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In this paper, we propose an alternative to inclusive fitness in kin selection
models. The key point is to show that kin selection in family-structured models can
be put into a context of fertility selection. First, we extend T. Nagylaki's (1987,
Genetics 115, 367-375) result on approximate adaptive topographies in two-sex
populations under weak selection by considering sex-differentiated fertilities of
matings. The result is that the change in the geometric average and in the
arithmetic average of the mean fertilities in male and female offspring is
approximately equal to the additive genetic variance in fertility. Then we show that
fertility—viability selection models and kin selection models with sex differences are
special cases if appropriate fitness parameters are introduced and if genotype
frequencies are considered at an appropriate time of the life cycle. Kin selection
models with partial adoption of offspring giving rise to frequency-dependent
selection are also studied. € 1993 Academic Press, Inc.

INTRODUCTION

In a recent paper, Nagylaki (1987) studied evolution at a single multi-
allelic locus under arbitrary weak selection on fertility and viability. In the
case of constant fertilities of matings and constant viabilities of male and
female offspring determined at an autosomal locus in random mating
dioecious diploid populations undergoing discrete nonoverlapping genera-
tions, he proved that after enough generations the change in the geometric
average of the mean fitnesses of males and females is approximately given
by the additive genetic variance in fitness, the mean fitnesses of males and
females being defined as the product of the mean viabilities of males and
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females, respectively, with the square root of the mean fertility. One of the
main steps in the proof is to show that in the long run deviations of
genotypic frequencies from Hardy-Weinberg proportions are small and
vary slowly compared to the order of magnitude of viability and fertility
differences.

Nagylaki’s analysis confirmed and extended a result of Abugov (1985)
for the case of a diallelic locus and a result of Wright (1942) for the case
of sex-differentiated viability. The result can be viewed as an extension of
the “Fundamental Theorem of Natural Selection” of Fisher (1930) for the
case of viability selection with no sex differences, which asserts that the
increase in the mean viability is (approximately) equal to the additive
genetic variance of viability differences. In Wright's (1932, 1969) interpreta-
tion of the Fundamental Theorem of Natural Selection, the mean viability
is an adaptive topography on which the population tends to move upward
until it reaches a peak. In other words, “the mean viability is maximized.”

On the other hand, Michod and Abugov (1980) studied evolution at a
single diallelic locus under the effects of kin selection with no sex differences
in family-structured populations. Assuming Hardy-Weinberg proportions,
they showed that evolution does proceed along an adaptive topography in
Wright’s sense determined by the mean “inclusive fitness™ as proposed by
Hamilton (1964). In other words, “the mean inclusive fitness is maximized.”
The main idea behind an inclusive fitness formulation of kin selection is
to transfer fitness benefits of altruistic acts, weighted by coeflicients of
relatedness and reproductive values of the sexes when applicable, from
beneficiaries to actors. In diploid populations with no inbreeding, the coef-
ficient of relatedness of a donor to a recipient at an autosomal locus under-
going weak selection is given by the expected fraction of genes identical by
descent in the recipient to one or more genes in the donor at the given
locus. Such a coefficient can be computed from the pedigrees of the donor
and the recipient and is strictly positive only for relatives. Moreover, it is
usually assumed that benefits to recipients and costs to donors incurred by
altruistic acts are combined additively as increments and decrements of
fitness. This assumption of additivity seems to be crucial for an inclusive
fitness formulation to be valid at least near allele fixation states to predict
invasion or extinction of mutant alleles (see, e.g., Cavalli-Sforza and
Feldman, 1978).

For exact one-locus two-allele sib-to-sib altruism selection models with
sex differences, Uyenoyama and Feldman (1981) constructed ad hoc
adaptive topographies based on inclusive fitnesses and Hardy-Weinberg
proportions. They used the regression coefficient of the recipient’s additive
genotypic value for altruism propensity on that of the donor to measure
relatedness as proposed meanwhile by Hamilton (1970, 1972). In several
cases, the stationary points of the ad hoc adaptive topographies turned out
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to correspond to the equilibria and the local maxima to the stable equi-
libria. But in some cases as sister-to-brother altruism and sister-to-sib
altruism, the authors had to assume no genetic dominance (actually, semi-
dominance) in the propensity of performing altruism in order to make
correct descriptions of the equilibrium structures from the ad hoc adaptive
topographies. It was proposed that the exceptions might represent limits
within which Hamilton’s theory on the maximization of the mean inclusive
fitness applies.

With multiple alleles at one locus, Uyenoyama er al. (1981) developed a
covariance formula of Li {(1967) and Price (1970) for the change of gene
frequencies which led to necessary conditions for polymorphic equilibrium
and necessary and sufficient conditions (ignoring degeneracies in linear
approximations) for an initial increase in the frequency of mutant alleles
which were consistant with Hamilton’s theory. One of the advantages of
the covariance approach is to yield general definitions for the coefficient
of relatedness (see also Michod and Hamilton, 1980; Seger, 1981;
Uyenoyama, 1984; and references therein) to be used in kin selection
theory, even in cases of inbreeding and strong selection which do not justify
the use of Hardy-Weinberg proportions, such that conditions for the
invasion of mutant alleles and conditions for polymorphic equilibrium can
be obtained from an inclusive fitness formulation.

With costs and benefits being defined from fitness functions instead of
being defined as intrinsic constants, even the initial increase in frequency of
mutant alleles cannot be predicted in general from an inclusive fitness for-
mulation unless penetrance, that is, the propensity of performing altruism,
is small (Karlin and Matessi, 1983). As with the assumptions of additivity
and Hardy-Weinberg proportions, this is “tantamount to the validity of
Hamilton's theory under conditions of very weak selection.”

