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An explicit general criterion for stability—instability at fixation states is provided
when the leading eigenvalue of the gradient matrix is one. Several applications in
population genetics are presented including cases of familial selection of dominant
and recessive genes, models of preferential mating, incompatibility systems, and
effects of migration and population structure.

1. INTRODUCTION

The stability analysis of an equilibrium state in population genetic models
is usually decided by evaluating the leading eigenvalue of the gradient
matrix, i.e., the matrix of the linear approximation that usually dominates the
behavior of the transformation equation in the neighborhood of the
equilibrium point. The equilibrium is always stable when the leading eigen-
value of the gradient matrix is smaller than one, and generally unstable when
this eigenvalue exceeds one. When the leading eigenvalue is one the deter-
mination of stability versus instability of the equilibrium generally requires
more refined analysis involving the quadratic or higher order approximation
terms of the transformation equations. The rate of local convergence or
divergence is algebraic for this case.

A leading eigenvalue of one often occurs when recessive and dominant
traits are involved. The widespread occurrence of dominance and recessive
traits in natural populations is familiar. These include genes responsible for
color and shape patterns (e.g., Cain and Sheppard, 1952; Ford, 1975),
disease susceptibilities (McKusich, 1978), the +, — functioning of an enzyme
(e.g., Erhmann and Parsons, 1976, p. 50), traits relevant to sexual and assor-
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tative mating propensities (O’Donald, 1977, 1980) involving two phenotype
classes, one dominant to the other. Moreover, several theoretical studies on
the genetics of kin selection (see, e.g., the recent book of Boorman and
Levitt, 1980) focus on the case of dominant and recessive genes controlling
for altruist behaviour.

There is the impression among some experimental and field population
geneticists that if a fixation state is stable with near dominance, then it is
also stable with complete dominance. This surmise is usually false. The
conditions for stability in terms of the parameters of the model in the case of
complete dominance cannot be obtained by continuity arguments. The
workings and interpretations are more subtle and require nonlinear analysis.
The eigenvalue one complication comes about in an intrinsic way intimately
tied to the biology or on account of the features of the mating system and
does not result because of a bifurcation, i.e., due to a multiplicity of eigen-
values occurring at special values of the model parameters. The latter
circumstance is the usual way in encountering eigenvalue one problems in
studies of dynamical systems.

There are other natural population genetic models where the constraints of
the mating system (e.g., prohibitive matings associated with sex differen-
tiation, incompatibility mechanisms, sex-ratio determination models) give
rise to equilibrium states exhibiting leading eigenvalue one for its associated
gradient matrix (Workman, 1964; Karlin, 1968; Karlin and Feldman, 1968).
Ad hoc approaches may lead successfully to the stability—instability
conditions for eigenvalue one problems of the simplest multidimensional
population genetics models (e.g., Karlin, 1968). Converting to
Hardy—-Weinberg proportions under random mating may aid in reducing the
dimensionality of the problem. In fact, with two alleles at one locus under
viability selection the genotype frequencies in Hardy—Weinberg form appear
in terms of a single real variable (Cockerham et al., 1973; Wright, 1955,
1969; Levitt, 1975; Templeton, 1979; Wade, 1978; Michod, 1980).
Justification of these approximations are required in each case (cf. Nagylaki,
1977; Boorman and Levitt, 1980, Chaps. 7 and 8), and these approximations
are not easily extended to cases of nonrandom mating processes. Moreover,
as a caveat, the use of Hardy~Weinberg approximations does not always
provide the correct answers especially in treating differentiated sex effects for
familial selection models. A direct nonlinear local analysis is feasible when
the gradient matrix is an irreducible stochastic matrix (Karlin, 1977;
Nagylaki, 1977; Karlin and Kenett, 1977; Moody, 1981).

