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The decomposition of the variance of the average heterozygosity into variances
between and within populations is studied in the general case of a finite number of
loci. These loci are assumed randomly distributed over chromosome pairs having a
non-interference recombination scheme, and independently subject to mutation
according to the infinite-allele model. The equilibrium behavior of that decom-
position is discussed in the monoecious mating case with regard to each parameter
of the model: mutation rate per gene per generation (u), population size (N),
number of loci (n), map length of chomosome pairs (L). It is shown that the
proportion Q of the between-population variability in the total variance of the
average heterozygosity is decreasing as either the mean heterozygosity
(6 =4Nu/(1 4+ 4Nu)) or the mean number of mutations per gamete per generation
(v = nu) is increasing. Moreover, even if Q is always smaller than } for this model,
it is not negligible unless @ is close to one or v is much larger than one for L long
enough.

1. INTRODUCTION

The expected value of heterozygosity at a single locus maintained by
selectively neutral mutations in a finite population has been known for a long
time (Malécot, 1946; Kimura and Crow, 1964) while its variances between
and within populations have been studied more recently (Nei and
Roychoudhury, 1974; Li and Nei, 1975; Stewart, 1976; Géry 1978). On the
other hand, assuming an infinite number of loci, Sved (1971) was concerned
with the distribution of the length of homozygous chromosome segments,
Franklin (1977) with the distribution of the proportion of genome which is
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homozygous by descent in inbred individuals, and Weir et al. (1980) with
the variation in inbreeding under several mating structures. Considering (as
it is done in this article) a diploid monoecious population with random
mating including random selfing, Avery and Hill (1979) showed that the
between-population variance for the coefficient of inbreeding may be
neglected asymptotically in the total variance. Incidentally, Jacquard (1975)
had used this fact without being aware of it for the case dioecious with
monogamy, and his method was later justified numerically and developed by
Weir et al. (1980).

In this paper, we shall consider the average heterozygosity with respect to
a finite number of loci. A general formulation of a decomposition of the
variance of any quantitative genetical trait (Wright, 1951, 1952; Cockerham,
1969, 1973) and particular formulas for the average heterozygosity (Schnell,
1961; Sved, 1968; Weir et al., 1980) will be recalled. Probabilistic
arguments will be given to establish the decomposition of Wright and
Cockerham, who had a more statistical point of view (Section 2 and
Appendix A). Introducing mutation according to the infinite-allele model and
considering a finite number of loci, the formulas of Weir, Avery, and Hill for
the between-population variance and the total variance of the average
heterozygosity will be deduced (Sections 3 and 4). Some probabilities will
have to be determined. Methods of identity by descent of Malécot (1948)
generalized by descent measures of Weir and Cockerham (1969, 1974), and
Cockerham (1971) will be used introducing mutation as described by Serant
(1974) (Appendix B). Then the proportion Q of the between-population
variability in the total variance of the average heterozygosity will be studied
at equilibrium. Analytical solutions will be given in the cases of loci
randomly distributed over chromosome pairs of very short or very long map
length, while numerical evaluations will be provided in the intermediate cases
assuming a non-interference recombination scheme (Section 5). In the last
section (Section 6), the behavior of Q will be discussed with regard to each
parameter involved: mutation rate per gene per generation (u), population
size (N), number of loci (n), map length of chromosome pairs (L).

2. VARIANCES BETWEEN AND WITHIN POPULATIONS

Consider in a diploid population a quantitative genetical trait X deter-
mined at » loci. Chromosome (or gamete) types are described by the n-tuples

E= (..., &™), (2.1)

where &0 is one of the possible alleles at locus & (k = l....n). A typical
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genotype ¥ composed of two chromosomes § and § as (2.1) is displayed in
the form

E =&/ = ¢V, EMY(LD, .., L), (2.2)

The genetical trait X is a variable which associates a quantity with each
possible genotype. For the purposes of this paper, suppose this quantity is
bounded by a constant. The genetical states of the entire population are
given by

$= (e B, (2.3)

where 7 is the genotype of the individual i (i=1,.,N) and N is the
population size (N > 2). Let S be the space of all possible such states.

If we assume that the generations are discrete and that the individuals of
each generation are obtained from the previous one as results of independent
identical random trials (of mating, recombination, mutation, etc.), a tran-
sition probability on S can be well defined and then a Markov chain on S
can be given for any initial distribution (see Karlin and Taylor, 1966; or any
text on Markov chains). Let us denote by #® a typical genetical history of
the entire population (i.e., a sequence of successive genetical states) up to the
generation g inclusively, by H® the set of all possible 4’ and by #7# the
o-algebra of all parts of H®.