In this paper, we propose an alternative to inclusive fitness in kin selec-
tion models. The key point is to show that kin selection in family-strutured
models can be put into a context of fertility selection. First, we extend
Nagylaki’s (1987) result on approximate adaptive topographies in two-sex
populations under weak selection by considering sex-differentiated fertilities
of matings. The result is that the change in the geometric average and in the
arithmetic average of the mean fertilities in male and female offspring is
approximately equal to the additive genetic variance in fertility. Then we
show that fertility-viability selection models and kin selection models with
sex differences are special cases if appropriate fitness parameters are intro-
duced and if genotype frequencies are considered at an appropriate time of
the life cycle. Kin selection models with partial adoption of offspring giving
rise to frequency-dependent selection are also studied.
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1. GENERAL TwO-SEX FERTILITY SELECTION MODELS

Consider a diploid random mating population with sex-differentiated
fertility differences determined at an autosomal locus with multiple alleles
Ay, .., A,. More specifically, let the parameters f,, and m,, be the
fertilities in female and male offspring, respectively (that is the expected
numbers of female and male offspring, respectively), of a mating between
a female of genotype 4, A, and a male of genotype 4, 4, (i, k, j,I=1, .., n).
The quantities f,,; and m,, represent the female and male fitnesses, respec-
tively, of a mating between an A, A4, female and an A, 4, male
(i, k, j,1=1, .., n).

The fitness parameters satisfy the symmetry conditions

fikjlszijlszilj= ikljs (1)

M= My = My = Moy,

for i, k, j,I=1, .., n, which correspond to the assumption that the genes in
the parent genotypes are not ordered. But in general, we may have

fikil # f ;'[ik s
e & M ik
whenever {}, /} is different from {i, k}, which means that male and female

parents may have distinct roles in fertility determination. We posit weak
selection by assuming

Sun=1+0(s),
My =1 +0(s),

(2)

where s is small and O(s) denotes any function of s such that |0(s)/s| is
bounded as s goes to 0(s — 0). We say that 0(s) is a function of order s.
A simple example of a function O(s) is ¢s where ¢ is a constant.

Assuming an infinite population with nonoverlapping generations and
denoting the frequency of genotype A, A, in females by 2P; if j#i and P;
if j=1i, and in males by 20, if j#iand Q; if j=i (i, j=1, .., n), we have
from one generation to the next one

P= Sut PucQufiwjt + 2us P Qe fii
i 2f ]
0 = S Pa Qi+ 20 Py QM
[/ .

2m

(3)
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for i, j=1, .., n, where f and m represent the mean fertilities in female and
male offspring, namely,

f= Z Pik le fik//a

kil

m= Z Py Qymy.

ikjt

(4)

In what follows we show that, after enough generations and with an
error of order at most s°, we have the approximations

A +imy=v,
and

Af xR )=,

where 4 denotes the change from one generation to the next one and V,
represents the additive genetic variance in fertility. Since V, is always non-
negative, we conclude at once that the arithmetic average and the
geometric average of the mean fertilities in female and male offspring
increase as long as V, is not too small compared to s, that is, as long as
there is enough genetic variability. This is the case when the population is
not near an equilibrium and selection is weak enough, which means that s
is small enough. The fact that the arithmetic average and the geometric
average have a similar behavior is also due to weak selection. Finally, the
same weight 1/2 given to the mean fertilities in female and male offspring
can be explained by symmetry between the sexes in diploid autosomal one-
locus models.

The first step in the proof of the approximations is to show that the
allelic frequencies are approximately the same in males and females and the
genotypic frequencies approximately given by Hardy-Weinberg propor-
tions after sufficient generations have passed. The next step is to note that
the rate of change in the allelic frequencies over successive generations are
given, with an error of order at most s°, by the additive allelic effects on
fertility. Finally, the changes in the averages of the mean fertilities over
successive generations are deduced from the corresponding changes in the
genotypic frequencies.

Let us proceed. Introducing the allelic frequencies in female and male
parents

P=Y P,
)

Qi=z Qija

(5)
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for i=1, .., n, we have in the next generation

pr o Tk Pt + Tk Quf

1 2f‘ k)
(6)
, ek Pamy + 3 Qum _y
Q.= o .
for i=1, .., n, where
fik..=z le ikjts
jl
f.ik = Z Pj/fjuk,
" (7

my. = Z O Mijrs
J

m g = Z Py Mg
i
for i, k=1, .., n. These quantities represent the marginal fertilities in female
and male offspring, respectively, of a female and male parent, respectively,
whose genotype is A, 4, (i, k=1, .., n).
The allelic frequencies in all parents are

_Pi+0;

X; 3 (8)
for i=1, ..., n. Under the assumption of weak selection (2), we have
f=1+0(s), i =1+ 0(s),
Su =14+0(s), m,  =140(s), 9)

foa=1+0(s), m_=1+0(s),

for {, k=1, .., n and the following lemma ensues:

LeEMMA 1.  After enough generations, we have for the allelic and genotypic
Sfrequencies in females and males

P=x;+0(s), Q;=x;+0(s), AP;= Ax,+0(s%),
4Q;=4x+0(s*),  Py=x;x;+0(s),  Q;=x,x,+0(s), (10)
AP!»,=A(.>C,,‘C;)+0(32), 4Q,=4(x,; xj)+0(sz),

Sfor i, j=1, .., n, where
Ax,=0(s), A(x,; x,;) =0(s),
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for i, j=1, .., n, and A denotes the change from one generation to the next
one.

Lemma 1 states that, with an error of order s, Hardy-Weinberg propor-
tions for genotypes in males and females with the same allelic frequencies
in both sexes given in (8) are established after enough generations and
then, with an error of order s? the changes in the exact allelic and
genotypic frequencies are given by the changes in the corresponding
approximate frequencies after enough generations. In practice, this means
that, to a first approximation, the allelic frequencies in males and females
can be assumed equal and the genotypic frequencies given by Hardy-
Weinberg proportions. The proof of Lemma 1, presented in the Appendix,
follows Nagylaki (1987).

From now on, it will be assumed that enough generations have elapsed
such that (10) holds.