The difficulty of finding stability conditions at the fixation states when the
leading eigenvalue is one (e.g., Matessi and Scudo, 1975; Matessi and
Jayakar, 1976; Charlesworth, 1978; Cavalli-Sforza and Feldman, 1978;
Maffi and Jayakar, 1981) motivates the elaboration of an explicit general
criterion for their solution. This paper provides an explicit general criterion
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for discerning stability versus instability at fixation states for cases where the
dominant (leading) eigenvalue of the associated gradient matrix is one. The
result is applied to models of brood selection in a sex-differentiated
population, a sex-linked trait, for a corresponding haploid—diploid population
system, examples associated with imprinting schemes and incompatibility
mechanisms, and we consider several nonrandom mating examples of partial
assortative mating. Our results are also relevant to kin selection models
analyzed by Charlesworth (1978), Cavalli-Sforza and Feldman (1978),
Boorman and Levitt (1980, Chaps. 6—8), among others. The wide scope of
our criterion is illustrated further in terms of a two-locus model pertaining
to meiotic drive modification (e.g., Maffi and Jayakar, 1981). The super-
position of migration and multideme effects can also be incorporated in these
analyses.

The formal criterion for establishing stability of a fixation state with
gradient matrix of leading eigenvalue one is set forth in Section 2 with a
detailed proof in the Appendix. The criterion is rigorous without recourse to
approximations in terms of Hardy—Weinberg ratio or use of other ad hoc
perturbation methods, whose justifications can be formidable. Although the
focus of the applications pertains largely to population genetic models, the
criterion is undoubtedly useful in studies of ecological dynamics, population
demographic changes, and in other contexts as well.

2. A CRITERION FOR STABILITY~INSTABILITY
AT FIXATION STATES THAT INVOLVE AN EIGENVALUE ONE

Consider an infinite population with discrete generations. Let the
population states be described by frequency vectors x = (x,,..., x,,) such that
0 = (0,..., 0) corresponds to a fixation event F. Let Tx = (U (x)...., U,(x)) be
the transformation relating the population states over successive generations.
Assume T7x =0 if and only if x =0 and that T is smooth enough in the
neighborhood of 0. (It is sufficient that the first and second derivatives of all
U,(x) are continuous in a neighborhood of 0.) Let L be the gradient matrix
of T at 0, namely,

au, "
o )

7

L=

ij=1

Assume that L is nonnegative and denote by p(L) its spectral radius.

By definition, the fixation event F is said to be stable if the iterates
T*x— 0 as k - co for any initial population state x near 0, and unstable if
T*x »0 as k— oo for any initial population state x different from 0.
Formally, the first condition corresponds to local asymptotic stability in the
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manner that the fixation event F is locally attracting, while the latter
property is stronger than a simple negation of the stability condition since it
states that the population state F cannot be reached from any nonzero state
and thus is strongly repelling. It is well known that the fixation event F will
be stable if p(L) < 1 and usually unstable if p(L) > 1. Actually the second
part requires some mild supplementary conditions. A brief proof of both
statements is given at the end of the Appendix in the most common case
where there exists z=(z,...,z,) >0 (i.e, z; >0 for i=1,.., n) such that
zL = p(L)z. When p(L) < 1, local convergence to 0 occurs at the geometric
rate p(L), i.e., it decreases to zero after k generations to the order [p(L)]*.
Now assume p(L) =1 allowing L of the general form

A B|

L—HO ol (1)

where A is an irreducible aperiodic (i.e., primitive, see Appendix)
nonnegative matrix of order / and p(C) < 1. We use the notation {z, w)) =
> ¥_1z;w; to denote the canonical inner product of the vectors z and w.
Define the quantity

S={(&0" +B(I—-C)7'0?) (2)

(1 is the identity matrix), where &(n) is the left (right) principal eigenvector
of A corresponding to the eigenvalue 1, that is,

EA_—_E:(é]w-v é{)>0- A“:n:(’?l""’ ’71)>0 (3)
and
0 =(4,.... 6), 8» = @510 8))
with
L 32U
6,= ¥ U0 M for i=1,.,n 4)

A, Ox,0x,
We are now prepared to state the following general criterion.

ResuLt 1. Consider the general nonlinear transformation T with
Sixation state 0 (F) and associated gradient matrix L as in (1) obeying the
assumptions as stated above. The fixation event F is stable if S <0 and
unstable if S > 0. When S <0, local convergence to the fixation state F
occurs at an algebraic rate of degree 1, i.e., the deviation of T*x from 0 after
k iterations is of the precise order 1/k.

