to Fisher's (1930) concept of the Malthusian
parameter (see, e.g., Charlesworth, 1970).

The previous results in continuous time apply if
individuals are weighted according to their reproductive
value and if the reproductive values are assumed
constant in time. This agrees, using different variables,
with Crow's (1979) analysis, which extends Kimura's
(1958) formula for one-locus models to age-structured
populations.

8. DISCUSSION

8.1. Partial Change in Mean Fitness

The increase in fitness meant by Fisher (1930) in his
statement of the FTNS might be, in a discrete-time model
with nonoverlapping generations, the partial change

:
g

[2x(g)]: w(g), (48)

where [2x(g)]: represents the change in the frequency of
genotype g ascribable only to changes in gene frequencies
and w(g) is the fitness of g. This is suggested by Fisher's
(1941) own explanations. For the change in mean fitness
to be the sum of average effects of genes times their
change in frequency without restrictive assumptions on
genetic determination, which is the key for the derivation
of the FTNS, the environment, including the genic
environment, has to be kept constant. This means con-
stant genotypic fitnesses and changes in genotypic frequen-
cies directly consequent on changes in gene frequencies.
With fitness determined by two alleles at a single
autosomal locus in a diploid population, this is the case
when the relative change in the frequency of an ordered
heterozygote is the average of the relative changes in
the frequencies of the two homozygotes (Eq. (1) in
continuous time according to Fisher, 1941, and Eq. (3)
in discrete time according to Kempthorne, 1957). This
occurs (exactly in continuous time, approximately in dis-
crete time) when the ratio * of the square of the frequency
of the ordered heterozygote and the product of the
frequencies of both homozygotes remains constant (see
Eq. (2)). This ratio is identically equal to 1 if the frequen-
cies of the ordered genotypes at the single autosomal
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locus are products of the frequencies of the genes present
at that locus, which is to say that Hardy�Weinberg
proportions hold for the genotypic frequencies.

A generalization of condition (3) to ensure a constant
genic environment with any number of loci and any
number of alleles at each locus is

2x(g)=[2x(g)]: (49)

with

[2x(g)]:=
2x(g)

w�
:
i

f (g)
i :i ,

where x(g) is the frequency of an ordered genotype g at
the L loci, f (g)

i is the frequency of allele Ai in g, :i is the
additive effect of allele Ai on fitness, and w� is the mean
fitness. Then the relative changes in genotypic frequen-
cies are linear with respect to gene frequencies in
genotype. This is the case (exactly in continuous time,
approximately in discrete time), with :i given by w� 2pi�pi

or (w� �2) 2Pii �Pii , where pi is the frequency of Ai and Pii

is the frequency of Ai Ai , when the frequencies of the
ordered genotypes at the L loci are the products of the
frequencies of the maternal and paternal genes present at
the L loci, namely, when the genotypes at the L loci are
in Hardy�Weinberg�Robbins proportions. Then the
gametes at the L loci are in Robbins proportions, which
means that there is linkage equilibrium over loci, and the
genotypes at each of the L loci are in Hardy�Weinberg
proportions.

But, in general, condition (49) is not satisfied.
Nevertheless, we have always, using (8), (10), and (16),
the identity

:
g

[2x(g)]: w(g)=2 :
i

(2pi):i ,

from which we get, owing to (27), the equation

:
g

[2x(g)]: w(g)=
_2

:

w�
, (50)

where _2
: is the additive genetic variance in fitness and w�

is the mean fitness. Since [2x(g)]: is only a partial change
in the frequency of genotype g, its change as best pre-
dicted from the changes in gene frequencies, the above
expression represents a partial change in mean fitness
even in the case of constant genotypic fitnesses. The
equality of this partial change to the additive genetic
variance in fitness divided by the mean fitness is the
discrete-time version of Fisher's FTNS.