Then, using (6) and (8), the changes in the allelic frequencies from one
generation to the next one take the form

Ax_=2k Palfu — D+ Qulfu—1)
[ 4f<
YiPulmy —m)+3, Qulm 4, —m)
+ =
4m

>

for i =1, ..., n. Therefore, an appeal to (9) and (10) yields

Ax; = x; oa;+ 0(s7), (11)
for i=1, .., n, where

Y = Za Xk S = F e xS =)+ 2 Xy —m)+ 3, X (m o —m)
i 4 ’
(12)
for i=1, .., n. The quantities «, for i=1, ..., n are of order s (that is, 0(s))
and give the rates of change in the allelic frequencies with an error of order
s? (that is, 0(s?)). Moreover, they satisfy

Zx,-a,:O(sz) (13a)

and, with an error of order s, they minimize the sum of squares
Dt P O, i _f“ & — A — & — x,)
4f
+Zikjl Piijl(mikjl_m—ai_ak_aj*al)z‘ (13b}

4

550 =
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In order to prove these properties, note first that the minimum of SSQ
must be achieved at a critical point. But the derivatives of SSQ with respect
to «; for i=1, .., n vanish if and only if

OZZk,/ P Qy (f}/\;j/—f_—ai_“k_aj““l)

f
4 ijl P, Q:’k(fjlik —f___ oL — oty — 0 — 0y )
S
" ij/ PuQy (’”ik_,'/ —m—a,— o, —0,—u,)
m
d Py Qumyy —m—o,—a,—o;— o
+ Zk/l Ji Q:k( jlik n_q ‘J / k)’ (14)

for i=1, .., n. Summing over i in (14) yields (13a) and then (14) reduces
to (12) by using (9) and (10) and noting that «, for i=1, ..., n is of order
s. The properties (13a, b) show that, with an error of order 52, the quan-
tities «, for i=1, ..., n are the additive allelic effects on fertility, or fitness.
Therefore, we have:

LEMMA 2. The change in the frequency of allele A; from one generation
to the next one but after enough generations is given by

Ax;=x, a,+ 0(s%)
where o, is the additive allelic effect on fertility, or fitness, of A, for
i=1,..,n
Note also that (11) implies
A(x;x;) = (Ax,)x;+ x; (dx;) + (dx,){(4x;)

=x,X; 0+ x, x; 0+ 0(s?)

=x, x; (2, + ;) + 0(s%),
for i, j=1, .., n. Therefore, from Lemma 1, we have also

AP,‘,’inxi (ai+a‘,)+0(52)~ (15)
4Q;=x; x; (a;+a,) +0(s%),

fori, j=1, .., n
Owing to (4), {10), and (15), the change in the mean fertility in female
offspring from one generation to the next one is
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Af= Z [A(Piijl)]fikjl

kil

=Y. [4(P&Q)1(fu— 1)

ikjl

=Z [(APik) le+ Pik(Ale)+(Apzk)(AQ/l)](fikj/“f)

it
= z X X4 X X (ot + oty + o+ o) S - [)+0(s%)
it

:2zma[zxamnaﬁ+zxuﬁwfﬂ]+mﬁy

Similarly, the change in the mean fertility in male offspring from one
generation to the next one is

drin=2 Z X% [Z X (my, —m) '1‘2 X (m “"_’l)] +0(s7).
; « %

7

Therefore, we have
A+ 3 Am=4Y x;a?+0(s%). (16)

Using (10) and (13a), the above equation can be written in the form
AL+ 3) =V, 4+ 0(s%), (17)

where f/2 + m/2 represents the arithmetic average of the mean fertilities in
female and male offspring and V is the additive genetic variance in fertility,
or fitness, that is,
VQ=Z P,ij,(O(,-I—o(k-{-Otj—l—a,)z. (18)
ikt
Note also that 4f and 4 are of order s and then, by Taylor expansions
of fY/? and m'? as functions of f and s, respectively, we have

Af= ‘Inz A +0((4/)) =ldf'+ 0(s),
2f 2 (19)
Am'? = 2’7_:”2 At + 0((4r)*) = % Am +0(s*),

where A2 and Am'? stand for 4(f'?) and 4(m'?), respectively. Hence,
we have

A(f‘l‘,“l xml&): (Af_‘l‘ﬁZ)ml‘Q +f_l/‘2(Aml,f2)+ (Af_lsl)(An—,llu‘l)
=341+ 14m +0(s?), (20)
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where /"2 x m'? represents the geometric average of the mean fertilities in
female and male offspring.
Let us summarize:

RESULT 1. After enough generations, we have for the geometric and
arithmetic averages of the mean fertilities in female and male offspring

AP xm Py =45 ] + 3m) +0(s*)
and

AL F+Im) =V, +0(s%),

where V, is the additive genetic variance in fertility, or fitness, given in (18).

2. Two-SEX FERTILITY-VIABILITY SELECTION MODELS

We want to generalize model (3) by introducing viability differences.
Consider that model with

.fikjl =Uy Uy ¢ikjla

M= U Uy ‘//ikjh

(21)

for i, k,j,I=1, .., n, as parameters and
U = Ugys
vj[ = U[j,
¢ikj/ ¢k1/l ¢k1/1 ¢iklj’
'//i/q/ = lf’km = '/’kf(/ = '/’ik/j,

for i, k, j,1=1, .., n, as symmetry conditions. Then, we have the recurrence
equations

S PROF b+ X0 Pl Q% b
5

T ad (22)
0= 2 PRON Y i+ 2t PO ik
[/ 2w* ?
for i, j=1, .., n, where
= Z P,-‘/Z Q;’ ¢ikj/,
ikl (23)
= Z Pi,'l‘cQﬁwikj[’

ikjl
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and
Pt = Pil;uik’
(24)
oy =1
v
for i, k, j, /=1, .., n, with
u= Z Pyuy,
ik (25)
6=Z Qj’ vﬂ.
il

The quantities w, and v, are interpreted as viabilities (that is, probabilities
of survival from conception to maturity) of 4; A, females and A4, A, males,
respectively, while ¢,, and y,, stand for fertilities in female and male
offspring, respectively, of a mating between a mature A; A, female and a
mature A, A, male for i, k, j, /=1, .., n. Note that, in model (22), viability
differences are followed by random mating and reproduction while, in the
corresponding model (3) with parameters (21), random mating precedes
viability differences and reproduction. But both models are formally
equivalent.