653/22/1-8
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This may be viewed as a general multidimensional version of the condition
on the second derivative in one dimension. A proof is given in the Appendix
in the usual case where the nonnegative matrix B(/ — C)~' displays no null
columns, which covers most applications.

3. SOME APPLICATIONS IN POPULATION (GENETICS

In all the following examples, unless indicated otherwise, we consider two
alleles, 4 and a, segregating at a single locus. In general, it is assumed that
allele 4 is dominant over allele a. In the final example (f) a case without
dominance is handled also with the aid of Resultl. Result I is applied to
determine the exact conditions for stability—instability of A-fixation, i.e.,
necessary and sufficient conditions for a-protection.

(a) Brood Selection

Consider the arrays of selection parameters given in Tables I-III. These
formulations can accommodate diverse selection forces including differential
viability, fertility, and segregation distortion effects; we have riormalized the
parameters relative to Mendelian ratios which facilitates comparisons with
standard models and forms of “familial” selection (Haldane, 1924). There is
a resurgence of interest in these models as they occur in theoretical studies of
kin selection and reciprocal altruism.

With separate sexes the parameter k can be construed as a normalizing
factor between the two populations that accounts for differences in the sex
ratio. Assuming random mating, Levitt (1975) determined the exact
conditions for stability at A-fixation for the models corresponding to Tables I
and II, using different methods in each case based on Hardy-Weinberg
approximations (cf. Boorman and Levitt, 1980, Chap. 7).

TABLE 1
Brood Selection: A Diploid Model

Offspring
Mating types AA Aa aa
AA X AA 1 0 0
AA X Aa 1/2 1/2 0
AA X aa 0 a 0
Aa X Aa b/4 c/2 d/4
Aa X aa 0 Sf12 g/2
aa X aa 0 0 s
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TABLE II
Brood Selection: A Haplodiploid Model

? 3
X3 AA Aa aa A a
AA X A 1 0 0 k 0
AA X a 0 1 0 k 0
Aax A 1/2 1/2 0 k/2 k/2
Aaxa 0 /2 d,/? key/2 kd,/2
aa X A 0 hy 0 0 kh,
aa X a 0 0 5, 0 ks,

(i) Diploid case (Table I). Let x, y,z be the frequencies of genotypes
AA, Aa, and aa, respectively. Assuming random mating, these are connected
over two successive generations by the equations

Wx' =x* + xy + (b/4) y?,
Wy' =xy + 2axz + (c/2) y* + fyz,
Wz' = (d/4)y* + gyz + s2%,

where W is a nomalizing factor to assure that x’ 4+ y’ + z’ = 1. Near the 4-
allele fixation state (i.e., y and z small) we ascertain the expansion

y'=y+2az+(c/2—1)y* + .., etc,
z' = (d/4) y* + ..., etc.

TABLE III
Brood Selection: A Diploid Model with Differentiated Sexes

4 3

X3 AA Aa aa AA Aa aa
AA X AA 1 0 0 k 0 0
AA X Aa 12 1/2 0 k/2 k/2 0
AA X aa 0 a, 0 0 ka, 0
Aax A4 1/2 1/2 0 k/2 kj2 0
Aa X Aa b,/4 c,/2 d,/4 kb,/4 key/2 kd,/4
Aa X aa 0 Ni/2 g./2 0 kfy/2 kg,/2
aa X AA 0 h, 0 0 kh, 0
aa X Aa 0 pJ2 q./2 0 kp,/2 kgq,/2
aa X aa 0 0 s, 0 0 ks,
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It follows easily, or by simple application of Result I, that A-fixation is
stable (unstable) if

c+ad<2 (>2)

(ii) Haplo-diploid case (Table II). Introducing v as the frequency of
allele a in the haploid population, we find the following expansion near A-
fixation (i.e., for y, z, and v small):