It is important to note that the equality (50) holds
essentially because the genotypic growth rate defined by
(6) has the same average excesses and therefore the same
average effects with respect to gene substitutions as the
genotypic fitness has. This is essentially because both
concepts coincide for genes: the allelic fitnesses are the
same as the allelic growth rates. It is ironic that
Denniston's (1978) study on the genotypic growth rate as
an incorrect definition of genotypic fitness turns out to be
precursory to a correct interpretation of the FTNS.

Result (50) is valid for discrete-time models with
overlapping generations with or without age effects on
viability and fecundity if individuals are ``weighted
according to the reproductive value of each'' (Fisher,
1958, p. 38) and if fitness is defined as the contribution to
the growth rate of the population in reproductive value.
Without age effects on viability and fecundity, all
reproductive values are equal to 1 and fitness corre-
sponds to the contribution to the growth rate in the total
number of individuals in the population. With age effects
on viability and fecundity, reproductive values depend
on age and genotype but are kept constant in the partial
change (50) under constant environment, since constant
environment must include constant viability and
fecundity parameters, which imply constant reproductive
values as well as constant fitnesses according to (39) and
(40). This is the condition for the basic equation (41)
used to interpret fitness to be valid.

The analogue of (50) in continuous time is

:
g _dx(g)

dt &'
m (g)=_2

' ,

where m(g) is the Malthusian parameter for genotype g as
defined by Fisher (1958, p. 26), [dx(g)�dt]' is the rate of
change in x(g) ascribable only to changes in gene frequen-
cies, everything else being kept constant, including
fitnesses and reproductive values characterized by (45),
(46), and (47), and _2

' is the additive genetic variance
in the Malthusian parameter. This is exactly Fisher's
FTNS.

That the FTNS concerns a partial change in mean
fitness has already been put forward by Price (1972)
for continuous-time models and by Ewens (1989) for
discrete-time as well as continuous-time models. In our
notation and in a discrete-time model with nonover-
lapping generations, their expression for that partial
change is

:
g

[2x(g)] w (g)
: , (51)
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where

w (g)
: =w� +2 :

i

f (g)
i :i

is the fitness of genotype g as best predicted from the
genes in g. We get immediately from (8)

:
g

[2x(g)] w (g)
: =2 :

i

(2pi):i ,

from which

:
g

[2x(g)]w (g)
: =

_2
:

w�
, (52)

owing to (27) (see also Ewens, 1992, and Castilloux and
Lessard, 1995). The analogue in continuous time in the
notation of Section 7 is

:
g _dx(g)

dt & m (g)
' =_2

' , (53)

where m (g)
' is the Malthusian parameter of g as best

predicted from the genes present in g and _2
' is the

additive genetic variance in Malthusian parameter.
But as Price (1972) points out, Fisher (1958) speaks of

``the value of the genotype as best predicted from the
genes present'' (p. 35) as ``the genetic value'' (p. 36) and
uses the notation ! for this value (which corresponds to
w(g)

: &w� in discrete time and m (g)
' &m� in continuous time

in our notation), while in ``no case does he use this
notation or this terminology in connection with the
``fitness'' mentioned in his theorem'' (Price, 1972, p. 133).
Moreover, even if the partial change in (51) is equal to
the additive genetic variance in fitness divided by the
mean fitness in accordance with a dicrete-time version of
the FTNS, ``this does not mean that Fisher would have
accepted [(52)] as a statement of his theorem'' (Price,
1972, p. 133). Of course, the same could be said about
our partial change (48), but this partial change is
suggested by Fisher's (1941) own condition on the
change in genotypic frequencies, given in (1), for the
change in mean fitness to be ascribable only to changes
in gene frequencies in the case of constant genotypic fit-
nesses. Nevertheless, it is surprising that Fisher did not
include this explanation on the FTNS in the 1958 edition
of his book ``The Genetical Theory of Natural Selection''
as if it would not be necessary. This would be so if natural
selection concerned changes due only to changes in gene

frequencies, the genes being the units of selection, and
average effects of genes were defined as rates of changes
due only to changes in gene frequencies. Therefore,
Fisher's (1941) paper would not be about the FTNS but
about the notion of average effect as suggested by the title
of his paper.