The quantities P, and Q, represent the frequencies of 4; 4, females and
A; A, males, respectively, before viability differences take place, while P}
and Q} represent the corresponding frequencies after the effects of viability
differences for i, k, jl=1,..,n (See Fig. 1.) Therefore, the first are
genotypic frequencies in immature (young) females and males while the
second are genotypic frequencies in mature (adult) females and males.
Moreover, we have

— ¥

S (26)
m=anp*,

where @ and § are the mean viabilites of females and males, respectively,
and ¢* and y* the mean fertilities of mated couples in female and male
offspring, respectively.

Our purpose in this section is to show that, if selection is weak, the
quantities

a+o+3g* 43P and  axIxg*x g2

increase from one generation to the next one after enough generations have
passed and as long as the population is not near an equilibrium, This result
will follow from Result 1. Moreover, the result will still be valid if the mean
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viabilily random fertility viability
differences mating differences differences
Females Py Ui Pl Bicis by u Py = by
- —_ — >P,'kQ:1 e —>
Males Qe Vi Qr Wikt Q, vij Q= Q)
with with with
mean values mein values mean values
a.v PR i,V
0.V W, v
ignoring viability ignoring fertility
differences of parents [| differences of parents
F1G. 1. Schematization of the life cycle and notation.

viabilities # and # are computed in the next generation, ignoring or not the
fertility differences between the parents for that generation.

The same weight given to the mean viabilities of females and males as
the same weight given to the mean fertilities in female and male offspring
can be explained by symmetry between the sexes. The weight 1 given to the
mean viability of one sex compared to the weight 1/2 given to the mean
fertility in offspring of one sex can be explained by the fact that parents of
one sex contribute for a half the offspring of each sex.

Note that there is another way of writing the recurrence equations (22).
Introducing the fitness parameters

/zf,/ =u; ik ji s (27)
m?;j/=vlj/ ikjls
for ik, jI=1,..,n, the recurrence equations for P% and QfF for
ik, j,1=1, .., nfrom one generation to the next one take the form
' Zk! ik Qﬁf:/q/ + Zkl P// Qrk.f/llk
P*
2f*
(28)
o 2k PROIME + 3 P Q,km,m
5 2m*
where

Z ik Q}I ikjl»
ikjl

Z P} Q,/ mrk]l’
ikji



ADAPTIVE TOPOGRAPHY 293

which is the form of the recurrence equations (3). The quantities f;f; and
m}, represent fitnesses of females and males, respectively, of genotype
A; A; whose mother’s genotype is A4; A, and father’s genotype A4, 4, for
ik, j,1=1,..,n In general, the symmetry conditions (1) do not hold for
these quantities whenever i # k and j s/ This is the difference between the
equations (28) and the equations (3). The equations (28) will be useful to
model kin selection regimes in family-structured populations.
Note also that the mean fitnesses satisfy

*=¢* and m* =+,

where #' and ¢’ stand for the mean viabilities of females and males, respec-
tively, in the next generation, that is,

=y Pu, and 7=y Qv (29)
i it

Assuming weak selection in the form

Uy = I +0(S), Uy = I+ O(S),
(30)
$uy=1+0(s), Wi =1+0(s),
for i, k, j,[=1, .., n, we have
i=1+4+0(s), t=140(s),
u' =1+0(s), v =1+0(s), (31)
g*=1+0(s), §*=1+0(s).
Defining the means (see Fig. 1)
¢‘ = Z Py Q// ¢ikj/9
ikl
l[’ = Z PiijI l//ikjls
ikjl (32)

=3 PLQju,=) PrQluy,
i

ikjl

o* :Z P?iQ,/’r'”u:ZP?'Qf”fp
i

ikjt
where

Pr=Y P} and 0r=Y 0%,
j i
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for i, j=1,..,n, which correspond to mean fertilities ignoring viability
differences of parents and mean viabilities ignoring fertility differences of
parents, and noting that after enough generations

Pl‘[k = P(j + O(S)v 1'7 = Qii + O(S)a
AP¥=AP;+0(s%), AQF =40, +0s?), {33)
AP, = AP;+0(s?), 40;= 40, +0(s°),
for i, j=1,..,n, we can prove the following (see the Appendix for the
proof):
LEMMA 3. After enough generations, we have for the mean fertilities and
viabilities
Ag* = A+ 0(s*),  AP* = Ag +0(s?),
Ai* = A + 0(5%), A* = A5 4 0(s7), {34)
A’ = A+ 0(s%), AT = A5 + 0(s?),
where
Au=0(s*),  Av=0(s*), Adg=0(s%), A4y =0(s%).

Lemma 3 and (31) guarantee that
Af = (A1) 0p* + iU(AD) $* + av(A*)
+ (Aa)(45)§* + (4a) 5(48*) + #(AT)(AF*)
+ (4a)(4D)(4¢*)
= Aii + AT+ A$* + 0(s5°)
=Ai* + Av* + A¢* + 0(s°),
and similarly
Am = Au* + Av* + AP * +0(s°).
Therefore, using the formula (19), we get
FA] + 34 = A* + AT* + 34$* + 4§ * +0(s°)
= 4% + AT + AG*'? + AP+ 0(s7)
— (AL?*) 5*&*1,/2!1;*1/2 + ﬁ*(AE*) (5*1‘/2&*1,/2
+ AT AG* ) Y2 GG (A *2) 4+ 0(sY)
= A(@*5*g* 2> 172) +.0(s7).
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Then, Result 1 with (30) and (33) yields:

RESULT 2. After enough generations, we have in model (28) with fitness
parameters (27)

AGE* X 7% x §*12x J*12) = A(* + T + 5% + Lp*) +0(s%)
and
A+ 5%+ 565+ L) = Ve + 00V, (35)

where V. is the additive genetic variance in fitness (18) computed with the
fitness parameters (21) and the genotypic frequencies (24).