YV=y2+v+hz+ (c,—3)pv/2 + .., etc.,
v'=y/2+ hyz + (dy — 1) yv/2 + .., etc.,
2/ =d, yv/2 + .., etc.
Appeal to Result I shows that A-fixation is stable (unstable) if
c,+(h+hy)d +d, <4 (>4)

(iii) Diploid case with differentiated sexes (Table III). This case is also
straightforward. In the neighborhood of 4-fixation we obtain the expansion

Vi=n/24+ 3/2+ iz +a,z,+(e/2— 1)y, y, + s ete,
Vy= 2+ 322+ hyzy +ayzy + (c3/2 — 1)y, py + s et
zy=(d,/4)y, v, + ..., etc,,
2y =(dy/4)y, y, + ... etc.

(1 and 2 indexing the female and male populations, respectively). Result I in
this case yields the condition

d(h, +h,) n dy(a, +a,)

c,t+c,+ ) )

<4 (>4

for A-fixation stability (instability). These results can be interpreted in the
context of kin selection (cf. Cavalli-Sforza and Feldman, 1978;
Charlesworth, 1978; Uyenoyama and Feldman, 1981). Moreover, it would
be easy to incorporate frequency-dependent parameters on these models.

(b) Partial Assortative Mating

Suppose that a proportion « among the females of the dominant
phenotype A = {44, Aa} have a preference to mate with a male of the same
phenotype, and similarly a proportion f of the females of phenotype
a= {aa}. The remaining females choose mates at random. Assume all
females are fertilized and males are polygynous. Sex ratio is assumed to be
1 : 1. The frequencies of the mating types are displayed in Table IV adhering
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TABLE IV
Partial Assortative Mating: A Polygynous Model

Frequencies
Mating types Assorting Random mating

AA X AA ax?/(x + y) (1 —a)x?
AA X Aa 2axy/(x + p) 2(1 — a)xy
AA X aa 0 R—-a-pP)xz
Aa X Aa ay?/(x + v) (1 —a)y?
Aa X aa 0 (2—a—p)yz
aa X aa Bz (1—-p)z2*

to the notation of Table I and subject to the selection forces as specified in
Table I. The local approximation near 4-fixation reduces to

y=y+aQ—a—Pz+(c/2— 1)y + .., ete.,
z' =fsz + (d/4)y* + ..., etc.

Then, provided fs < 1, the condition for stability (instability) at 4-fixation is
given by

ad a+f
c+1—,Bs [l— > ](2 (>2).

When only individual viability is in force (i.e.,, for a=b=c=f=1 and
d = g =ys), the foregoing condition becomes

B—a<2(l—s)/s (>2(1—s)/s),

in agreement with Scudo and Karlin (1969). Similarly, we can easily obtain
the corresponding conditions for a wide spectrum of population genetic
models incorporating mating behavioral mechanisms including sexual
selection involving forms of encounter processes.

(c) Superposition of Migration and Population Structure Influences

Consider a population subdivided into N demes and in each deme partial
assortative mating and brood selection is in force as described in Tables IV
and I with parameters indexed by the deme site i (i = l,..., N). This may
reflect spatial or temporal variation, or general population subdivision
effects. Suppose that migration exchange occurs among the demes according
to a backward migration matrix M = ||m;||Y;_,, i.e., m; is the proportion of
individuals per generation in deme / that originate from parents of deme ;.
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Let M be an irreducible aperiodic stochastic matrix. For definiteness, we
assume the following order between the different components of the model:

mating — selection — migration.

The global transformation equations 7" near A-fixation over two successive
generations is given by the system of equations
N N
vi= 2 myyi+ X oma 2 —a;— Bz

Jj=1 ji=1

N
+ }d my(3¢;— 1)y} + ..., etc.,

j=1
N N
z] = f: my;B;s;z; + E_] m(3d;) v+ ., ete,  i=12..N,
i= i=

where y; and z, are the genotype frequencies for Aa and aa, respectively, in
deme i (i = 1,..., N). The gradient matrix of the mapping T in the variables

(y, z) at 0 is plainly

where I" and 4 are the diagonal matrices
I'=diag{a,(2 —a, — ), a:v(z —ay— By}
A =diag{f,5, .., By Sn}-