Another discrepancy between our results and Price's
(1972) results is found in the definition of fitness in the
case of overlapping generations with age effects on
viability and fecundity. While Price (1972) sees an
``inconsistency in Fisher's mathematics'' (Price and
Smith, 1972, p. 3) and proposes a definition of fitness that
takes into account changes in viability and fecundity
parameters, we believe that Fisher's definition of fitness is
perfectly consistent with his views, since such changes
belong to changes in the environment and, as a conse-
quence, they must be ignored in the FTNS.

In the case of nonoverlapping generations, a definition
of fitness in agreement with Fisher's views incorporates
fecundity as well as viability differences. This is the case
with fitness defined as the mean number of offspring from
the beginning to the end of the current generation. Such
a fitness for genotypes is more general than viability
selection used by Ewens (1989) for his interpretation of
the FTNS in discrete time, but it is more likely to be fre-
quency-dependent since fecundities are based on mating
types. As a matter of fact, unless fecundities of mating
types are products of constant factors that depend on
the male and female genotypes, marginal fecundities
associated with genotypes will be frequency-dependent.
Moreover, with our more general definition of fitness, the
assumption that mating and reproduction do not change
gene frequencies from the current generation at the time
of maturity to the next generation at the time of concep-
tion is replaced by the much weaker assumptions of
Mendelian segregation and no gametic selection. This
has some importance since several nonrandom mating
patterns change gene frequencies and these are not
excluded in Fisher's FTNS.

Note that fecundity selection can also be treated using
mating types, instead of genotypes, as units of selection.
The FTNS in Ewens' sense has been asserted in this con-
text too (Lessard and Castilloux, 1995), but under the
assumption that mating does not change gene frequen-
cies from the time of conception to the time of reproduc-
tion. Again this is rather restrictive for nonrandom
mating populations. But the partial change in the mean
fecundity obtained with this approach should explain
a greater part of the total change, since, with fecundity
differences, the marginal genotypic fitnesses are most
likely to be frequency-dependent even if the fecundity
parameters are not.
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8.2. Total Change in Mean Fitness

From Eqs. (13), (23), (28), (30), and (38), the total
change in mean fitness in a discrete-time model with non-
overlapping generations can be expressed as

2w� =
cov(W, w)

w�
+2w+

cov(W, 2w)
w�

, (54)

where

cov(W, w)=_2
:+cov(=, $) (55)

and

cov(W, 2w)=cov(:, 2w)+cov(=, 2w).

Therefore, even in the case of constant genotypic fitnesses
(which means 2w=0), the total change in mean
fitness involves a second term, besides the additive
genetic variance in fitness divided by the mean fitness,
which depends on residual addends for dominance and
epistatic effects of genes. More precisely, this term is the
covariance between the residual addend of the genotypic
fitness given by

$ (g)=w(g)&w� &:(g)

and the residual addend of the genotypic growth rate
given by

=(g)=W (g)&W� &:(g),

divided by the mean fitness w� . This result is essentially
based on decomposition (33) for the change in genotype
frequencies, which comes from decomposition (28) for
the genotypic growth rate minus its mean, by the least-
squares method, into the additive fitness and a residual
addend.

By contrast, in a discrete-time analogous version and
in our notation, Kimura's (1958) formula is essentially
based on the decomposition for the genotypic growth
rate,

W (g)&W� =a(g)+e(g), (56)

where

a(g)=2 :
i

f (g)
i ai

and

e(g)=W (g)&W� &a(g).

