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The equilibrium configurations for a two-locus multialle model of sex-linked
meiotic drive are studied with regard to the recombination fraction: limit cycles can
occur in the case of small recombination while stable equilibrium points associated
with linkage equilibrium can exist for an intermediate range of recombination
values depending on the equilibrium sex ratio, linkage disequilibrium at nearby
equilibrium points taking turn with loser linkage. The evolutionary dynamics in
two-locus sex-ratio distortion systems is enlightened: while equilibria with a sex
ratio closer to 4 are more likely to be stable with respect to perturbations on the fre-
quencies of sex-ratio distorters that are represented at equilibrium, such cquilibria
are also more vulnerable to the invasion of mutant distorters when there is some
degree of linkage with the sex-determining locus. For X-linked multimodifier
systems of sex-ratio distortion. differential fertilities and viabilities are incorporated
and a maximum principle is suggested. ¢ 1957 Academic Press. Inc.

1. INTRODUCTION

In species where males are heterogametic XY and females homogametic
XX, a male can affect its progeny sex ratio by differentially producing the
two types of gametes X and Y. Mendelian segregation postulates that X-
and Y-gametes are produced in equal numbers at meiosis leading on the
average to a one-to-one progeny sex ratio at conception. Meiotic drive in
favor of X- or Y-gametes can be viewed as a form of gametic selection at an
early stage of the life cycle. Actually it may be difficult to discern meiotic
drive per se in producing gametes from gametic selection at a later stage of
development because the effects on gene frequencies may be identical.

Sex-ratio distortion can be initiated by sex-linked or autosomal
segregation modifiers active in the heterogametic sex. In Drosophila obscura
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and some related species (Gershenson, 1928; Sturtevant and Dobzhansky,
1936) there exists a driving X-chromosome, devoted X,, such that X, Y-
males mainly transmit X,-gametes to their progeny. This is known as the
Sex-Ratio System. In the mosquito Aedes aegypti, sex is determined at an
autosomal locus, males being heterozygous (Mm) and females homozygous
(mm). Moreover there exists a sex-ratio distorter D tightly linked to the
sex-determining locus such that the progeny of MD/md males generally
contains more males than females (Hickey and Graig, 1966).

Sex-linked meiotic drive modifiers have also been found in the butterfly
Acraea encedon (Chanter and Owen, 1972) and in the wood lemming
Myopus schisticolor (Fredga et al., 1976). In this species, the meiotic drive
modifier is X-linked and suppresses the male-determining effect of the Y-
chromosome leading to heterogametic females having mostly daughters.

Autosomal suppressors of sex-linked meiotic drive distorters have been
reported in D. paramelanica (Stalker, 1961), D. affinis (Novitski, 1974),
and in the butterfly Danaus chrysippus (Smith, 1975). Autosomal genes
directly distorting the progeny sex ratio of the heterogametic sex have been
observed in D. melanogaster (Bell, 1954; Sandler, 1970) and D. simulans
(Faulhaber, 1967).

The evolutionary response to X-linked or Y-linked meiotic drive
modifiers has been studied in Edwards (1961), Hamilton (1967), Thomson
and Feldman (1975), and Curtsinger and Feldman (1980), among others.
It has been argued that sex-linked modifiers of progeny sex ratio should
increase in frequency under random mating if they promote their own
representation in the future generations until genetic fixation is reached. In
the long run with the introduction of new mutant modifiers, such an
evolutionary process should lead to an ail female or an all male population
if no other selective forces come into play to balance the tendency (see, e.g.,
Karlin and Lessard, 1986, Chap. 6). Therefore viability and/or fertility dif-
ferences, not to mention mating constraints and population structures,
have been incorporated to sex-ratio distortion systems to explain the main-
tenance of polymorphic equilibria in natural populations with sex-linked
modifiers. (See Bengtsson (1977) for models incorporating sex deter-
mination, sex-ratio distortion, and fertility differences as occurs in the
wood lemming. )

Maffi and Jayakar (1981) introduced a two-locus two-allele model of
sex-linked meiotic drive with possible applications to Aedes aegypti pop-
ulations in order to investigate the influence of the recombination fraction
on the possibility of maintaining polymorphic equilibria in the absence of
fitness differences. Numerical simulations partly supported by local stability
analyses (see Lessard and Karlin (1982) for a complement of analysis)
revealed that limit cycles can occur in the case of tight linkage while mul-
tiple stable polymorphic equilibria can coexist when there is sufficient
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recombination. On the other hand, Wu (1983) showed that autosomal sup-
pressors of X-linked meiotic drive modifiers as occurs in Drosophila would
tend to increase in frequency if no fitness differences are assumed.

