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A linear combination of partial changes of mean fitnesses from one generation to
the next one is shown to be approximately equal to the additive genetic variance
in fitness after enough generations and away from equilibrium in random mating
haplodiploid populations under arbitrary weak frequency-dependent selection on
sex-differentiated viability of individuals and sex-differentiated fertility of matings
controlled at a single multiallelic locus. The result can be applied to X-linked locus
models in diploid populations. The result is used to deduce approximate adaptive
topographies for frequency-independent selection models in the cases of nonsex-
differentiated fertilities and multiplicative sex-differentiated fertilities and for kin
selection models in family-structured populations under the assumptions of single
insemination and multiple insemination of females. Multiple insemination creates
frequency-dependent selection regimes. € 1994 Academic Press, Inc.

INTRODUCTION

Evolution at a single multiallelic autosomal locus under arbitrary weak
selection on fertility and viability has been studied in a previous paper
(Lessard, 1993). Considering sex-differentiated viabilities of zygotes and
sex-differentiated fertilities of mated females in random mating diploid
populations undergoing discrete nonoverlapping generations and assuming
that these fitness parameters are close enough to 1, it has been shown that
after enough generations have passed the change in a weighted sum of the
mean viabilities of females and males and the mean fertilities in female and
male offspring is approximately equal to the additive genetic variance in
fitness. In the weighted sum, the mean viabilities have weight 1 and the
mean fertilities weight 1. These weights can be explained by the facts that, in
diploid models, all males and all females of a given generation participate
equally to reproduction and each group contributes half the genes of all
males and all females of the next generation.
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Therefore, in the above model, the sum of the mean viabilities of females
and males and half the mean fertilities in female and male offspring defines
an approximate adaptive topography in the sense that it increases in the
long run as long as the additive genetic variance in fitness dominates all
other terms of higher order with respect to fitness differences. If fitness
differences are small enough, that will be the case at least away from equi-
librium where the additive genetic variance is far enough from 0. This result
confirmed and extended many previous results (Wright, 1942; Abugov,
1985; Nagylaki, 1987). Moreover, it was noticed that the result applies to
weak frequency-dependent selection but only when the fitness changes from
one generation to the next one are much smaller than the fitness differences.

In this paper, the corresponding result for one-locus multiallele models
in haplodiploid populations is presented in the general case of arbitrary
weak frequency-dependent selection. The result is also valid for X-linked
locus models in diploid populations. The result is used to study kin selec-
tion models in family-structured populations under the hypotheses of single
insemination and multiple insemination of females. Multiple insemination
leads naturally to frequency-dependent selection regimes.

1. FERTILITY-VIABILITY SELECTION MODEL

The following assumptions on the population are made: size is infinite,
generations are discrete and nonoverlapping, females are diploid and males
haploid, segregation in females is Mendelian, mating is random. There are
n possible alleles 4,, .., 4, at a single locus such that females of genotype
A, A, have viability u, , males of genotype A; have viability v;, and matings
between 4,4, females and A; males have fertilities ¢,, in female offspring
and y,, in male offspring for i, k, j=1, .., n In this model, sex-differen-
tiated viability differences reflecting the relative abilities for the alternative
genotypes in females and males to survive from conception to maturity
take place first. Then there is random mating between mature females and
mature males. Finally, sex-differentiated fertility differences measure the
relative contributions of mated couples to the next generation in female
offspring and male offspring separately. Both viabilities and fertilities may
depend on the composition of the population.

The genes in the genotypes of females are assumed to be interchangeable
so that the viability and fertility parameters satisfy the symmetry conditions

Uy = Upis
Pixs = Piy» (1)
'ﬁi@‘: 'ﬂkij,
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for i,k, j=1,.,n But males and females are distinguished in mated
couples and in general the fertility parameters ¢,; and ¥,, may not be
the same if the index j is permuted with one of the indexes i or k, for
ik, j=1,.,n

Introducing the fitness parameters

ﬁk[ = uik vi¢l’kj’

(2)

M= Uy Uj‘»[/ikj,

for ik, j=1, .., n, and denoting the frequency of 4,4, females by 2P if
j#iand P, if j=1i and the frequency of A4, males by Q,, for i, j=1, ... n,
the recurrence equations from one generation to the next one are

P = 2 Pi foikj + 2k ij Qifjki

u 2f_ R

(3)

i Pac QMg

O/ =———"",
m
for i, j=1, .., n, where
f= Z PuQ;finss

ikj

m= Z Py Qjmikj'

ikj

These are mean fitnesses in the population.