Obviously, Result 2 is valid with #* and 7* replaced by if and b, respec-
tively. Owing to Lemma 3, it is also valid with 7* and &* replaced by &’
and 7', respectively. This case with ¢, , =V, for i, k, j, /=1, .., nis due to
Nagylaki (1987). The main advantage of the result with #* and &* is that
the mean viabilities #* and * and the mean fertilities ¢* and y* are
defined with respect to the same genotypic frequencies.

3. PARENT-TO-OFFSPRING AND SIB-TO-SIB ALTRUISM SELECTION MODELS

Classical kin selection models in family-structured populations assume
that the fitness of an individual is affected by the behaviors of its parents
and/or its sibs in addition to its own behavior. For instance, an altruistic
behavior of a male or a female might decrease the individual’s own fitness
but increase the fitnesses of male and female offspring and/or sibs irrespec-
tive of their genotype.

In a one-locus genetic framework, if an individual of genotype A4, 4,
adopts an altruistic behavior with probability h; (=h;), called its
phenotype for i, j=1, ., n, and if such a behavior has small sex-differen-
tiated effects on the fitnesses of kin (specifically, sibs and offspring) and if
mating is at random, then we have model (28) with fitness parameters

SEi=1—=yish;+ Blyshy+ Brsh,
[hy+ hy+ hy+ hyy
| 4

my, =1 —yish;+ B3 shy + Bish,

+(Bss+ Bys) ]+0(SZ),

(36)

[hy+ hy+ by + hy,
4

+(Bis+ Bis) ]+0(s2),

L
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for i, k, j,I=1, .., n, where y{, B, Bis Bés Bas vis Bixs BE, BS, and B3 are
nonnegative coefficients in which I stands for individual, M for mother, F
for father, S for sister, B for brother, ¢ for female and 3 for male. The coef-
ficients y; and 7/ correspond to costs while all other coeflicients correspond
to benefits. The presence of s positive and small which multiplies all coef-
ficients serves to model weak selection. The above expressions for /¥, and
m, represent Taylor expansions of smooth functions of 4, ., hy, hy, by,
hy, for i, k,j, 1=1, .., n. These expressions generalize the additive models of
Cavalli-Sforza and Feldman (1978), Uyenoyama and Feldman (1981), and
Uyenoyama ef al. (1981), among others.
The quantities (36) can be written in the form (27) with

u;=1—y{sh,+0(s%),
vy=1—y{sh,;+0(s%),

37)
hy+hy+h+h (
a1+ Bl + B (B + i) | PEER R0 o

. : , 4 hy+he+h
= 1+ Byt Bishy+ (s + pio) | PR Rt o0,

for i, k, j,I=1, .., n. Note from (28) and (36) that after one generation the
genotypic frequencies in females and males satisfy

PX=P*QF +0(s),
¥=PrQx+0(s),

where P* and Q} are the corresponding allelic frequencies, that is,
P,*ZZP: and Q/ :ZQ'T’
j i

for i, j=1, .., n. Then, introducing the notation

o _PrEOr
[ 2 s

for i=1,..,n for the allelic frequencies in the whole population and the
quantity

h*=Y PXQrh,, (38)
if

which represents the mean phenotype in the whole population, Result 2 and
Lemma 2 with (7), (8), (10), (21), (33), and (37) in hand yield:
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RESULT 3. After enough generations in model (28) with (fitness
parameters (36), we have from one generation to the next one

Ax* = Asx* 8 +0(s?), (39)

fori=1, .., n, and
Ah* = AsV e + 0(s?), (40)

where

Az‘[v;%vf]+[B‘M+B‘F+B§+B;;+Bf4+ﬁg+ﬂg+ﬁg
2 4 ’
OF =3 x}(h,—h*),
J
Jori=1,.,n and

V&‘ = Z Pi*Qj*(ér + 5]*)2' (41 )
i

Actually, Result 2 yields
24s Ah* = 2475V 5. + 0(s7),

which is equivalent to (40).
It can easily be checked that, after enough generations and with an error
of order s, the quantities 6* for i=1, .., n are such that

Z PrXQXh,— h*— 6% — 5}.*)2
ij

is minimum. Thus, these quantities are the additive allelic effects on
phenotype, and the quantity V. is the additive genetic variance in
phenotype.

A more important remark is that we get exactly the same result, that is,
Result 3, with an “inclusive fitness formulation” which has (21) in the form

incl incl, incl
ot U Vs
mincl — uinclvincl (42)
ikjl — %k Yoo
where
. N ' + ‘z+ 5 + 3
u;2°‘=1+[—vf+ﬁ“‘ ﬂszﬁ“‘ ﬂs]sh,kJrO(sz),
(43)

inc o Bt Ba+ B+ B3
U;;Id———l'*-[—’}’i)—}—ﬂ,: BﬁzﬁF ﬁB

:I shy + 0(s?),

653/43,3-4
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for i, k, j, /=1, .., n. The multiplicative factor 1/2 in (43) can be viewed as
the coefficient of relatedness of a mother (or father) to her (or his) son (or
daughter) and of a sister (or brother) to her (or his) sister (or brother)
compared to 1 for the coefficient of relatedness of an individual (male or
female) to itself. This is in agreement with Hamilton (1964) who measured
the relatedness of an individual to a relative by the expected fraction of
genes identical by descent in the relative to one or more genes in the
individual. Note also that reproductive values of males and females in
diploid populations under weak selection are equal and therefore do not
come into play in (43).