The quantity ai in the definition of a(g) is the average
excess in fitness of allele Ai , given by w� 2pi�pi according
to (12), which is usually different from the additive effect
of allele Ai , denoted by :i , and therefore a(g) is usually
different from the additive fitness :(g) defined in (14).
Then, schematically, the analysis goes as follows:

cov(W, w)=cov(a, w)+cov(e, w)

=cov(a, :)+cov(a, $)+cov(e, w)

=cov(W, :)&cov(e, :)+cov(e, w)

=cov(W, :)+cov(e, $)

=_2
:+cov(e, $), (57)

since, owing to (20),

cov(a, $)=2 :
i

cov( fi , $)ai=0, (58)

while, owing to (27),

cov(W, :)=w� :
g

x(g) _2x(g)

x(g) & : (g)

=2w� :
i

:
g

[2x(g)] f (g)
i :i

=2w� :
i

[2pi] :i=_2
: . (59)

This analysis does not use the property that the
genotypic growth rate shares the same additive value as
the genotypic fitness.

Comparing (55) and (57), or using directly (20), we get
immediately

cov(=, $)
w�

=
cov(e, $)

w�
,

from which

cov(=, $)
w�

=:
g

x(g) _2x(g)

x(g) &2 :
i

f (g)
i

2pi

pi & $(g).

In the case of a single locus, this becomes

cov(=, $)
w�

=:
ij

Pij _2Pij

Pij
&

2pi

pi
&

2pj

pj & $ij , (60)
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where Pij is the frequency of genotype Ai Aj and $ij is the
dominance deviation in fitness of this genotype. If selec-
tion is weak so that changes in genotypic and allelic
frequencies are small, then the term in square brackets
in (60) is approximately equal to 2%ij�%ij , which is
approximately equal to 2(log %ij), where

%ij=
Pij

pi pj

is the coefficient of departure from random mating as
defined by Kimura (1958).

The continuous-time analogue of (60) in the notation
of Section 7 is

cov(`, {)=:
ij

Pij
d
dt

(log %ij) `ij , (61)

and then Eq. (42), in the case of a single locus,
corresponds exactly to Kimura's (1958) formula for the
total rate of change in the mean Malthusian parameter.
Equation (61) has been deduced by Denniston (1978) for
any quantitative character c having residual addend `,
determined at a single locus and correlated with the
relative rate of change in the frequencies of the corre-
sponding genotypes, represented here by M and having
residual addend {, from the equation

dc�
dt

=cov(M, c)+
dc
dt

. (62)

This equation for the total rate of change in the mean of
a quantitative character is not limited to one-locus
models and a discrete-time version is possible, as claimed
by Denniston and as confirmed by Eqs. (42) and (54) in
the case where the quantitative character is fitness. Equa-
tions (54) and (62) are actually valid for any quantitative
character determined at any number of loci and lead to
an interpretation of Robertson's (1966) secondary
theorem of natural selection (STNS) if the character is
kept constant and the genotypic growth rate W in
discrete time or the relative rate of change in genotype
frequencies M in continuous time is replaced by the
corresponding additive value. This partial change in the
mean character is the change ascribable only to changes
in gene frequencies and is equal to the covariance
between the additive value of the character and the
additive value of fitness, divided by the mean value of the
character if time is discrete. For more details and referen-
ces on the STNS, see, e.g., Crow and Nagylaki (1976),
and Nagylaki (1989, 1991, 1993).

Similarly to (56), if we use the decomposition

W (g)&W� =H (g)+E (g),

where

H (g)=w� :
i

f (g)
i

2Pii

Pii

and

E (g)=W (g)&W� &H (g),

then we get

cov(=, $)
w�

=
cov(E, $)

w�

=:
g

x(g) _2x(g)

x(g) &:
i

f (g)
i

2Pii

Pii & $ (g).

In the case of a single locus, this becomes

cov(=, $)
w�

=
1
2

:
i

:
j{i

Pij _2 2Pij

Pij
&

2Pii

Pii
&

2Pjj

Pjj & $ij . (63)

If selection is weak, then the term in square brackets in
(63) is approximately equal to 2*ij �*ij with

*ij=
P2

ij

Pii Pjj
,

as in Kempthorne's (1957, p. 361) approximate formula
for the total change in mean fitness in discrete time.