Note that the fitness parameters (2) can be interpreted as genmeralized
fertility parameters which incorporate the viabilities of the parents. The
product form of these parameters is in agreement with the equivalence of
multiplicative fertility selection models with fertility parameters being
expressed as products of factors attributable to the parents and viability
selection models having those factors as viability parameters. (See, e.g.,
Ewens, 1979; Karlin, 1978; and references therein.) Moreover, the fitness
parameters (2) are allowed to be frequency dependent.

In order to model weak selection it is assumed that all the selection
parameters (viability parameters, fertility parameters, fitness parameters)
can be written in the form 1+ O(s) where O(s) designates a function of
order s, that is, a function such that {O(s)/s| remains bounded as s becomes
small.



ADAPTIVE TOPOGRAPHY 347

In general, a function O(s) can be written in the form gs where g is a
bounded function for s in a vicinity of 0. In the case of a frequency-
dependent function O(s), the function g is assumed to be uniformly
bounded for s in a vicinity of 0. In particular, this is the case for a mean
of a finite number of functions O(s).

Under the above assumptions, it can be shown as in Nagylaki (1987)
that, after enough generations and with an error of order s, the allelic
Jrequencies in males and females are approximately equal, that is,

QigPizzPik7
k

for i=1, ..., n, while the genotypic frequencies in females are approximately
in Hardy—Weinberg proportions, that is,

Py =xx,
for i,k=1, .., n, where x,, .. x, are the allelic frequencies in the whole
population, that is,
x: = %Q: + %Pn

fori=1,.,n

Moreover, with an error of order s, the differences between the allelic
frequencies in males and females and the deviations of the genotypic
frequencies in females from Hardy-Weinberg proportions can be ignored in
the changes of allelic and genotypic frequencies over two successive genera-
tions. In practice, this means that, to a first approximation, the allelic
frequencies in males and females can be considered equal and the genotypic
frequencies in females in Hardy-Weinberg proportions.

Throughout the paper, it will be assumed that enough generations have
passed and selection is weak enough, that is, s is small enough, for the
approximations (indicated by =) to be valid. Then, with an error of order
s%, we have the following approximation for the allelic frequencies in the
whole population from one generation to the next one:

LEmMa 1.
4x;= x;0;, (4)

where

1i=%2xk(mikl—m)+%Zxk(.fikt_f)-i-%(f..i—f)’
k k



348 SABIN LESSARD

Jor i=1, .., n, with the marginal fitness parameters
Mie = Z Qjmikj’
J
fik. = Z ijikj,
i
f-cizz ijf}kn
gk

Jor i, k=1, ..,n

With an error of order 5%, the quantities «, ..., a, represent average allelic
effects on fitness (Fisher, 1930) in the long run and satisfy

> x;0,=0.
i

Let us introduce partial changes of the mean fitnesses caused by changes
in the genotypic frequencies in females and males from one generation to
the next one as follows:

APf=Z (APik) Qj_fikja
ikj
AQf_ZZ Pik(AQj)fik;,
(5)
dpm= Z (4Py) Qjmikp
ikj
AQ’;I = Z Pik(AQj) My,
ikj
where
APy =P,y — Py and 40,=0;—Q;,

for i, k, j=1, .., n. Note that the fitness parameters, although they may be
frequency dependent, are kept constant in the above partial changes of
the mean fitnesses. Moreover, the effects of the changes in the genotypic
frequencies in females and males on the mean fitnesses are considered
separately. Then, after enough generations and with an error of order s°,
we have:

RESULT 1.
A+ 3dpf+4pf =V, (6)
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where V , is the additive genetic variance in fitness, that is,

V,=3Y xa}.

