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Several definitions of evolutionary stability (evolutionarily stable strategy-—ESS,
continuously stable strategy—CSS, evolutionary genetic stability—EGS, evolu-
tionarily stable state—ES state) are presented in a unifying framework. © 1990

Academic Press, Inc.

INTRODUCTION

Fifteen years ago, A. Jacquard (1975) published a paper in Theoretical
Population Biology entitled “Inbreeding: One word, several meanings,”
which was motivated by a proliferation of definitions for inbreeding that
had created confusion. The concept of evolutionary stability has come to
the same point. Since its introduction in 1973 by J. Maynard Smith and
G. R. Price (1973), the notion of evolutionary stability has proliferated in
many directions from game dynamic perspectives to sex ratio evolution
theory, not to mention general frequency- and density-dependent selection,
including kin selection in exact population genetic models. Several papers
in Theoretical Population Biology have contributed to the development of
the concept and the introduction of definitions. In this paper, we try to
unify the theory and terminology.

1. EVOLUTIONARILY STABLE STRATEGY

It is from a game-theoretic approach to animal conflicts that Maynard
Smith and Price (1973) introduced the notion of evolutionary stability. In
a contest with an opponent, an individual chooses a behavior according to
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some strategy s, which is defined as a probability distribution on a given
set of possible behaviors. It will be assumed throughout this section unless
stated otherwise that the set of possible behaviors is finite, that is, the game
is finite. With possible behaviors numerated from 1 to N, a strategy reduces
to an N-dimensional frequency vector

N
S=(51, w0 Sy) ;20  fori=1,., N, Y s,=1,

i=1

where s; is the probability of adopting behavior i (i=1, .., N). A strategy
that consists of adopting a single behavior i with probability 1, also
denoted i, is called a pure strategy. Any other strategy is called a mixed
strategy.

The expected payoff to an s-strategist against an s*-strategist is denoted
A(s,s*). In a linear game, the payoff function A(s,s*) is bilinear with
respect to s and s*. This is the case, for instance, if two opponents choose
their behavior according to their strategy independently of one another.
This will be assumed throughout this section. In particular, a linear game
with possible behaviors numerated from 1 to N has a payoff function in the
form

N
A(s,s*)= Y sa;s¥=s" As* (T for transpose),
ij=1

where a; = A(i, j) is the expected payoff to an individual adopting behavior
i against an opponent adopting behavior j (i, j=1,.., N) and the matrix

A= ”ay" fj:l
is the payoff matrix.

An evolutionarily stable strategy (ESS) is defined as a strategy s* such
that for every strategy s #s*

either A(s*, s*)> A(s, s*)
or A(s*, s*)= A(s, s*) (I)
and  A(s*,s)> A(s, s).
This definition guarantees that the mean payoff to s*-strategists always
exceeds the mean payoff to s-strategists in an infinite population consisting

of a large enough majority of s*-strategists (called residents) and a
minority of s-strategists (called mutants) for every s #s* if pairwise contests
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occur at random in the population. Indeed, the mean payoffs in such a
population with a proportion 1-¢ of s*-strategists and ¢ of s-strategists are

(1 —¢) A(s, s*) + eA(s, s) = A(s, §)
(1 —g) A(s*, s*) +eA(s*, s) = A(s* §),
where § = (1 —¢) s* +¢s, and we have for s #s* and ¢>0 small enough
A(s*,§)> A(s, §) (1)
if and only if (I) holds (Maynard Smith, 1974). Moreover, since we have
A(5,8) = (1 —¢) A(s*, §) + eA(s, §),
an equivalent condition is
A(s, §) < A(S, §) (I11)
for § #s* close enough to s*, or alternatively (Hofbauer et al., 1979)
A(s*,5)> A(S, §) (IV)

for § #s* close enough to s*.

The meaning of (I1II) and (IV) is that the mean payoff to s*-strategists
exceeds the mean payoff in the population which exceeds the mean payoff
to s-strategists for s#s* if the mean strategy § in the population is close
enough to s*. Moreover, (I) compels

A(s, s*) < A(s*, s¥) (Va)
for every strategy s; in particular

A(i, s*) < A(s*, s*)
for every pure strategy i. Let I(s*) be the set of i for which

A(l, s*) = A(s*, s*).