In this paper, we first extend Maffi and Jayakar’s model by allowing any
number of meiotic drive modifiers at a sex-linked locus. We focus on an
important class of polymorphic equilibria—those associated with linkage
equilibrium—also called symmetric. The exact analytical conditions for
internal and external stability of such equilibria in terms of the recom-
bination fraction and the equilibrium population sex ratio are examined.
Of particular interest are the threshold values at which there are bifur-
cations to surrounding limit cycles or nearby isolated non-symmetric
equilibrium points. In our description of the equilibrium configurations,
special attention is given to the cases of tight linkage and free recom-
bination. We also analyse X-linked modifier systems of sex-ratio distortion
in a multiallele setting. In this model, we incorporate the effects of viability,
fertility, and virility differences that can be associated with sex-ratio
modifiers.

Previous studies on autosomal modifiers of sex-ratio determination (see,
e.g., Eshel, 1975; Uyenoyama and Bengtsson, 1979; Eshel and Feldman,
1982; Wu, 1983; Karlin and Lessard, 1983, 1984) have revealed an
evolutionary tendency toward on equal representation of males and females
in the population. The questions of interest concern the existence and
stability of polymorphic equilibria, the fate of mutant modifiers, and the
evolutionary properties of the sex ratio. Our main objective in this paper is
to describe the evolutionary dynamics of sex-ratio distortion systems when
the sex-determination locus and the progeny sex-ratio modifier locus are
generally linked in order to highlight the dependence on the recombination
fraction. All proofs are relegated to the Appendix.

2. A SEx-LINKED Two-Locus MULTIALLELE SEX-RATIO DISTORTION MODEL

A primary locus with two possible alleles M and m is assumed to be
responsible for sex determination: males are Mm while females are mm. A
secondary locus allowing alleles A4,,..., 4, governs meiotic drive, namely,
the sex ratio in the progeny of males: MA,/mA; genotypes segregate
gametes carrying the alleles M and m in the proportions s; and 1 —s;,
respectively. The sex-ratio distortion matrix S=|[s,[ is assumed to be
positive and symmetric, namely 0 <s;=s; <1 for all i, /.

A recombination event between the sex-ratio distortion locus and the
sex-determination locus occurs with probability » (0 <r<3) prior to the
meiotic drive effects. Hence a typical male MA,/mA; transmits the gametes
MA,, MA;, mA;, and mA, with the frequencies (1 —r) s, rs;, r(1 —s;), and
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(1 —r)(1 —s;), respectively, while the gametes mA; and mA; are equally
represented in the gametic production of a typical female mA;/mA;.

Let Z; be the frequency of mA; gametes among all m gametes transmitted
by males and Y, be the frequency of M4, gametes among all M gametes.
Moreover, let X; denote the frequency of mA,; among all gametes produced
by females. Assuming random mating (i.e., random union of gametes) and
discrete generations in a large population (without sampling drift effects),
the recurrence relations over two successive generations are

X+ Z,
x =2t 4 (2.1a)
2
(I=r)Y, X, s; X;+rX; 2 5;Y
Y= L T — (2.1b
25X Y, )
Z{___rY,Zj(l—s,-,-)XI+(l—r)X,-Zj(I—s,-,-) Y, (2.1¢)
' 2., (1=s5) XY,

for i =1,.., n. In vector notation, the recurrence system (2.1) can be written
in the form

_X+Z

X’ 5 (2.2a)
, (1=r)Y:5X+rX-SY

Y = XSV (2.2b)
, Yo (U=8)X+(1-r)X-(U=-85)Y

7 = (X, 5Y) (2.2¢)

where U is the matrix of all unit entries while X-¥Y=(X,Y,,.., X,,Y,)

denotes the product component by component and (X,Y)>=3,X,Y, is

the scalar product for two vectors X =(X,,.., X,) and Y=(Y,,.., ¥,).
The quantity

s=s(X,Y)=<(X,SY>=Y s5,X,7, (2.3)

represents the average segregation ratio in favor of allele M in the pop-
ulation, that is, the proportion of male offspring, the sex ratio, in the
current generation.