A factor 3 appears in the expression of V, because the fitness parameters
are controlled by triplets of genes in the mated couples. Result 1 guarantees
that, if selection is weak enough, a weighted sum of partial changes of
mean fitnesses is positive in the long run as long as the additive genetic
variance in fitness is not too small, which is expected to occur as long as
the population is not too close to equilibrium. With fitness parameters in
the form (2), we have

f=arg  and Pt = iy, (7)
where u and © are the mean viabilities of females and males respectively,
while ¢ and ¥ are the mean fertilities in female and male offspring,
respectively, that is,

&zz Pty
ik

v= Z Qv
J

¢;= Z P:’:r Qj*¢.i/q,

ikj
J =Z P:'Ii Qj*lllikjs
ikj
with

P,u,
—"‘—_uJi and OF ===,

*
Pi=
H v

for i k,j=1,..,n These quantities represent genotypic frequencies in
mature individuals after the effects of viability differences. After enough
generations and with an error of order s the partial changes of the mean
fitnesses are approximated as follows:

LEMMA 2.
Apf=Api+ 4,4,

Apf=dyi+444,
Apm=Adpii+ 4,9,

Aom=Ad,5+4,1,
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where
i =Z (APy) Ui,
ik

Ap70

2. (4Q) v,

IIZ

J Z AP!’() Q_]¢lkj’

ikj

= AQ )¢lkj’

ikj

~Z lk Q} ikj»

;Z rk(AQj) '//ik/"

Note that
Apu=0 and Ap7=0.

Note also the use of the genotypic frequencies in immature individuals, P,
and Qj, instead of the genotypic frequencies in mature individuals, P% and
QF, in the expressions for 4, é, A ¢ and 4, ¥, AQx/J This does not affect
the validity of the approximations in (8) and has the advantage of simpli-
fying the notation since then all partial changes are expressed with respect
to the same genotypic frequencies.

With the approximations of Lemma 2 in hand, Result 1 yields:

COROLLARY 1.
Api+doi+A,d+3Apd+3d,9y2V,. (9)
In order to interpret this result, we will consider two special cases. But

before we proceed, let us introduce the following definition:

DeFINITION 1. A mean function F defines an approximate adaptive
topography if F increases at least in the long run and away from
equilibrium.

Owing to Corollary 1, if we can find a function F such that, after enough
generations, the total change of F from one generation to the next one is
approximately given by

AF=(Apit+ A58+ 458 +54,0+54,¥)G, (10)

where G is a positive function, then F will define an approximate adaptive
topography.
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Case 1. Frequency-independent selection with
Vi, = Ou for L k,j=1,.,n
This is a case of nonsex-differentiated fertilitics. In such a case, we have

44,

R

AQ¢§+%AP¢_+%AP$:AQ¢_+AP¢;

where

Aézz A(Pik Q;) ¢ik1-
ikj
This is the expression for the total change of the mean fertility from one
generation to the next one since all fertility parameters are frequency
independent. Moreover we have

Apit=Au and 4, 0= 40,

where Ai and AD represent the total changes of the mean viabilities in
Sfemales and males, respectively, from one generation to the next one, since
all viability parameters for females and males are frequency independent.
Owing to Corollary 1, we conclude that

F=i+i+¢

defines an adaptive topography in case 1. Therefore, the sum of the mean
viabilities in females and males and the mean fertility increases at least in
the long run and away from equilibrium.

Case 2. Frequency-independent selection with fertility parameters in
the form

¢fk_[’= ﬁik 5_/' and lpl'ka “f‘ikEj fOr i, k,jz 19 ey N

This is the multiplicative case for sex-differentiated fertilities that are
products of factors attributable to the female and male parents. All factors
are assumed to be in the form 1 + O(s). It is easy to check that

AP¢'§AB where B_zzpikﬂika
ik

Ao d=46 where =) Q,6,,
j

Apy =45 where 7= P,7u.

ik
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In this case, an approximate adaptive topography is defined by

B+ 3. (11)

F=a+i+6+

[T

The coefficients of the means in the above approximate adaptive
topography can be explained as follows: male parents and female parents
have the same weight in the producing of offspring, but female parents
transmit half their genes to male and female offspring while male
parents transmit all their genes to female offspring. The mean

5=Z ngi

has a coefficient O because male parents do not transmit any gene to male
offspring.

Remark 1. As noted for previous models (Nagylaki, 1987; Lessard,
1993), our results in cases 1 and 2 are valid with frequency-dependent
fitness parameters as long as the changes of these parameters from one
generation to the next one and after enough generations have passed are
small enough with respect to fitness differences (actually, of order s*) in
order not to affect significantly the changes in the mean fitnesses.