Equations (60) and (63) under weak selection are
related by the equality

*ij=
%2

ij

%ii %jj
,

from which we have the approximation

2*ij

*ij
&2

2%ij

%ij
&

2%ii

%ii
&

2%jj

%jj
.

Using the fact that

:
j{i

Pij $ij=&Pii $ii ,
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which comes from (20), we get

1
2

:
i

:
j{i

Pij
2*ij

*ij
$ij&:

ij

Pij
2%ij

%ij
$ij .

This term in the total change of mean fitness is attributed
by Kempthorne (1957) to changes in the mating system.
Kimura (1958) presents the continuous-time analogue
(61), extends the analysis to the case of two loci, and
sketches the result for multiple loci. However, in this case
his decomposition over loci is incomplete as pointed out
by Nagylaki (1989), who gives the exact expression in the
case of two loci.

We have shown that Kempthorne's (1957) and
Kimura's (1958) decompositions of the total change in
mean fitness are two different forms of the same basic
decomposition obtained by the least-squares method
applied not only to the genotypic fitness but also to the
genotypic growth rate. This is a more natural decomposi-
tion from a statistical point of view, which enlightens and
unifies the previous ones. These are based on a decom-
position of the genotypic growth rate into a linear func-
tion with respect to gene frequencies in genotype and a
remaining term as in (56). The linear function has been
chosen by Kempthorne and by Kimura in such a way as to
have a genetic interpretation. But this is not necessary and
we can imagine many other decompositions such as the
one in (28) where the linear function is the additive value
obtained by least squares. This approach is particularly
appealing and should facilitate further decompositions.

It is worth noting that, if selection is weak enough
and if mating is random, then genotypic frequencies
approach Hardy�Weinberg�Robbins proportions and
the term in the total change of mean fitness due to
changes in the mating system becomes negligible, in the
sense that it is of higher order with respect to selection
intensity, compared to the term due only to changes in
gene frequencies, at least after enough time has passed, as
shown by Nagylaki (1993) for a discrete-time model with
nonoverlapping generations. Then the total change in
mean fitness is approximately given by the additive
genetic variance in fitness divided by the mean fitness as
long as the gene-frequency changes remain of lower order
with respect to selection intensity, which should be the
case in a population sufficiently far from equilibrium,
unless symmetry conditions are satisfied. This result
has been called the asymptotic fundamental theorem of
natural selection as opposed to the Fisher�Price�Ewens
theorem of natural selection, which says that a partial
change in mean fitness is exactly equal to the additive
genetic variance in fitness divided by the mean fitness.
The approximation is valid even in the case of genotypic

fitnesses depending on gametic frequencies and time as
long as their changes are of smaller order compared to
selection intensity. However, the assumptions of weak
selection and random mating remain crucial.

In general, when the genotypic fitness parameters vary
with respect to time, the total change in mean fitness
includes terms that depend on changes in these
parameters. The first is the mean of changes in genotypic
fitness while the second is the covariance of the genotypic
growth rate and the change in genotypic fitness divided
by the mean fitness (see Eq. (54)). In continuous time,
the second disappears (see Eq. (62)).

It is important to stress that our decomposition of the
total change in mean fitness in discrete time as well as in
continuous time applies to models with age effects in
populations with overlapping generations, but is exact
only under the assumption of constant reproductive
values, which almost implies constant viabilities and
fecundities. For an asymptotic analysis in this case
with constant and small differences in viabilities and
fecundities, we refer the reader to Charlesworth (1974).
(See also Charlesworth, 1980, for more details on age-
structured populations.)

If reproductive values in age-structured populations
are not constant, then the total change in mean fitness
includes supplementary terms. But the FTNS does not
concern these terms and our interpretation of the
theorem remains fully valid in this context which is
Fisher's original framework.
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