Necessarily, f(s*) contains the support of s*, denoted supp(s*), which is
the set of i for which s* >0. With (Va) in force, s* is an ESS if and only
if (Haigh, 1975)

A(s —s*, s —s*)
= A(s, s) — A(s*, s) — A(s, s*) + A(s*, s*)
<0 (Vb)
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for all s #s* with supp(s) contained in I(s*). If /(s*) contains a single pure
strategy, necessarily s*, we have a strict inequality in (Va) for all s #s* and
this is a sufficient condition for s* to be an ESS.

In the case of an infinite game with a continuum of pure strategies, a
mixed strategy may be a density function but conditions (I}-(V) are still
equivalent for an ESS if the game is linear and supp(s) is defined for almost
all pure strategies with respect to s. In the war of attrition in which the
contestant who is prepared to continue the contest longer receives a gain
V (V/2 in case of a tie) and each contestant pays a cost equal to the
duration of the contest, we have the kernel

V—y for x>y=>0

V
A(x,y)= E—y for x=y>0

—X for y>x=>0

which gives the payoff to a contestant prepared to continue a fixed time x
against on opponent prepared to continue a fixed time y (x,y>0). The
density function

1 ,
s*(x)=I—/e""" for x>0

is the unique ESS (Maynard Smith, 1974; Bishop and Cannings, 1976).

2. CONTINUOUSLY STABLE STRATEGY

Evolutionary stability can be defined directly from contests between a
rare mutant population and a resident population without any linearity
assumption on the payoff function. In such a case, conditions (IIT) and
(IV) are not equivalent and must be considered separately.

Let E(m, r) be the mean payoff per individual to a mutant population
with mean strategy m (m-population) when introduced in infinitesimal
frequency into an infinite resident population with mean strategy r
(r-population). Assuming N-dimensional frequency vectors as strategies and
a payoff function E(m, r) with partial derivatives of high enough order we
have the expansion

E(m,r)=E(r,r)+ (m—r)TF(r)
+{m—r)"B(r)(m—r)

+ higher order terms,
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where
°E
F,~(r)=—?—(r,r) fori=1,., N
on

and

N

| °E \
B(r)= “ e ®0)

By analogy with (III) and (IV), we may look for a resident strategy r*
such that

E(m, r*) < E(r*, r*) (VI)

for every mutant strategy mzr* close enough to r* which defines
r*-stability, or a mutant strategy m* such that

E(m*, r)> E(r, 1) (VIT)

for every resident strategy r#m* close enough to m*, which defines
m*-stability.
A necessary (sufficient) condition for (VI) is:
F{r*)<c for all i, with = for i in supp(r*);
(m—r*)T B(r*)(m —r*) <0 (<0 for sufficiency)
Jor all m # v* with supp(m) in #(r*) = {i: F(r*)=c},
where ¢ is a constant (see, e.g., Thomas, 1984).

The above condition is also necessary (sufficient) for the weaker condi-
tion

E(m, r) < E(r, r), (VI)

where r =r* + f(m — r*) for m close enough to r* and > 0 small enough,
which defines r-stability.
A necessary (sufficient) condition for (VII) is:

F(m*)<c for all i, with= for i in supp(m*);

(m* —r)T[A(m*) + 1 B(m*)])(m* —r) <0 (<O for sufficiency)
for all r #m* with supp(r) in F(m*), where
2 | N

x
— (m* m*)|
om;0r; lij=1

|

653:37:1-12
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Assuming (VI’) for r* =m*, the weaker condition with [A(m*)+ B(m*)]
in place of [4(m*)+ B(m*)/2] above is necessary (sufficient) for

>E(r, 1) if t>0

<E(r, 1) if 1<0 (VIT')

E(r+7(m* —r), r) {

for r#m* close enough to m* and || small enough, which defines
m-stability.
With the change of variables m=r + 8, we have

A2 N

A(m*) + B(m*) =} ===

J

(m*, m*)

i, j=1

in the necessary (sufficient) condition for m-stability.
In the case where E(m, r) is linear with respect to m, we have

E(m, r)=m"F(r),

where F(r)=(F,(r), .., Fy(r)) and F(r) is the mean payoff to the pure
strategy i (i=1, .., N). In this case, if (VII') holds, then it holds for all ¢
Moreover, (VII’) and (VI') with m* =r* are equivalent to each other and
both equivalent to

E(r*, r* + t(m —r*))> E(m, r* 4+ t(m — r*))

for m#r* close enough to r* and />0 small enough. A necessary
(sufficient) condition for both (VII') and (VI') with m* =r* is then

F.(r*)< c for all i, with = for i in supp(r*);
(m—r*)" A(r*)(m —r*) <0 (<0 for sufficiency)
for all m #r* with supp(m) in % (r*), where (VII)

| N

A(r*) =

OF;
ZZip*)|
o, (r );

Li=1

(See, e.g., Taylor and Jonker, 1978.)