2. KN SELECTION MODELS

In the preceding model, the system of recurrence equations for the
genotypic frequencies in mature individuals, P} and QX for i, j=1, .., n, is
the same as (3) but with fitness parameters

* _
fikj_uij ikp>

(12)
m:";(jz vilpik_i’

for i, k, j=1, .., n. These parameters are not symmetric in i, k. The quantity
f% can be interpreted as the fitness of an 4,4, female offspring from an
A;A, x A; mating and the quantity m}; as the corresponding fitness for an
A, male offspring. Our previous results on fertility—viability selection
models make possible the analysis of this kind of models and in particular
of kin selection models in family-structured populations.

Let an A;A; female adopt an altruistic behavior with constant proba-
bility #; (=h;) and an A4; male with constant probability 4,, for i, j=
1, .., n. Assume that such a behavior has small sex-differentiated effects on
the fitness of sibs, possibly halfsibs, and offspring, besides the individual’s
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own fitness. Halfsibs come into play when there is multiple insemination of
females. We will consider first the case of single insemination.

Single Insemination

In this case an offspring of an 4,4, x 4, mating has female sibs of
genotypes A;4; and 4, 4, in the same expected proportion of %, and male
sibs of genotypes A; and A, in the same expected proportion of 1.
Assuming that altruistic individuals (donors) see their own fitnesses
decreased by a quantity of order s and the fitnesses of their sibs and
offspring (recipients) increased by quantities of order s, we get fitness
parameters in the form (12} with

u; =1 —y»fsh{,,
v, =1—7y7sh,
P =1+ Bhyshy + ﬂfgsh,

T h . . - [h; ]
+ B jﬁk—} + Bps ';h" ,
L

2

'f’ikj =1+ By shy,+ ﬁ’;fShj

Chy+ Cho+h,
+ s | 2 |+ s | 2 | (13)

“ . .

for i, k, j=1,..,n, where y/, y7, B, BL, BL, B, B, B, B, Ba are
nonnegative coefficients in which I stands for individual, M for mother, F
for father, S for sister, B for brother, f for female and m for male. The
coefficients 7/ and y" correspond to costs and all other coefficients to
benefits. The multiplicative factor s serves to model weak selection. The
fitness parameters (13), which can be viewed as approximations with errors
of order s’ generalize previous kin selection models proposed by
Cavalli-Sforza and Feldman (1978), Uyenoyama and Feldman (1981), and
Uyenoyama et al. (1981), among others. But here, since selection is weak,
there is no difference between additive models and multiplicative models:
we can indifferently add (or subtract) an effect or multiply by 1 plus (or
minus) the effect. The difference is of order s? and is negligible. But note
that ¢, and ¥, in (13) cannot be written as products of factors depending
only on i, k and factors depending only on j because of the presence of the
terms A, and &,;.

Taking the means in (13), we find the following approximations for the
partial changes from one generation to the next one:
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LEMMmA 3.
Api = —y)s Ahp,
Agb= —y7s Ahy,
Apd=Pls dhy+ Bhst dhp,
Apd =P s Ahp+ Bhisy Ahp + Bls Ahy,,
Apy = prys Ahp+ Bs3 Ahp+ s Ahy,, (14)
where

hp=Y P,h, and ho=Y Qh,.

iy
From Corollary 1, an approximate adaptive topography for model (13)
is:
RESULT 2.
F=[—y[+ B4+ 1B%+ iP5 +3B51 Ay
+ =77+ Bh+ 384+ 3851 o (15)

_ This approximate adaptive topography is a weighted average of /, and
hy. In the additive case for altruism propensity, that is,

h+

hi/ = 2

we have
fip=hy,

and the mean for altruism propensity is an approximate adaptive
topography if the sum of the above coeflicients is positive, that is,

Vi T <Bp 3B+ 3BT+ 3Bl aBE + BT+ 3hs

It is instructive to note that the same approximate adaptive
topography (15) is obtained with fitness parameters in the form

g incl,,incl
/l’kj:uik v,
(16)