Polymorphic Symmetric Equilibria and Conditions for Their Stability

An important class of equilibria {X* Y* Z*} of (22) has
X*=Y*=7Z* Such equilibria are said to be symmetric. Symmetric
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equilibria exhibit linkage equilibrium in the sense that the allelic frequen-
cies at the sex-ratio distortion locus are independent of the sex-determining
alleles. In view of (2.2), this occurs if and only if the equilibrium allelic
frequency vector X* at the sex-ratio distortion locus satisfies the relation

X* o SX*

*:———
X X" SX7

(2.4)

The associated population sex ratio is s* = (X*, SX*). We will suppose
throughout s* <1 (Otherwise, replace S by U—S, ie., interchange the
sexes.)

The assumption S non-singular guarantees that there exists at most one
polymorphic symmetric equilibrium, ie., X*=(X},.., X¥) exhibiting all
positive components and satisfying (2.4). For a polymorphic symmetric
equilibrium X*, the matrix

X*:S

s* 7

S*=5(X*)=

(2.5)

whose ith row is the ith row of S multiplied by X}*/s* for i=1,..,n, is
positive. Equation (2.4) says that 1 is an eigenvalue of S(X*) with
(positive) right eigenvector X*. The other eigenvalues of S(X*), which are
real since S(X*) is a product of a positive diagonal matrix with a positive
symmetric matrix, are all less than 1 in absolute value owing to the
Perron-Frobenius theory (see, e.g, Gantmacher, 1959). The stability
nature of X* can be determined as follows.

ResuLT 1. A4 polymorphic symmetric equilibrium X* for the sex-ratio dis-
tortion model (2.2) with equilibrium population sex-ratio s* = (X*, SX*)
less than 4 is stable if for every eigenvalue /.# 1 of S* = X* < S/s*, the recom-
bination rate r satisfies

max{r,(4), ro(2)} <r<min{r(4), 1/2} (2.6)
where
AS*
—_— if >0
) 1 —2s%+2/s*
ro(3)= (2.7)
1/2 if A1<0
. 34%s*
ri(4)= (2.8)

8—3i—(8—4i—64i%)s*
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and ry(4) is the root between 0 and i of the quadratic form in r

Q(r)y=1—b+ac—c? (2.9)
where
a=r(l—2)—3/2,
ri
b=50 =y (2.10)
(1 =2r)(1 —s* + 32s%)
- 2(1 —s5*)

The equilibrium X* is unstable if any of the inequalities (2.6) is reversed.

In practice, it suffices to find out the eigenvalues of S* to apply the
criterion (2.6). For example, in the case n =2,

X*—( S22 — 512 Sit— 512
- ] 1]
SIi—28134 525 S — 28512+ 52

.
S1182 =512

% =
S =252+ 55

and the only eigenvalue 4 of X* - S/s* different from 1 is

P (511 —512)(522 — 512)

2
11822 =812

In general, suppose that a polymorphic symmetric equilibrium X* of
(2.2) is stable for some intermediate range of recombination values r.
According to condition (2.6), the equilibrium will become unstable if r
increases sufficiently or decreases beyond some minimum treshold. It can
be argued (see Appendix) that there will be a transfer of stability to nearby
isolated equilibrium points in the former case while periodic orbits will
emerge from X* (or will collapse to X*) by Hopf bifurcations in the latter
(see, e.g., Marsden and McCracken, 1976).

Stability of Symmetric Equilibria against Mutant Distorters

Consider a mutant distorter A,,,, at the sex-ratio distortion locus. Let
S:n.1 be the proportion of M gametes in the gametic pool of either
MA,/mA,., or MA,,,/mA, males. Near a polymorphic symmetric
equilibrium X* = (X¥..., X¥) of (2.2), the quantity

Sk =2 Sinar1 X (2.11)

i=1
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measures the average marginal sex-ratio distortion in favor of males in the
progeny of all males carrying allele 4, ,. The fate of the mutant allele
depends upon s* ,,, the population sex-ratio s*, and the recombination
fraction r. We assume throughout s¥, | #s*.