4. ALTRUISM SELECTION MODELS
WITH PARTIAL ADOPTION OF OFFSPRING

As proposed by Karlin and Matessi (1983) for kin selection models,
consider the case of altruism in family-structured models with partial
“adoption” of offspring. More specifically, let 1 —1 be the expected
proportion of offspring chosen at random in the population that are
adopted by a family. Therefore, 2 is the probability that an offspring stays
in the family of its own parents and 1 — 4 the probability that it joints a
family of parents chosen at random. It is assumed that this occurs
independently for all offspring. Moreover, altruistic behaviors benefit sibs
and adopted offspring irrespective of their origin.

If we proceed as in Section 3 but take into account the possibility for
offspring to be adopted, we obtain model (28) with fitness parameters

Ttu=1—yishy+ {(ﬁash,k + Bishy)

; hi+h,+h,+h
ipins gy [Pttt

+(1 —A)(ﬁéwﬁés)/}*}

+ (1= D (Bias + Bis + Bas + Bas)i*} +0(s?),

Y, = idem with 3,

(44)

for ik, j,I=1,.,n, where 0(s*) is frequency-dependent through its
dependence on A4* defined in (38). Dividing 7}, by

L+ [(1=2)(Brs + Bis) + (1= A)(1 + A)(Bgs + Bys)1h*
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to get f;¥,, and st} by the corresponding quantity with 3 to get m},, for
ik, j, I=1,..,n, we have model (28) with fitness parameters

filtjl =1- ’IY]“Shij + A(Byyshy + ﬁ‘f-”‘s,“//)
Iih,_»,. +hy+h+ by,

+ A (Bes+ Bys) 3

]+ 0(s?), (45)
m}, = idem with 3,
for i, k, j,[=1, .., n, which can be put into the form (27) with
u;=1—y;sh;+0(s%),
v,=1— yl"shi, +0(s?),
Gun=1+AByshy + Byshy)
[hy+hy+ h,+ hy
4

(46)

+ A3 (Bes+ Bis) +0(s?),
Vi =1+ 2B shy + Bishy,)
[ A+ hy+ b+ gy |

4 +0(s?),

+ A2(Bes+ Bis)

for i,k, j,{=1, .., n, where the function 0(s?) depends on A*. Given its
relative order of magnitude, such a frequency-dependence in fitness
parameters is negligible in the change of genotypic and allelic frequencies
and in the computation of additive allelic effects on fitness. It is also
negligible: (1) in the change of genotypic and allelic frequencies, (2) in the
computation of additive allelic effects on fitness, and (3) in the change of
a*, ©*, ¢* and y*, owing to the following ancillary result:

LEMMA 4. After enough generations in model (28) with (fitness
parameters in the form (27) with (46), we have from one generation to the
next one

Au;=0(s>), Av,;=0(s?),
o o @
A¢ikj/ =0(s"), All’ik_/‘[ =0(s"),
for ik, jl=1,..,n
Therefore, a comparison of (46) with (37) yields:

RESULT 4. After enough generations in model (28) with the fitness
parameters (45), Result 3 holds with

A o [7; + vf] N [iﬂ'M +ABE+ APBy+ APy + AR + ABE + 2B + ;ﬁﬁg]
2 4 :
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An equivalent inclusive fitness formulation in the form (42) has

_ ABig + ABi+ ABE + A°BE >
u;;c'=1+[—v.‘+ P ﬂsz P ﬂs]sh,vk+0(5‘),
‘ L AR AR+ AR+ A28

U};‘Cl=1+[_7i}+ ﬁF ﬂBz ﬁF ﬁB:l S/I,/'FO(SZ),

for i, k, j, /=1, .., n. This suggests 1/2 as the coefficient of relatedness of a
mother (or father) to an offspring (male or female) and 1%/2 as the coef-
ficient of relatedness of an offspring (male or female) to another offspring
(male or female). This again is in agreement with Hamilton’s definition for
the coefficient of relatedness to be used in kin selection theory since 4 is the
probability for an offspring not to be adopted and A” is the probability for
two sibs not to be adopted.

5. Discussion

In this paper, we have first generalized a result of Nagylaki (1987) for
fertility—viability selection models to include sex-differentiated fertilities of
matings. Nagylaki had previously shown that for a single, multiallelic,
autosomal locus subject to weak fertility and viability selection in random
mating dioecious diploid populations undergoing nonoverlapping genera-
tions, the change in the geometric average of the mean fitnesses of males
and females from one generation to the next one is approximately equal to
the additive genetic variance in fitness, under the restriction that enough
generations have passed and the population in not near equilibrium. The
mean fitnesses of males and females were defined as the mean viabilities of
males and females, respectively, times the square root of the mean fertility.
Introducing fertilities of mated pairs according to the sex of offspring, we
have shown that fertility-viability selection models can be cast as two-sex
fertility selection models in which the change in the arithmetic average, as
well as the change in the geometric average, of the mean fertilities in male
and female offsping is approximately given by the additive genetic variance
in fertility, if selection is weak enough and under the same restrictions
as previously (Result 1). With the inclusion of viability differences, the
fertilities of mated pairs in male and female offspring have both to be multi-
plied by the viabilities of the male and female parents to give the new
fertilities in male and female offspring. The same is true for the means. As
a consequence, the mean viabilities of males and females have twice the
weight of the mean fertilities of mated pairs in male and female offspring
in the expression of the corresponding arithmetic and geometric averages in
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agreement with Nagylaki (Result 2). But it must be stressed that Results |
and 2 do not guarantee the increase of the averages over successive genera-
tions even if selection is weak since (1) the results are based on Hardy-
Weinberg approximations for the genotypic frequencies in males and
females, which are valid if enough generations have passed (Lemma 1), and
(2) the additive genetic variances can become negligible compared to the
errors made on the approximations for the changes in the averages, which
occurs near equilibrium with additive allelic effects on fertility becoming
very small.