_,,incl ., incl
My;=Uy V7,
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where

gt = 1+ D=y]+ 3B4 + 585 + 385 + 3P5] shu,

v = U+ (=7 + BE+ 285+ 285 sh,.
This is the inclusive fitness formulation of (13) in the spirit of
Hamilton (1964). The coefficients of the benefits in (16) are known as
coefficients of relatedness (see Hamilton, 1972).
Multiple Insemination

With multiple insemination, it suffices to replace the following quantities
in (13):

h; by ho,
hy+hy hie + hye
Sk - 17
3 y 3 (17)
for i, k,j=1, .., n, where
ﬁgzz thls
!
hi. = Z thi,s
7

for i=1, .., n. We get again the approximations (14) but the following:

LEMMA 4.
AQ&;O. (18)

Therefore, an approximate adaptive topography for model (17) may be
defined as follows:

ResuLT 3.
F=[—y+ 3P+ 385+ B3+ 3p5] s
+ =77 + 385+ 351 ho. (19)
Again, the coefficients of the benefits in the approximate adaptive

topography correspond to coefficients of relatedness given by
Hamilton (1972).

Remark 2. 1In the case of multiple insemination, the fitness parameters
are frequency dependent through their dependence on A, and k,, for
i=1,.,n
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3. DISCUSSION

For a haplodiploid population under weak selection on fertility and
viability controlled at a single multiallelic locus, we have shown that a
linear combination of partial changes of mean fitnesses from one genera-
tion to the next one is approximately equal to the additive genetic variance
in fitness if enough generations have passed but the population is still far
from equilibrium (Result 1). Actually, the linear combination corresponds
to a linear combination of partial changes of mean viabilities and mean
fertilities, whose coeflicients reflect the principle that male parents and
female parents have the same weight in breeding success but female parents
pass on half their genes to male and female offspring while male parents
pass on all their genes to female offspring and none of their genes to male
offspring (Corollary 1). The same principle is reflected in the average allelic
effects on fitness, whose expressions in the long run and with an error of
order s> are given in Lemma |, which are such that

%Z})m(ﬁk.“f‘“i‘ak)z
ik
+%2Pik(miko_"_7_ai—ak)z
ik

+%Z Qi(/“oui_'Ji-ai)2

is minimum,

In some cases of frequency-independent selection (or very weak
frequency-dependent selection such that the changes of the fitness para-
meters from one generation to the next one are of third order compared to
the fitness differences) as cases with fertilities of matings that are the same
for male and female offspring or that are products of fertilities of the male
and female parents, the linear combination of partial changes of mean
fitnesses reduces to the total change of a linear combination of mean
viabilities and mean fertilities. Then, such a combination defines an
approximate adaptive topography (see Cases |1 and 2).

But, in general, partial changes of mean selective values have to be con-
sidered. These, noted 4, and 4, express changes with respect to changes
from one generation to the next one in the genotypic frequencies in females
and males separately and with the selection parameters kept constant. In
this notation, the result equivalent to Corollary 1 for diploid populations
would be
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where i would be the mean viability of females, v the mean viability of
males, ¢ the mean fertility in female offspring and y the mean fertility in
male offspring. If selection is frequency independent or very weak, then we
get

di+ AT+ ad+iap =V,

where 4 denotes the total change from one generation to the next one
(Lessard, 1993). In such a case, the function @+ o+ ¢/2+ /2 defines an
approximate adaptive topography. The general case with frequency-
dependent selection shares some similarity with Li (1955) who constructed
an adaptive topography for two-allele frequency-dependent viability
models without sex differences from Wright’s (1942) formula for the change
of gene frequencies. One of the fundamental element of the construction is
to regard the viability parameters “as constant in any particular instant.”
The same element is present in our results. With sex differences, we have
to assume that selection is weak in order to have approximately the same
allelic frequencies in males and females. The relative weights of fertility dif-
ferences as compared to viability differences and the relative contributions
of males and females to the next generation are reflected in the coefficients
of the partial changes of the mean selective values appearing above and in
Result 1 and Corollary 1.