ResULT II. A4 polymorphic symmetric equilibrium X* for the sex-ratio
distortion model (2.2) with equilibrium population sex ratio s* <% will resist
the introduction of a mutant distorter A, , | if

r(s* —s*, (1 =2s*, )>(s*—s*,,)° (2.12)

where r is the recombination rate and s} | is the mutant marginal sex-ratio
distortion as defined in (2.11). If the inequality (2.12) is reversed, i.e.,
sk, 1 >s* or otherwise r<(s*—s¥ )/(1—s¥,|), the mutant allele A, ,
will tend to increase in frequency after some generations following its
introduction.

We will refer throughout to condition (2.12) as the condition for external
stability following the introduction of a new sex-ratio distorter at a sym-
metric equilibrium while condition (2.6) will define internal stability of a
symmetric equilibrium within its own allelic system for which all our
assumptions will be extended mutatis mutandis. Some limit cases are of
particular interest.

Case of Symmetric One-to-One Population Sex-Ratio Equilibria

The stability nature of a symmetric equilibrium X* associated with a
one-to-one population sex ratio, ie., s*=<(X* SX*>=1. raises an
interesting paradox. As a matter of fact, Results I and II extended to this
case lead to a rather surprising conclusion.

ResuLT III. At least for (3 — \/3)/4<r < 1/2, a symmetric equilibrium
of the sex-ratio distortion model (2.2) resulting in a one-to-one population
sex ratio is always internally stable and always externally unstable.

Case of Small Recombination

When the sex-ratio distortion locus and the sex-determination locus are
tightly linked, it can be argued that every equilibrium of (2.2) must be sym-
metric. Moreover, the conditions (2.6) and (2.12) cannot be fulfilled. We
conclude that only limit cycles or chaotic behaviors can be observed when
r is positive but small.

ResuLT IV. In the case of small recombination, every equilibrium point

of the sex-ratio distortion model (2.2) is internally as well as externally
unstable.

65331211



346 SABIN LESSARD

Case of Free Recombination

With free recombination (r=14), the conditions (2.6) and (2.12) for
stability of a symmetric equilibrium are amenable to simpler forms as
stated below.

RESULT V. Suppose r=14 in the sex-ratio distortion model (2.2). A
polymorphic symmetric equilibrium X* with population sex ratio s* <} is
internally stable if every eigenvalue /. # 1 of S(X*)=X*:S/s* is negative. It
is externally unstable against a mutant distorter A, , | if the average mutant
sex-ratio distortion s¥, | of (2.11) exceeds s*.

(Compare with Karlin and Lessard (1983)).

The analysis of this case is complemented by noting that a non-sym-
metric equilibrium  {X,Y,Z} of (22) with r=1 must satisfy
§=(X, SY > =1 since we have

Y+(1-5Z=Y+X)2=(Y+Z)2 (2.13)

and Y #Z by assumption. One-to-one population sex-ratio equilibria are
therefore characterized by the equation

Y=V:5X+X-s5Y (2.14)

and the equality Z = X. Equation (2.14) arose in previous studies of sex-
ratio determination models (Karlin and Lessard, 1983, 1984). It can be
interpreted as foliows.

Define

B(X) = diag(SX) + diag(X) S (2.15)

for every frequency vector X (diag(X) designates the diagonal matrix with
the components of X on the main diagonal). If the components of X are all
positive, then the matrix B(X) is positive. Its leading eigenvalue, denoted
by p(X), is real and positive owing to the Perron-Frobenius theory (see,
e.g., Gantmacher, 1959). Morcover there exists a unique positive frequency
vector Y = Y(X) satisfying

BX)Y=p(X)Y. (2.16)

Comparing Equation (2.16) with (2.14) informs us that the polymorphic
one-to-one sex-ratio equilibria are determined by the relation

pX)=1; (2.17)

ie., they are associated with the level surface corresponding to the value 1
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of the spectral functional p(X) defined on the set of all positive frequency
vectors. Combining this information with Result V allows us to apply the
conclusions of Karlin and Lessard (1983, 1984) (see also Lessard, 1986) to
the sex-ratio distortion model (2.2).