Moreover, in this case, the associated vectors of (4) are

M Mr

L=‘o M4

0V =Mc—2) and 8% =]iMd,

where ¢ = (¢, ,..., €y), d = (d, ..., dy), and 2 = (2,..., 2). If p(M4) < 1, then 4-
fixation will be stable (unstable) according to

2(& e) + (& I —M4) 'Md) <4 (>4), (6)

where EM = & = (¢, ,..., &) with Y'Y, & = 1. Observe that instability of A-
fixation means protection of allele a. Under random mating (all a; =f; = 0)
and individual viability only (q;=b,=c¢;=f;=1 and d,=g;=s; for
i=1,..., N), the above condition reduces to

Esy<t (>1),

where s = (§,,..., §,) in agreement with Karlin (1977) and Nagylaki (1977).
An analogous analysis is possible for models with sex differentiated
parameters.
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(d) Imprinting Model

Let us assume that, among the females of a brood from mating type
A X A, a proportion a exhibits a mating preference for the phenotype
A = {AA, Aa}, while a proportion § among the females of a brood from
mating type g X @ exercises preference for the phenotype a= {aa}. The
remaining females are assumed to mate indifferently (at random). In this
model of female choice, males are assumed not to be imprinted in their
mating propensities. The sex ratio in progeny numbers is taken to be 1: 1.

Suppose that males and females mate at random and an encounter is
followed by mating if it is compatible with the preference of the female. If
not, the female will not be fertilized (mass-action assumption). On the other
hand, suppose that brood selection operates according to Table I. The model
and transformation equations are summarized in Table V. If v,,..., v4 denote
the frequencies of the mating types with v, that of 44 X A4, the transfor-
mation relating (v,,..., vs) over two successive generations exhibits the
following gradient matrix at 0:

1 2a c f 0
00 Q—a)d/4 2—a)g/2 2—a—pf)s

L=0 0 0 0 0

00 0 0 0

10 0 0 0 0

with associated vectors (see Eq. (4))
8 = —1, 62 =(0,4,0,0).

Application of Result I implies that A-fixation is stable (unstable)
according to

c+ad(l —aj2)<2 (>2) (7)

It can be shown that the same condition holds if the mass-action assumption
is replaced by the polygyny assumption and fs < 1. Exact analytical
solutions are quite rare for such problems. In the special case of no brood
selection (ie, a=b=c=d=f=g=s=1), condition (7) confirms
stability at A-fixation as has been predicted from an approximative treatment
(Matessi and Scudo, 1975).

Imprinting by only one parent (father’s phenotype) coupled with selection
as prescribed in Table Il yields the corresponding condition

i+ +di(hy +hy)2+ (1 —a)d,(a, +a,—Ba,)/2 <4 (>4).
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TABLE V

Imprinting: A Model Combining Brood Selection and Partial
Imprinting by Both Parents with Mass-Action Type Mating

Brood selection parameters

Imprinting

Mating types Frequencies AA Aa aa fractions
AA X AA v, 1 0 0 a
AA X Aa v, 1/2 1/2 0 a
AA X aa v, 0 a 0 0
Aa X Aa v, b/4 c/2 d/4 a
Aa X aa v 0 172 g/2 0
aa X aa Vg 0 0 s B

Relative frequencies of
Combined
genotypic frequencies Randomly mating females Choosing females
- v, b
Wx=uv,+v,/2+v,b/4 xz(l—a)[v, ¥7‘+U,Z] X7 av, + av,/2
+ av, b/4

12

- v c ;
Wy=uv,/2+vya+v,¢/2 y=(1 —a)[72 +u, —2—] +via+ v § TR av, /2 +avyef2

+u5f/2
d
Wz=v,d/4+v.8/2+ vgs z'z(l—a)L'¢7+(l—ﬂ)v6s+05% zpx av,d/4,
2% Pugs

with W such that x + y + z = 1. The male genotype frequencies are also (x, y, z).