In two-sex viability selection models with no fertility differences, the
geometric average in Result 2 becomes the product of the mean viabilities
in females and males. Exact one-locus multiallele models of this kind have
been previously analysed (see, e.g., Karlin and Lessard, 1986; Lessard,
1989). In this case, it is known that, although rare and small, a decrease of
the product of the mean viabilities from one equilibrium to the next one
following the invasion of a mutant allele is possible. This confirms that
weak selection is an essential feature to predict the increase of the averages
of the mean fertilities in general two-sex fertility selection models from
Results 1 and 2.

The changes in the allelic frequencies from one generation to the next
one in two-sex fertility selection models can be approximated by means of
the additive allelic effects on fertility if selection is weak. Note that Eq. (11)
for those changes can be put into Wright’s (1942, 1969) form. As a matter
of fact, Lemma 1 with the assumption of weak selection (2) entails for the
arithmetic average of the mean fertilities in female and male offspring, after
enough generations have passed,

f+m Soeu+ My
'*—2 '=2PiijI kﬂ'z A
ikjl

= St + My
=2 XXX x| T

ikjl 2

ik +mi ;
+Z (PuQyi— X, X X; X)) [[M-z—’k!‘ljl

ikjt

= Z x,— kaj x,
ikjl

.fr'k )l +m ikl
2

]+ 0(s?), (48)

from which
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for i=1,..,n, where x; is the frequency of allele A, for i=1, .., n, d/dx,
denotes the formal derivative with respect to x; with x,/(1—x;) kept
constant for all j#i (i=1,.,n) and a, is the additive allelic effect on
fertility of allele 4, for i=1, ..., n. Therefore, Eq. (11) becomes

__xi(l—xi)i .f+’ﬁ 2
Adx;= ) dx,li 3 ]+0(.s ), (49)

for i=1,..,n and the arithmetic average (f+m)/2 is indeed an
approximate adaptive topography in Wright’s sense. The geometric average
(f x m)'7? satisfies the same property.

Another important remark concerning Eq. (11) is that

dx,2,=x, {—‘- [f t 'ﬁ] Y [’—;ﬂ} L0 (50)

Jx; dx;

for i=1, .., n, where ¢/0x; denotes the partial derivative with respect to x,
without any constraint. The first term of the right hand member in Eq. (50)
is, with an error of order s°, the i th component of the projection of the
Shahshahani gradient of (f+ /m)/2 into the simplex of frequency vectors
(see, e.g., Akin, 1979). With this interpretation, Eq. (11) with (50) in hand
can be viewed as an extension of Kimura’s (1958} maximum principle.

These results on two-sex fertility selection models can be applied to
fertility—viability selection models by adding or multiplying the mean
viabilities of females and males to both the mean fertilities in female and
male offspring. The corresponding adaptive topographies are given in
Result 2.

It is interesting that fertility—viability selection models can be put into
the framework of general fertility selection models. Even more interesting
is the fact that selection models in which the fitness of an individual
depends on its genotype and the genotypes of its parents and sibs can be
viewed as fertility—viability selection models. In particular, this makes
possible the analysis of kin selection models in family-structured popula-
tions when selection is weak. Under this assumption, the kin selection
models which have been analysed in Sections 3 and 4 are similar to the
additive models considered by Cavalli-Sforza and Feldman (1978), except
allowing for sex differences in costs and benefits of altruistic acts and
possibilities of adoption of offspring. The assumption of weak selection
{which corresponds to small costs and benefits associated with altruistic
acts) is used to write the fitness of individuals according to their genotypes
and their parents’ genotypes in an appropriate form (Eq. (27)). This is
crucial for the correspondance between the kin selection models and the
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fertility~viability selection models to hold. That correspondence is impor-
tant since it allows an alternative to the approach of Cavalli-Sforza and
Feldman, who modeled kin selection as a kind of frequency-dependent
selection. Moreover, since the fertility-viability selection models were
shown to follow approximate adaptive topographies, inspection of these
topographies reveals when altruistic traits should evolve (Results 3 and 4).

Our results on kin selection models are in agreement with Hamilton's
(1964) principle on the maximization of the mean inclusive fitness. This
was to be expected since weak selection makes the models practically
additive and, in additive models, the conditions for equilibrium and initial
increase in frequency of mutant alleles are known to agree with Hamilton's
principle (see, e.g., Cavalli-Sforza and Feldman, 1978; Uyenoyama et al.,
1981). Our results apply to evolution away from equilibria, however, and
therefore complement the results previously obtained.

Our approach also allows an interpretation for the coefficients of related-
ness introduced by Hamilton to define inclusive fitness. These appear as the
results of weights given to mean viabilities and mean fertilities in adaptive
topographies for fertility-viability selection models.

One of the main theoretical interests in introducing inclusive fitnesses
was to transform frequency-dependent fitnesses (neighbor-modulated
fitnesses in Hamilton’s (1964) terminology) into frequency-independent
fitnesses to which the Fundamental Theorem of Natural Selection, that is,
the maximization of the mean fitness, applies. We have shown that, in
family-structured populations, kin selection models can be cast as
fertility-viability selection models to which extensions of the Fundamental
Theorem hold without any recourse to inclusive fitnesses. Our approach
also clearly support the necessity of the assumption of weak selection to
have at least approximate adaptive topographies given by appropriate
mean fitnesses in family-structured populations under kin selection.

Note that several familial selection models (Haldane, 1924) could be
treated in a similar way as fertility-viability selection models. More
generally, our approach might have applications to a wide variety of
models and selection regimes other than those examined in this paper. In
this respect, the approach might play a unifying role in our understanding
of selection models.

More general population structures for kin selection models as those
considered in Hamilton (1970) and Taylor (1989) remain to be studied.
Other interpretations for the evolution of altruism based on conflicts
between individual selection and group selection (see, e.g., Wade, 1980,
Aoki, 1982; Uyenoyama, [984) which come into piay following a decom-
position of fitness within and between groups or families are also of
interest.