ResULT VL. Consider the sex-ratio distortion model (2.2) with r =1.

(a) A positive frequency vector X* with s* = (X* SX*)<{ is a
polymorphic symmetric equilibrium if and only if it is a critical point of p(X)
defined by (2.16) on all positive frequency vectors. It is stable if and only if it
corresponds to a local maximum of p(X).

(b) One-to-one sex-ratio equilibrium surfaces occur if and only if there
exist two symmetric equilibria X} and Xf with equilibrium population sex-
ratios s¥ <3 and sf >3, respectively.

(c) When an initially stable polymorphic symmetric equilibrium X*
with corresponding s* <4 becomes unstable following the introduction of a
mutant distorter (see Result V'), then in the augmented allelic system, either
(1) there exists a unique stable symmetric equilibrium that is associated with
a population sex ratio closer to 1 than s*, or (ii) X* is enclosed in a one-to-
one sex-ratio equilibrium surface.

(see loc. cit. for more details.)

3. AN X-LINKED MULTIALLELE SEX-RATIO DISTORTION MODEL
INCORPORATING DIFFERENTIAL FERTILITIES AND VIABILITIES

Consider a population where all X;Y genotypes are males and all X, X
genotypes females for i, j=1,.,n An X,Y male produces X-carrying
gametes with probability s, and Y-carrying gametes with probability
(1 —s;). Viability and virility are also affected by the modifier and are
denoted by b; and f;,, respectively. We will assume throughout
s;fibj=0;>0for i=1,.., n. The viability and fertility of an X, X, female are
represented by b, and f,, respectively. Fertility and virility are assumed to
be independent, ie., the number of offspring produced by a mating
X;X;x X, Y is the product f;;x f. This is a reasonable assumption at least
for D. pseudoobscura according to Curtsinger’s and Feldman’s (1980)
observations. The female viabilityfertility matrix V' = ||lv,|| where v, =b, f,
is assumed to be symmetric, positive, and non-singular.

Suppose an infinite population undergoing discrete generations and ran-
dom mating. Using the notation p; for the proportion of X,-chromosomes
among all X-chromosomes maternally transmitted to the next generation
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and ¢, for the corresponding proportion in male parents, the recurrence
relations are

' Pi0; .
gi==, i=1,.,n, (3.1a)
24 PiO
YL [aik IV LT/ (3.1b)

23 itk

In terms of the frequency vectors p=(py,..., p,) and q=(q,,.., q,) and the

positive vector ¢ =(0,...., 6,), we have
pco
= (3.2a)
BT
P:Vq+q-Vp
= (3.2b)
2{p, Vq)

in the notation of (2.2). A polymorphic equilibrium {p* q*} of (3.2)
represented by p* is characterized by the relation

(Vﬂp*),-= <p*’ Vap*>=w* (33)

for every component i=1,.., n of V“p* where

(a +a)‘| (3.4)

Such an equilibrium p* is unique if it exists in generic cases (namely, when
V® is invertible). Introducing the quantity

6,40,
n+l Z llnﬁ»](_—z;l)p;.l (35)

i=1

ye _ Vco+c vV ’l

and combining together the equations (3.1a) and (3.1b) for a new modifier
X, 1, we have the linear approximation

”: Z,: vi,n J; i*
pn+l—pn+l( w+l)+(pn+l pn+l)|:—ﬁ—l-_p-:| (36)

near p*. Therefore the following condition for external stability of p* can
be ascertained.

ResuLT VILI. A polymorphic equilibrium of (3.2) is externally stable
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following an increase in the number of modifiers segregating in the population
(from n to n+ 1) if the quantities defined in (3.3) and (3.5) satisfy

wk, , <w* (3.7)

If the inequality (3.7) is reversed, then p* is externally unstable.

In the two-dimensional case (i.e., with two modifiers represented), inter-
nal stability can be decided as follows.

ResuLt VIIL. A polymorphic equilibrium of (3.1) in the case n=2 exists
and is (internally) stable if and only if

g,+0
vs (1—7—2>>max{u“a,,vzzoz}. (3.8)

e

It exists but is unstable if and only if
Uia (E';—Gg)<min{v“a,,uzzaz}. (3.9)

(Compare with Cannings (1967).)