It is interesting to compare our results with those of Ewens (1989) on
the interpretation of the Fundamental Theorem of Natural Selection
(Fisher, 1930). Ewens showed that a partial change of the mean fitness in
diploid populations under any viability selection regime without sex
differences but allowing for nonrandom mating is exactly equal to the
additive genetic variance in fitness divided by the mean fitness. The partial
change is obtained by replacing the fitness parameters by the corre-
sponding additive genotypic values (or breeding values, Falconer, 1960,
p. 120), which are generally frequency dependent, but keeping those values
constant from one generation to the next one. The “fundamental theorem”
concerns that partial change as first noted by Price (1972). In this paper,
we have shown that, in two-sex viability—fertility selection models under
arbitrary weak frequency-dependent selection but with the assumption of
random mating, the additive genetic variance is approximately equal to
a combination of partial changes of mean fitnesses which ignore any
frequency dependence in the fitness parameters. In this perspective, our
result can be viewed as an extension of the Fundamental Theorem of
Natural Selection.

It is remarkable that kin selection models in family-structured popula-
tions can be put into the framework of viability—fertility selection models
{Result 2). This is true for haplodiploid populations as for diploid popula-
tions (Lessard, 1993). It is even more remarkable that approximate

653/46/3-8
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adaptive topographies can be deduced for such models even in the case of
multiple insemination of females which creates a kind of frequency-
dependent selection (Result 3). Finally, the adaptive topographies are in
agreement with the inclusive fitness formulation of Hamilton (1964). But we
have to remind ourselves that the assumption of weak selection is crucial.

APPENDIX
Proof of Lemma 1.
AxizédQ,--i-%AP,-
Qi)+ (- P)
=30~ 0)+3 (ZP ZP)

g3 a3

+—.{§ Pulfua—F)+ Qf<f-°f‘f£)}

1
wzplk Mo — )

E\l'—

E

+3_f{§ Po(fou—F)+ Qi(f..i—ﬂ}

1 1 | ~
=X, {32xk(mik-—’ﬁ)‘*'gzxk(fiko—f)“'g(fui‘f)}-
k k
Proof of Result 1.
4pm =Z (4Py) Q;(my;—m)
ik

-Z (API’() lk. )
;Z [A(x;ix, ) ](m e — 1)
ik

gz [(dx;) xi + x:(dx, )} (mye — W)
ik

= Z Loixixy + o x i, 1 (myg — M)
ik

_2za xxk mik._m)a
ik
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4pf=2 Zk %%, (fire = ),
dof= % Py (4Q)(fu;— )
=; (40 fos;— 1)
gg (Ax)(feu; = 1)

;Z ajxj(.fooj_f)a

A=

APM+%APf_+AQf—;Z X0 I:Zxk(mikc_'ﬁ)+z'rk(‘/fiko—f)
i k k
+(fo-i—f)]

=3 xal

Proof of Lemma 2.
A=A, (a5)
= (dp0) B + WA p0)Y + ai( 4,4
xApti+ ApY,

AP'p =Z (APP?I;) Qj*‘//tkj

ikj

ZZ (APP:"‘() Qf(‘/’ikj—'/;)

ikj

APy uy  (Apd) Pyu, ]
S s el et

ikj
=Y [APu~(4,8) PE1 QM (i — )
ikj
§Z (4Py) Q;*(Wzk_;— '/")

ikj

2 (4Py) Q; (W — V)
ikj
=Z (4Py) Qj‘/’ikj»

ikj

and similarly for the other quantities in (8).
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Proof of Lemma 3.

ikj

ikj

ikj

40| T Pug,

[zra(s

SABIN LESSARD

h\mm = M Ammb h
=Y (4x) h,,

dhp=7Y (AP;) b,

if

WM [(4x;) X+ x,(4x,)] h

i

=23 (dx,) x;h,

i

x~2 M (4x;) Q;h;
=2 M (4x,) A,

8- s (552

”oa
VTMA%_:@A;;»V
ikj 2

h.+h
=3 (apy) (%)
ik

=5 1) xe+x(ax0] (252
ik

= M (4x,) h

= dh,,

g ()] -gurao (442)

ikj

— M kw;,v A\N.' + \N»ov

=T () x+ (4] (2257
ik

= M (dx;) b,

114

SN
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ikj ikj
hy+

;Zx,-xk(ij)( 5 )

ikj

= Z QiQk(ij) (@y_’;ﬂ)
=3 (4x,) e

1
2

11

A}—IP-

Proof of Lemma 4. Keeping EQ and h,, for i =1, ..., n constant, we have

hio + h . hio + h .
40| TP, (M5 | -3 Patag) (25)
ikj ikj
=0.
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