Finally, as suggested in Nagylaki (1987) and illustrated in Section 4, the
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fitness parameters considered in this paper could be frequency-dependent
without affecting the results as long as their change over two successive
generations is of order s* (that is, 0(s*)) after enough generations.

APPENDIX

Proof of Lemma 1. From (5), (6), (8), and (9), we have in the next
generation

Pi=x; (1 +0(s)),

and similarly for Q}, i=1, .., n, in such a way that

Pi+Q;
X = 3 Q =x; (1 +0(s)), (A1)
for i=1, ..., n. Therefore
Pi=x/(1+0(s))=x;+0(s), (A2)

and similarly for @/, i=1, .., n.
From (3), (A1), and (A2), we have after one more generation

P;;:[ﬂ,f_QigP_;Q_}]“ +0(s))

= x;x)(1 +0(s))
= x/x(1+0(s))
= x/x/ +0(s), (A3)

and similarly for Q}, i, j=1, .., n. Note that the last function 0(s) in (A3)
is a function of P=|P,|7,_, and Q= |Q;|7,-, which can be written in
the form

sg; (s, P, Q), (A4)

where g; is bounded as s — 0.
Using (A3) and (A4) after one more generation, we find

Py —Py=xix]—x/x/ +s[g; (s, P, Q)= g, (s, P,Q)],  (AS)

for i,j=1,..,n, where P'=|P;|7 _, and Q' ={Q}l7,_,. But (Al)
implies

xx) —xx) = xIx! (1 +0(s)) — x/x) =0(s). (A6)

/
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Therefore, Eq.(AS) yields that AP, is O(s) after two generations and
similarly for 4Q;, i, j=1,.,n Then, after two generations, a Taylor
expansion of g (s, P’, Q') around P and Q gives

g; (s, P, Q) — g, (s, P, Q)=0(s), (AT)

for i, j=1, .., n. We conclude from (AS) and (A7) that after four genera-
tions

AP;=A(x; x,)+ 0(s?), (A8)
and similarly for 4Q;, i, j=1, .., n. Summing over j in (A8) yields

AP, = Ax,+ 0(s?), (A9)

and similarly for 4Q;, i=1, .., n. Finally, (A1) and (A6) imply that A4x; and
A(x,; x;) are O(s) for i, j=1, .., n

Proof of Lemma 3. Note first that (10), (25), (30), and (31) yield

Aﬁ:z (AP ) uy =Z (AP Muy — i) = 0(s?), (A10)

i %
and similarly for 4. From (24), we have

Phi=Pguy, (All)
which implies that

Pl= Py +0(s), (A12)

for i, k=1, .., n. Similarly, we have
O =0, +0(s), (A13)
for j, /=1, .., n. Moreover, (All) gives
(AP%) it + Ph(da)+ (AP)(da) = (AP})u,,

which leads to

APY = AP, + 0(s%), (A14)
for i, k=1, .., n, by appeal to (A10). Similarly, we have

AQ% =4Q,+0(s?), (A15)
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for j,I=1,..,n With (A12), (A13), (A14), (A15), and Lemma 1 in hand,
we have after enough generations

APEQI)=(AP%) QF + PL(AQF) + (APENAQT)
=(APik) Q,//+ Pik(Ale)+ (Aplk)(AQ//)"‘O(Sl)
= APy Q)+ 0(s), (A16)
for i, k, j,[=1, .., n, where

A(Py Q//) =0(s),

for i,k,j, (=1, .. n Therefore, the conditions of weak selection (30)
guarantee

A‘ﬁ—* = Z [A(P;";(Qﬁ)] ¢ikjl

o

= kZ/ (4(PLO)(Bus— &)

= kZ’1 [A(Pu Q) By — )+ 0(s7),

= ’Alai +0(s%),
where

44 =0(s%),
from which
A((—;;>= - &LZA$*+0((A¢5*)2)=0(§). (A17)

Similarly, we have

A* =AY +0(s%),  da*=di+0(s}),  Ab*= 45+ 0(s>),

where

4 (%):0(&). (A18)
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Owing to (31), (Al6), and (Al17), the system of equations (22) and
Lemma 1 yield

P =55 {Z [4(PEQI)] us+ X L4(PFQR) 10} +0(4(3))
=3 {Z [A(PLONI+Y [A(P,/Q,»k)]}+0(sz)
Y ki
1
=3 {Z [(AP,) Qi+ Pu(A4Q,) + (AP, N(4Q,)]
Y,

+Z [(4P;) Qu + P, (4Q ) + (APiI)(AQik)]} + 0(s?)

kit

= (4x;) x;+ x,; (4x;) + (4x,)(4x,) + O(s”)
= A(x, x;) +0(s7)
=A4P; +0(s%), {A19)

for i, j=1, .., n. Similarly, we have
AQ;=4Q,,+0(s7), (A20)
for i, j=1, .., n. Therefore, we have
Ai’ -Z(AP
Z (AP u,;— i)
=Z AP ) (u,;— i)+ 0(s*)

if

= A +0(s°), (A21)
and similarly
AT = A6+ 0(s>), (A22)
which completes the proof.

Proof of Lemma 4. Any function 0(s?) in (46) can be written in the
form

2T (s, h*),
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where 7 is a bounded function as s — 0. On the other hand, (A16) is still
valid with (46) and implies after enough generations

A};* =Z [A(Pi*Qj*)] h:j/

=) (APLODI A,

ikjt

= 0(s).
Then, a Taylor expansion of 7 around h* yields
AT (s, h*) = 0(sh*) = 0(s),
from which
A[S2T (s, h*)] = 5°0(s) = O(s*).

This is the order of magnitude for the change of u;, v, ¢4, and ¥, in
(46) for i, k, j,I=1, .., n, after enough generations.
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