In general, it is surmised (and confirmed by numerical simulations) that
a polymorphic equilibrium p* of (3.2) is internally stable if and only if the
eigenvalues of p* ¢ V* different from w* are all negative as occurs for one-
locus multiallele viability regimes with viability matrix V° (see, e.g., Karlin,
1978).

When v, =1 for all i, j=1,..,n, ie, without viability and fertility dif-
ferences in females, polymorphic equilibria are impossible and the fixation
state with the highest o, is globally stable since the quantity
>, (pi+4q,/2) o, increases from generation to generation until fixation is
reached.

RESULT IX. The recurrence system (3.1) with v;=1 for all i,j=1,...n
leads in the long run to the fixation state associated with the largest ;.

4. DISCUSSION

The equilibrium structure of sex-linked modifier systems of sex-ratio dis-
tortion strongly depends on the recombination fraction: limit cycles for
small values, stable symmetric equilibria associated with linkage
equilibrium for intermediate values, stable non-symmetric equilibria
exhibiting linkage disequilibrium for larger values. We notice a kin resem-
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blance with autosomal modifier systems of autosomal segregation (Lessard,
1985; Eshel, 1985; Thomson and Feldman, 1976; Prout et al, 1973).
Although the exact threshold values to pass from one equilibrium con-
figuration to another are different, both types of systems possess analogous
properties depending on the recombination level.

With free recombination, the sex-ratio distortion model (2.2) is
equivalent to an autosomal modifier system of sex determination as studied
by Karlin and Lessard (1983, 1984) (see also Eshel and Feldman, 1982,
Uyenoyama and Bengtsson, 1979). In this case, it was argued that, from
one equilibrium to the next one following the introduction of a new mutant
modifier, the population sex ratio should come closer to L. We have shown
that linkage perturbs this evolutionary tendency: although symmetric
equilibria with sex ratio closer to  are more likely to be (internally) stable,
they are also more subject to destabilization by mutant modifiers. With a
one-to-one population sex ratio, a symmetric equilibrium is automatically
internally stable and externally unstable. This phenomenon may be
attributed to the hitchhiking effects of linkage with the sex determination
locus that promotes any more polymorphism at the sex-ratio modifier
locus and so preserves modifiers that would become extinct otherwise. In
such systems, we would still expect a population sex ratio around 3 but
kept away from 4 by an increasing number of modifiers. This is another
case where evolutionary stability cannot be decided from initial increase
properties of mutant modifiers.

X-linked modifier systems of sex-ratio distortion are akin with standard
sex-linked viability models as studied by Cannings (1967) and Haldane and
Jayakar (1964), among others. Curtsinger and Feldman (1980) studied the
problem of protected polymorphism in the case of two modifiers incor-
porating viability as well as fertility and virility differences . For the general
model (3.2) with multiple modifiers, we have shown that the conditions for
equilibrium and stability generally correspond to those for one-locus mul-
tiallele viability regimes with viability matrix v (o, +0;)/2] (see, e.g.,
Karlin, 1972, 1978). Therefore from one equilibrium to the next one follow-
ing the introduction of a new modifier, we would analogously expect an
increase of the mean “fitness” function

Y pfp,*vi,(”';”’)- (4.1)

ij=1

Thus higher values o; would be generally favored unless they are associated
with small parameters v, for j=1,.,n. Since o,=b,f;s, where s, is the
proportion of females in the progeny, a higher representation of females is
generally favored although a polymorphism can still be preserved by
viability or fertility differences among females.
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It is important to stress that female fertility and male virility can be
introduced into the model (3.2) because they are assumed to be indepen-
dent. A general fertility scheme based on mating type would require further
analysis. For the two-locus model (2.2), the introduction of viability or fer-
tility selection operating at the modifier locus would certainly be interesting
but would lead to a general two-sex two-locus model that is beyond the
scope of application of the present analysis.