The definitions of r-stability (condition (VI')) and m-stability (condition
(VIT’)) are multidimensional versions of definitions introduced in Taylor
(1989), but with 8-stability called r-stability for mnemonic reasons. In
agreement with a terminology used in Uyenoyama and Bengtsson (1982)
and Uyenoyama (1984) in studies on sex ratio evolution and kin selection
theory, a strong ESS is a resident strategy r* satisfying (VI) (r*-stability),
a weak ESS a resident strategy r* satisfying (V1’) (r-stability), and an anti-
ESS a resident strategy r* satisfying the converse of (VI') with equality
precluded. In all cases, we have actually a local ESS.
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Finally, generalizing a definition introduced in Eshel (1983), an ESS r*
is said to be a continuously stable strategy (CSS) if (VII'), that is,
m-stability, holds for m* =r*,

3. RESOURCE ALLOCATION

An N-dimensional resource allocation vector is defined as a nonnegative
vector
N
r=(ry, ..ry), r,i20fori=1,.,N, Y r>0,

i=1

where r; represents the quantity of resources allocated to a function or
activity i (i=1, .., N). Functions can be partitioned into male and female
functions (see, e.g., Charnov, 1982; Taylor, 1984; Charnov and Bull, 1986;
Lessard, 1989a).

All the definitions of Section 2 can be extended mutatis mutandis to
N-dimensional resource allocation vectors as strategies. In that case, the
necessary (sufficient) conditions of Section 2 have ¢=0 if there are no
further constraints on resource allocation vectors. With a constraint in the
form

where T is an absolute maximum for the total quantity of resources, it
suffices to make the change of variables

_ (rh s Ty T_zll"\;l v
T

S

and then to apply the conditions of Section 2 without any modification
with the new variables as strategies. With a more general constraint in the
form (Lessard, 1989a)

gr)<T,

where g is strictly and continuously increasing to infinity in each coor-
dinate and g(0) =0, we can use the change of variables

s— (ri,...rn, La(r)—1] 2:'\;1 r)
a(’)z;\;]ri ’

where a(r) is the unique quantity >1 such that

gla(r)r)=T.
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The quantity a(r) is such that a(r) r is on the boundary of the set of all
admissible resource allocation vectors determined by g(r)< 7, called the
resource allocation set.

4. EVOLUTIONARY GENETIC STABILITY

Typically in population genetic models, the frequencies of types
(genotypes, mating types, etc.) carrying a mutant allele near a population
equilibrium are related over two successive generations by a recurrence
equation of the form

X' = Mx + higher order terms.

If the matrix M is nonnegative and some iterate M* is positive, which is
often the case, there exists a simple positive eigenvalue p strictly larger than
all other eigenvalues in magnitude with associated left and right positive
eigenvectors, u and v, such that

Mk

——-vu'  as k-ow

with ulv=1 and 1"v=1 (1 for the unit vector). In the long run near equi-
librium, the mutant types will have relative frequencies with sum equal to
1 given by v, relative reproductive values with mean equal to 1 given by u,
and growth rate p > 0. There is invasion (or initial increase in frequency) of
the mutant allele at a geometric rate if and only if

p>1.

If p=p(m, r), where r is a mean strategy in the population at equilibrium
and m a mean strategy in the mutant population near equilibrium, using
v as the distribution of mutant types, then we can apply the definitions of
Section 2 to p(m, r) with p(r,r)=1 for all r. (See, e.g., Taylor and Bulmer,
1980; Taylor, 1985.)

In one-locus multialiele models for sex ratio evolution, Eshel and
Feldman (1982) obtained a function p(m, r} linear with respect to m and
a population sex ratio strategy m* =r*——actually, an even sex ratio
(3, 1)—satisfying the CSS conditions was said to exhibit the evolutionary
genetic stability (EGS) property. (See Eshel (1985) for EGS of Mendelian
population segregation ratio.) In a later study on ESS independent of sex
in two-locus systems (Eshel and Feldman, 1984), a multidimensional
phenotype strategy r was said more generally to have the EGS property if
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“within a given genetic system ..., a new mutation is favored if and only if it
renders the population strategy closer to” v at least initially after enough
generations. (See Lessard (1989a) for multilocus systems in sex-differen-
tiated populations.) The genetic system is of importance since the function
p is not usually the same from one system to another. In particular, linkage
may transform an EGS population strategy into a “genetic anti-ESS” with
any mutant allele invading the population (see, e.g., Liberman, 1976;
Lessard, 1985, 1987).