Transformation equations

Wo=x* Wol = y?
Wuj = 2xy Wei=(z—z5)y+ (y—yoz
Wuri=(z—zz)x + (x —xp)z Woe=(z —z3)z

with W such that o] + o5 + v} + vi+ vl + v, =1

Actually, many variants on the above model allowing mixed sib-mating
systems of partial imprinting determined by brood composition and incor-
porating behavioral and ecological factors can be handled by similar means.

(e) A Two-Locus Segregation Distortion Modification Model

The following model of a sex-linked meiotic drive gene has been proposed
by Maffi and Jayakar (1981) to explain sex-ratio deviations in Aedes aegypti
populations. A first locus with possible alleles M, m is assumed to be respon-
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sible for sex determination: males are Mm, and females mm, while a second
locus of the male parent with possible alleles 4, a governs the sex ratio in the
progeny. Assume that a recombination event between those two loci can
occur prior to the meiotic drive effects. Let the probability of recombination
be r. Thus, for the two loci under consideration, the spectrum of male
genotypes {MA/mA, MA/ma, Ma/mA, Ma/ma} is composed of haplotypes
MA, Ma, mA, and ma, but always heterogametic at the {M, m} locus. The
female genotype array consists of {mAd/mA, mA/ma, ma/ma}. The sex-ratio
expression takes 4 dominant to a such that a male parent of genotype aa
independent of his female mate genotype produces male to female offspring
in a ratio of M,: 1 — M,, while an 4 = {4a, A4} male parent has offspring
in a sex ratio M,: 1 — M,.

The recursion relations expressing the changes in male and female
genotype frequencies over successive generations can be expressed with only
three variables

u = freq(Ma/ma) + freq(Ma/mA),

» = freq(Ma/ma) + freq(MA/ma),
w = freq(ma/ma) + 3freq(ma/mA).

Under random mating, Maffi and Jayakar (1981) established the recursion
relations
v =w,
_ (M, —Muv + uM,(1 —r)+ oM,r
- M, + (M, — My)uv
M, — M )uv + u(1 — My)r+v(l —M,)(1—r)
(1=M,) + (M, — M, )uv '

’

)

2w' =w+

Maffi and Jayakar asserted that there exist only two possible equilibria,
(0,0,0) and (1,1,1), the former being stable and the latter unstable.
Application of Result I, however, establishes that (0, 0, 0) is stable (unstable)
if

M, —M,)(1-2M,)<0 (>0).

Moreover, a local linear analysis reveals that (1, 1, 1) is unstable if
r(M, — My)(1 —2M,) < (M, — M,)?

o (1= r)[3My/M, + (1 = My)/(1 — M,)] > 4.

The equilibrium (1, 1, 1) is stable if both inequalities are reversed. Finally,
the analysis is completed by noting that under the condition

M, —M,) <r(l—2M,) <0,
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there exists an internal equilibrium, namely,

p_(=2My) ] [} _ AM(1—M,)[M,—M, +r(2M,— 1)]
2(1-M,) " 2(1—-M,) N M, — M, '
p* = w¥ = (1 -My)u*+(2M,— 1)
M, '

In that case, both fixation states are unstable. It is worth noting that when
M, =1, which is the case in the numerical example of Maffi and Jayakar,
there is no polymorphic equilibrium, the point (1, 1, 1) is unstable and even a
quadratic analysis fails at (0, 0, 0) which may account for the extremely slow
rate of convergence reported.

(f) Incompatibility Model

This last example illustrates that an eigenvalue one problem is not
necessarily associated with dominance. Consider two alleles 4 and a and
assume only that the matings aa X aa and Aa X Aa are prohibited. This is a
case of pollen elimination. Generally, pollen elimination, especially in plant
populations, entails several alleles. The analysis of the present model
introduced by Workman (1964) may be suggestive of the general
mechanism. Letting u, v, and w be the current frequencies of genotypes AA,
Aa, and aa, respectively, the recursion relations are

v/2 v
u’=u( )+——+u.

l1—v 2
Lo l=d’ uw (2—w
vET 2 (l—w)’
,_vw(1+u)
S 2utow)

QOur criterion (Result I) allows us to conclude that A-fixation, which
corresponds to (1,0, 0), is stable. On the other hand, it can be shown that
(0,4,3) is also stable, and then a third equilibrium, which is necessarily
unstable, exists between those two (see Karlin and Feldman, 1968).