Note that there are qualitative differences in the dynamics uncovered for
the case of small recombination (Sect. 2) and the case of absolute linkage
(Sect. 3). Our intuition from the latter case and the optimality principle
(4.1) for stable equilibrium points does not apply to the former case where
limit cycles can occur. Actually the existence of periodic orbits can be
inferred by Hopf bifurcations in the vicinity of symmetric equilibria as the
recombination fraction diminishes. However, the stability of such an orbit
(i.e., the existence of a limit cycle) cannot be inferred from a local linear
analysis near the equilibrium where it occurs. For the equilibrium can
become unstable in such a way that either an unstable orbit collapses to it
or a stable orbit emerges from it. For the model (2.2), the latter hypothesis
is more likely since there are no stable equilibrium points (polymorphic or
not) with small recombination (Result IV) and stable orbits were actually
observed in Maffi’s and Jayakar's (1981) simulations.

It is also important to be aware that non-symmetric equilibria can exist
and be stable for the model (2.2) as the recombination rate increases and,
as a matter of fact, such equilibria have proved to be optimal in the sense
of Result IV in the case of free recombination.

Finally, we have assumed that MA,/mA;, and MA,/mA, genotypes
segregate M- and m-carrying gametes in the same relative proportions. It
would be interesting to relax this assumption of symmetry.

APPENDIX

Proof of Result]. Writing X=X*+§ Y=X*+n, and Z=X*+7
where X* is a positive frequency vector satisfying S*X* = X* - SX*/s* = X*
with s* <4, transformation (2.2) for the variables {& n,x} whose
components are small and add to zero is linearly approximated by the
coefficient matrix

12 0 12
rI+(1—r) S* (1—r)I+rS* 0. (A1)
%* — *
RS Y S S Lils LR S

1 —s* 1 —s*
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The relevant eigenvalues are those of the 3 x 3 matrix

1/2 0 1/2
r+(l—r)a (1—=r)+ri 0 (A2)
rs* (1—r)s* .
l—r)— i r— 3
(I=r) l—s"‘) 1 —s*

where 1 is any eigenvalue of S* different from 1, actually less than 1 in
absolute value. The characteristic polynomial to consider is in the form

g)=1> +ap’ +bu+c (A3)
where
a=r(l—-4)—3/2,
ri
b=——r—
2(1 —s*)

(1 =2r)(1 —s5* + A%¥)
- 2(1 —s5*)

Using the linear fractional transformation (see, e.g., Ahlfors, 1966)

v+l
u=§j, (A4)

the roots of g(u) located in the unit circle correspond to the roots with
negative real parts of the polynomial

fO=C+AC+B(+C (AS)
where
A“3+a—b~3c
T lt+a+b+c’

_3—a—b+3c
T l4a+b+c’
_l—a+b—c
T lt+a+b+c

The Routh-Hurwitz criterion (see, e.g., Gantmacher, 1959) informs us that
all zeros of f have negative real parts if and only if

A>0, C>0, and AB—C>0. (A6)
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It can be checked that C >0 if and only if g(1)>0 where
gll)y=14+a+b+c

=2—“’_;s*_) [Zs* — (1= 25* + 2is*) r]. (A7)

Actually this condition ensures through a detailed analysis that every real
root of g cannot exceed 1 in absolute value. Moreover, in this case, 4 >0
only if

1
—bh—-3=m— 3] _ Q¥ * 1 F32ck)_ 320k
3+a—-b—-3c 2“_S*)[r(S 34 —8s* + 4% + 64%5*) —34%*]>0.

(A8)
Finally, a necessary and sufficient condition to ensure AB— C >0 is
Q(r)=1—=b+ac—c*>0. (A9)

Since Q(0) <0 and Q(1/2) >0, the quadratic form Q(r) has one and only
one root from minus to plus between 0 and 1. This completes the proof of
Resuit L.

Observe that if C>0 but 4<0 or AB— C<0, then there exists a
complex conjugate pair of eigenvalues outside the unit circle. When these
eigenvalues cross the unit circle, there is a Hopf bifurcation and therefore
existence of a periodic orbit. On the other hand, when the value of C
crosses 0, there is a bifurcation to nearby equilibrium points (see, e.g.,
Marsden and McCracken, 1976).