The EGS property has been studied for several genetic parameters.
A partial EGS property (actually, m-stability at viability-analogous
Hardy-Weinberg (VAHW) equilibria) in support of a general reduction
principle is known to hold for mutation rate, recombination fraction, and
migration propensity (Feldman and Liberman, 1986).

An EGS property over successive attainable equilibria (EGS property
with successive equilibria attainable by successive mutant alleles always
closer to the EGS population strategy) has been shown to hold for an even
population sex ratio (Karlin and Lessard, 1983, 1986) and a Mendelian
population segregation ratio (Lessard, 1985) in one-locus multiallele
frameworks.

In general two-sex one-locus multiallele viability models, there may be
small fluctuations over successive equilibria before an EGS population
strategy is reached, which maximises the product of the male and female
mean viabilities (Lessard, 1989a). In such a case, we have an EGS property
over sequences of equilibria. When there is convergence according to this
scheme, we say that we have an evolutionarily attractive population
strategy (Lessard, 1984).

5. EVOLUTIONARILY STABLE STATE

It remains to see whether an ESS as mean strategy can be maintained in
a population. Is an ESS, as a mean strategy, at a population equilibrium
restored following small perturbations on the equilibrium frequencies of
individual strategies? If the answer is yes, we have an evolutionarily stable
(ES) state. Two kinds of perturbations must be considered: perturbations
on frequencies of individual strategies already represented at equilibrium
for internal stability and small initial frequencies of mutant individual
strategies for external stability. Internal stability has a meaning only in
polymorphic populations with two or more individual strategies represented
at equilibrium.

In order to study evolutionary stability in polymorphic populations, we
consider N-dimensional frequency vectors as strategies, we interpret E(m, r)
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of Section 2 as the reproductive rate of an m-strategist in a population with
mean strategy r and we assume

E(m, r)=m’F(r)

such that E(r, r) is the mean reproductive value in the population. Let r*
satisfy the ESS sufficient condition (VIII). For haplotypes adopting pure
strategies 1, ..., N in relative frequencies p,, ..., py in an infinite population,
we have the dynamical equations

pl=pl[E(I’ p)_E(p’ p)] for i= la ey Nv

where p=(p,, .., p,)- Then the equilibrium point p=r* is an ES state
(Taylor and Jonker, 1978; Hofbauer et al, 1979; Zeeman, 1980). For
haplotypes adopting mixed strategies s,,..,s, in relative frequencies
P1s - P, 10 an infinite population, we have

pi =pi[E(si’ §) - E(g’ 5)] for l= 1’“" n,

where
n
§=) ps,.

In this case, the equilibrium manifold §=r*, when it exists, appears to be
an ES state. (See, e.g., Hines (1980, 1982) and Zeeman (1981) for proofs
under generic conditions; see Lessard (1989b) for a more general proof). In
diploid random mating populations with alleles 4,, ..., 4, at one locus, we
have

n
$i= . DSy
i=1

where s, is the strategy adopted by an individual of genotype 4,4,
(i,j=1, .., n). Again, the equilibrium manifold § =r* appears to be an ES
state when it exists (Lessard, 1984; Cressman and Hines, 1984; Thomas,
1985a, b; Cressman, 1988a; Hofbauer and Sigmund, 1988). A general proof
extending Lessard (1989b) confirms this fact.

6. CONCLUDING REMARKS

Conditions for a population state to be evolutionarily stable in
frequency-dependent selection models, as in Section 5, can be extended to
frequency- and density-dependent selection models (see, e.g., Cressman,
1988b; Lessard, 1989b). This is particularly relevant for resource allocation
models.
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Often in sex-differentiated selection models and kin selection models, it
is not sufficient that the mean strategy be equal to an ESS for a population
equilibrium to exist and further conditions are required (see, e.g., Karlin
and Lessard, 1983).

In general, if payoff depends on the whole distribution of strategies (pure
or mixed) in a population rather than just the mean strategy, then we must
look for an ESS that is a distribution of strategies (pure or mixed). (See,
e.g., Akin, 1982.)

For further discussion on ESS theory, we recommend Maynard Smith
(1982) and Hines (1987).
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