The extension to an incompatibility model involving multiple alleles (the
more usual case) can be treated in the same manner.

4. SUMMARY AND DISCUSSION

Our results provide a far-reaching general criterion for ascertaining local
stability (or instability) at an equilibrium state of a nonlinear transformation
T, where the gradient matrix L at the fixed point has leading eigenvalue 1.
This is usually viewed as a delicate problem since local linear analysis is not
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adequate and it is essential to take account of the contributions from
quadratic or possibly even higher order terms.

In our analysis we require L to be a nonnegative matrix plus other mild
conditions as described in Result I. The prime limiting facet of the result is
that the fixed point 0 under consideration is a corner point of the domain of
T. We elaborated a variety of applications in population genetic models for
dominant or recessive alleles in diploid, haplodiploid, and two-sex
populations, subject to familial selection forces, partial assortative and sexual
selection mating patterns, contingencies of incompatibility processes, and
inbreeding systems allowing also for migration and population structure
influences.

It appears that a corresponding problem for boundary equilibrium in
higher dimensions or internal equilibrium states with leading eigenvalue one
for the associated gradient matrix is very difficult, perhaps even prohibitive.
Such cases occur in the context of dominance hierarchies with more alleles
and/or more loci formulations.

There are also natural models of sex-ratio evolution (e.g., Eshel, 1975;
Uyenoyama and Bengtsson, 1981) that lead to eigenvalue one situations at
internal or such high-dimensional equilibrium states. Even local quadratic
analysis may not be sufficient in these analyses and new techniques have to
be developed.

As is familiar, eigenvalue one fixed points enter for parameter values
where solutions bifurcate. This can occur both at fixation states and
boundary and internal equilibrium; in the former event the general criterion
of Result I may be informative for further investigations of biological and/or
ecological models.

APPENDIX. PrROOF OF RESULT [

For completeness we review some definitions and results in matrix theory
for ready reference (see, e.g., Gantmacher, 1959; Seneta, 1973).

Let A =|layl|;;-, be a nonnegative matrix (i.e., a; >0 for i, j= l...., ]).
Denote by p(A4) its spectral radius.

THEOREM (Perron—Frobenius). The number p(A) is an eigenvalue of A
with the property that there exist nontrivial nonnegative vectors § = (&, ..., &)
and 1= (n,...., n,) satisfying

EAd=p(4),  An=pdm.
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DEFINITION. A is said to be reducible if, by simultaneously permuting
corresponding rows and columns, 4 can be put in the form

A A
4= | iz |
o 22

where 4,,, A,, are square matrices, and 0 is a matrix with zero entries
everywhere. Otherwise, A is said to be irreducible.

THEOREM (Perron—Frobenius). If A is irreducible, then p(A) is a positive
simple eigenvalue and the associated left and right eigenvectors, & and n,
display only positive components.

DEFINITION. A4 is said to be primitive if A is irreducible and p(4) is the
only eigenvalue with modulus equal to p(4). Equivalently, 4 is irreducible
and aperiodic or there exists an integer m such that 4™ exhibits all positive
elements.

THEOREM (Strong Ergodic Theorem). Let A be primitive with p(4) = 1.
Then A* converges to U=|| r],-é,”ﬁ'j:, as k- oo, where EA=E>0,
An=n>0,and (En) =21 mé&=1

COROLLARY. Let L =74 B, where A satisfies the conditions of the
above theorem and p(C) < 1. Then

U UB(I—C)

LYo M=
=l

‘l as k- oo.
Proof. By induction, we get
k—1
Ak \" Ak—l—rBCr
r=0
0 Ck
We know by the strong ergodic theorem that A% —» U as k — co. On the other
hand, since p(C) < 1, we have C¥—>0and Y ¥, C">(/—C) 'ask—- 0. It
follows that

L*=

k=1
N @ —u)BC" -0 as k- o

r=0
which completes the proof.