Proof of Result 11. The linear approximation of transformation (2.1)
for the (n+ 1)th components {X,,,, Y,.,, Z,,,} near a symmetric
equilibrium X* involving only the first » components is given by the non-
negative coefficient matrix

" 12 0 1/2]
rs¥. (1—r)s¥,, 0 (A10)
s* s*

(I=r)1—s¥, 1) r(l—sk_))

(1—s*) (1—s5%) 0

L
where

n
s*= Y s, XXX,

ij=1

n

* — *

Sn+l— X sl.n-rlXi .
i=1
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Assume s* < §. The eigenvalues governing external stability are the roots of

h(-},)=~,,3_|:s*+2(1"r)s:+l]7z_|:(l “’)(s*‘s:+l)j|y

! 2s* 25*(1 —s*)
(1—=2r)s¥ (1 —s%,))
+|: 2s*(1 —s*) :l (ALD)

These are all of magnitude less than 1 if and only if 4#(1) >0 where

h(1) %) [r(s* —sk, (1 =2s%, )= (s* —s¥,1)°], (AI12)

1
T 2s*(1—s
owing to the Perron-Frobenius theory which guarantees that the largest
eigenvalue in magnitude is actually positive (see, e.g., Gantmacher, 1959).
Note that A(1)> 0 implies s, | <s* under the condition s* < 4. In such a
case,

(s* —s7, )4 —s*) = (1 —r)]+4r(1 —s*) 57, ,

0,
25%(1 —s%*) >

W(l)=

and then there cannot exist a positive root of /4 greater than 1. The proof of
Result IT is complete.

Proof of Result TI1. It suffices to set s* =1 in Results I and II and recall
that every eigenvalue / # 1 of S$* is actually less than 1 in absolute value.
Therefore, the polynomial Q(r) in (2.9) satisfies

3(1—
Q(’)?l—r‘_(z—zrl—(]—zr)z
3
=—§+6r—4r2
3— ./3 //_
=—4[r— " ][r—3+4V 3], (A13)

and Q(r) is positive between (3 —\/3)/4 and 1/2. The rest of the proof is
straightforward.

Proof of Result VII. Defining X=p,,,/p,., the recurrence equation
(3.6) yields
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where

*
g iz ins1OPF
B 2u* ’

\ *
b _27=l L'i,n+lo.n+ V4
2w*

From any positive starting position, the iterates of X converge to the
positive root of x*—ax—b, ie, (a+./a°+4b)/2, which is less than 1 if
and only if a+ b=w},  /w* <.

Proof of Result VIII. Defining

P10,

X=gq,, and =,
P10 +p:0,

(A14)

the recurrence system (3.1) for the case n=2 can be written in the form
X' =Y,

[eno—ta(o,+0,)2]1 XY +v,0,X/2+ 1,0, Y2
([vllol —v(0, +03) + 05,0, ] XY + [11,0, —15,0,] X)

+ [t20:—12:6,] Y+ 05,0,

= (X, Y). (A15)

At equilibrium, we must have

X*= Y*— U220, — (0, +0,)/2
U320, — (0, +0,)+ 00,

(A16)

Suppose 0 < X* < 1. Writing X =X* +¢ and Y= X* 4, the linear terms
for the transformation relating the quantities {<, n} are described by the
coefficient matrix

0 1
I:Ux(X*. X*) vy(X¥, X*)] (A17)

where v, and v, denote the partial derivatives of v(X, Y) with respect to X
and Y, respectively. It can be checked that v, (X*, X*) and v, (X*, X*) are
both positive. Therefore the eigenvalues of the coefficient matrix at hand
are all less than 1 in magnitude if and only if its characteristic polynomial
evaluated at 1 is positive, i.c.,

d
[>0y(X% X*) 40y X% X*) =2 00X, Xy e (A18)
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This will be the case if and only if
2X*[v,0,—v5(0,+06,)/2]<0. (A19)

With the condition 0 < X* < 1, this is equivalent to

+
Uip (o—lz—a—z>>max{vnﬂnvzzoz}- (A20)

Otherwise, we must have

Ly

+0 .
("'—2—2)<mm{u“a,,uzzaz} (A21)

and the polymorphic equilibrium X* is unstable.

Proof of Result 1X. With ¢v;=1 for all i, j=1,..,n in (3.1), we have

S T

i=1 i= i=1 i=1

/Z (p.;q) - ZP/

i=1 l—]

=Y (pi+q./2)0; (A22)

i=1

with equality only at a fixation state (i.e., p,=1 for some i).
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