Proof of Result I. Without loss of generality, we shall assume &, n
normalized such that (& n)) = 1. Define z* = (z}...., z}, 25 | ..., 2)¥) taking
z¥=¢, i=1,2..,1 and (2 ., 2X)=EB(I —C) . It is easy to verify
that z*L = z*. Under the assumption that B(/ — C)~' has no null columns,
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we see that the vector z* > 0 (has all positive components). Throughout the
proof, we shall use the absolute value norm || - || weighted by the components
of z* defined explicitly by ||y|| =27,z | y;| for y = (¥ sees ¥p)-

Consider the Taylor expansion of T about 0 evaluated at a population
state x = v > 0, where § = ||x|| is small enough. Thus,

Tx = 6Lv + 6°Q(v) + 0(6%),
where  Q(v) = (Q,(V),..., Q,(v)) represents the quadratic part with

V= (U] sy Up), L€,

1 n
Qi(v)=— S
Therefore, the iterates of T are given by
k-1
T =OL* + 6% Y L7 '""Q(L'v) + 0(8?).
r=0
Taking the scalar product with z* in both sides yields
k;l
[T =6+0% X (z* QL)) + 0(d?)
r=0

(note that all the components of T*x are necessarily nonnegative). Then
T x| = | Tl = 8*(z*, QL v)) + 0(3?). (A1)

It should be noted that the function o(4*) may depend on k. Since L* — M as
k— oo and Q is continuous, we have Q(L*v) » Q(Mv) as k — oo uniformly
over the compact section .7 = {v:|v|=1}. The evaluation of Mv is a
multiple of n in the first / coordinates and vanishes identically in the
remaining n — / coordinates. Explicitly,

(& v +BU - C)“V“’>>n)

o (A.2)

Mv:(

where v'©" = (0,0, 1)), VP = (U}, 150es U,)-
It follows from (A.2) that

(@* QMv)) = 2%, QM)H[L& v + BU - C) )|
= {z*. Q)Y [{z*, v)|*
= 2%, Q) [ v||?
= (z*, Q())-
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Refer from (3) the notation
2QM) = (055 013 6,4 11, 6,) = (0, 0'7)

so that by the determination of z* we have
2{z*, Qm)) =& 0V) + (EBU - C) 71,0
=0V +B(I—-C)"'9P) =35,

and the last equation is the definition of S.
The foregoing analysis produces in (A.1) for k large and x = dv the
equation

174 ] = [ T = 5 5% + o(6®), (A3)

the small order term o(6?) generally depending on k.

Case (i), S < 0. We can find an integer k, and ¢ positive such that
| Tko+! K S 2
F75 Sl = N 75l < - I1x]I” < 0 (A4)

as soon as ||x|| < &. By continuity of T at 0, there exists 0 < &’ < ¢ such that
[ T7x|| < € for r=1,..., k, if [ x]] < &’. For such x, it follows recursively on the
basis of (A.4) that the sequence || T*x||, k=0, I, 2...., is bounded by ¢ and
decreasing for k > k,. But then the inequalities

‘ S
75l = | T < 7= Tx[|* < 0

for all > 0 are only compatible with the convergence of || 7x|| to zero, that
is, T"x » 0 as k- co.

Case (ii), S > 0. One can find an integer &, such that
[ 7% x| — || T*x]|| > 0

as soon as | x|| is small enough. Assume that 7"y — 0 as k& — oo for an initial
population state y # 0. Then we should have

| Thotrty || > || T "y | > 0

for r large enough (the last inequality emanating from the fact that Tx # 0 if
x # 0), but this precludes convergence to 0.
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Remark. Assume p(L)+# 1 and z* > 0 such that z*L = p(L)z*. Define
the norm || - || as in the previous proof with respect to this z*. Expanding Tx
about 0 for a population state x and taking the scalar product with z* yields

ITx{[ = p(L) [ x]| + o(lI x[))-

Thus, T is locally contracting or strongly repelling according to p(L) < 1 or
p(L) > 1, respectively.
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