Let X{® be the trait X for the individual i in the generation g. The
sequence of random variables (X{?,..., X'¥) is clearly exchangeable for any
N. Then by De Finetti’s theorem, it is also conditionally independent
(Appendix A). Here it is evident by the preceding assumptions that it is
conditionally independent with respect to the past. In other words, the
sequence (X{%,..., X{¥’) conditionally on -#*4~" is independent identically
distributed (cond. i.i.d.).

Let E(X{® | #7%~") be the conditional expectation of X}® with respect to
the o-algebra -#4 "), This is the random variable that, for each possible past
history h'®~", takes as a value the mathematical expectation of X\ given
h¢~D. By the law of large numbers for cond. i.i.d. sequences of random
variables (see Appendix A), we get a helpful representation for
EX® | #~D), namely,

l N
E(X'® (2o VAR H D Uik .
(X@®|#6-D) l&nmNng, (2.4)
One may consider this result as the standard law of large numbers applied

for each possible past history A7,
Now let us write the decomposition

X0 = X - EQ | 2 0)) + (B | £ D) @25)
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The basic properties of conditional expectation (see Loéve, 1960; or any
other text in probability theory) lead to a corresponding decomposition for
the variances, namely,

ye =y@ L py® (2.6a)

where V¢, V8 and Vi® are the respective variances for the variables in
(2.5). This is the decomposition of Wright (1951, 1952). Moreover, by (A.3)
in the Appendix, representation (2.4) enables us to go forth and find out the
further relation

V49 = Cov(X{®, X{2) (2.6b)

(Cov for covariance). This property was pointed out by Cockerham (1969,
1973).

The interpretation of the variances involved in decomposition (2.6) is of
great interest. Consider the island model of Wright (1951). More precisely,
an infinite number of isolated populations, called “species” by agreement,
originated initially from the same population and then evolved independently
according to a model similar to that described above. Just before producing
the generation g, it is expected that the histories A‘*~" will have been
realized according to their chances of occurrence. Then let the next
generation be infinite in each population. V¥ and Vi should be the
respective variances of the trait X within and between these populations.
Here variance between populations means variance of the average values
taken over the individuals in each population. So let us call V¥’ the within-
population variance and V.® the between-population variance, both at
generation g.

3. HETEROZYGOSITY
With each genotype ¥ of the form (2.2), we can associate

n=0". 1), (3.1)
where #¥ =1 or O accordingly as % is heterozygous or homozygous at
locus k, i.e., &% and {'® in representation (2.2) stand for different or iden-
tical alleles (k= 1,...,n). Throughout the remainder of this article, we
concentrate on the average heterozygosity; namely, we define

3ol (3.2)

k=

1
X=—
n
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In this particular case, the variance V¥ and the between-population variance
V{® in the decomposition (2.6) take the forms

n n-1 n
vo-n S @e-a2 Y 3 oe-aren). 6
k

=1 I=k+1

k=1
n n—1 n

G DR GRS SR ) EED
k=1

k=1 I=k+1
where
6> =E(ny), (3.42)
8 = E(ns") (3.4b)
0 =EMmEny), (3.4¢)
48 = E(mPny) (3.4d)

(E for expectation), with k,/=1,.,n (k#I) and A4, B two distinct
individuals in generation g. Of course, the double summation in (3.3)
disappears when n = 1.

4. MoODEL

For the purpose of this paper, let the population be finite with constant
size N and the individuals be diploid monoecious. Assume random mating
including random selfing. In other words, at each generation, N diploid
individuals independently provide an infinitely large identical number of
gametes, and then die. The next generation is obtained by randomly pairing
2N gametes of the previous pool. Overproduced gametes die. Besides, assume
that mutations independently occur with probability # per gene per
generation and each one leads to a new allele at its locus in its generation of
appearance. This is known as the infinite-allele model (Kimura and Crow,
1964).

Under the previous assumptions, it is proved in Appendix B that a unique
stable equilibrium exists for measures (3.4). Moreover, the equilibrium values
are reached independently of the initial conditions, are independent of the
specific locus when only one locus is involved, and are dependent only on
the recombination rate when two loci are involved. So let us denote the
corresponding equilibrium values for those measures by 8, d, O(r, ,), 4(r; )
where r, , is the recombination rate between loci k and /. The expressions for
these values are given in the Appendix. In the same way, let ¥, V', and V,
be the corresponding equilibrium variances for the variances in (2.6).
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Now suppose that the n loci are randomly distributed over chromosome
pairs of map length L (L is the expected number of crossovers). Let R be the
recombination rate between any two of these loci. Then (3.3) leads to the
following formulas at equilibrium:

6—-¢
n

5—6*

Exp(V) =

+ (1—%) Exp|@(R) — 67], (4.1a)

1
Exp(V,) = + (1 —7) Exp[4(R) — 6*], (4.1b)

where the notation Exp is used for the expectation taken over the distribution
of the loci. Since the mean heterozygosity 6 is independent of this
distribution, it is clear by the properties of conditional expectation that
Exp(V) and Exp(V,) are actually the variances over the total probability
space. Finally, decomposition (2.5) takes the form

r=7 47, (4.2)

at equilibrium, where 7, and 7°, are respectively the total variances within
and between populations of the total variance 7 of X. The expressions for
7" and 7, are given by (4.1a) and (4.1b), respectively.

At this point, the question of the distribution of R arises and a final
assumption is included, namely, a non-interference recombination scheme
(Haldane (1919)) or equivalently a Poisson-count crossover process (see.
e.g., Karlin and Liberman, 1979). Then R is distributed as (1 —e *")/2,
where D is the distance between two points chosen at random in [0, L | and
formulas (4.1) can be rewritten in a more explicit form, namely,

LAl (1 —%>—2—J’L (L —») [@ (1—1—) -921 dy.  (43a)

n L* ), 2

6—6 1y 2 l—e ™
7= - = — — ) —#|d. (43b
b=— +(1 n)L,_(O(L y)[A( 5 ) 0]d,1 (4.3b)

Weir et al. (1980), studying the variation in inbreeding (z =0, n = o),
pointed out these formulas for any generation g.
5. RESULTS

Throughout the remainder of this paper, we will be exclusively concerned
with the quotient
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Q=77 (5.1)

and its equilibrium behavior according to each paramater involved. With this
definition, Q is a measure of the relative weight of the between-population
variability in the total variance of the average heterozygosity at equilibrium.
Analytical determinations will be given in two limit cases while numerical
evaluations will be provided for the others. It is understood throughout this
section that the population size N is very large. Moreover, the results below
neglect terms of small order with regard to the principal terms.

In the case L =0 (case of completely linked loci), R =0 and then (4.1)
above and (B.6-B.9) in the Appendix lead to the result

2(1— 6)? [3 + nb(2 — )]

C=-0G-20G -0+’ (52)

where @ = 4Nu/(1 + 4Nu) is the mean heterozygosity.

On the other hand, in the case L = oo (case of completely unlinked loci),
R=1 and again (4.1) with (B.6-B.9) gives the second analytical result,
namely,

B 6(1 —6)° 6(1 —6)(1 — 1/n)v
0= 2-0)(3-20)[3+4(1—1/n)v] = [3+4(1—1/n)v]N

,» (5.3)

where v = nu is the mean number of mutations per gamete per generation.

In addition, using formulas (4.3) above and (B.5) in the Appendix,
numerical evaluations of Q have been computed with some relevant values
for the parameters n, N, u, L. These results are summarized in Figs. 1 and 2.
Of course, these agree with the previous theoretical determinations when L is
short enough or long enough.

Remarks. (1) In the case of one locus, Q is independent of L and given
by
v, 21-6y
= =G on-20 (5:4)
This is in agreement with results already known (Stewart, 1976; Nei and
Roychoudhury, 1974).

(2) In all cases, Q is bounded above by 1.

(3) QO decreases as n increases. The decrease rate and the limit value
depend on L. If L is very short, the limit

2(1—-6)

0= (G-0)(3-20)

(5.5)
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10°° [on 107 1 10° 10° 108
F1G. 1. Q as a function of L for different numbers of loci and a mean heterozygosity of
0.09.
is attained as soon as né is much larger than one, while if L is very long, the
limit 31— 6)
::-—___:;__ 5.6
T (5:6)

is reached only when nu is much larger than N. However, notice that in the
latter case, Q is actually negligible as soon as nu is much larger than one.

=01
§:=05
30 =09

u=107% §=17

n=10* §:.23

833
20
§:50 |
© =67 |

6=80

-6 -4

10 10 107 1 10° 10* 10

F1G. 2. Q as a function of L for different mean heterozygosities and a mean number of
mutations per gamete per generation of 0.01.
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(4) Q decreases as 6 increases. The limit function is negligible as soon as
(1 — 6) is negligible with regard to one or equivalently Nu is much larger
than one.

(5) In the case L = co, the first term of (5.3) gives a good approx-
imation of Q which may be written in the form

3

T+ 2Nu)(3 + 4Nu)(3 — 4u + dnu) 6.7

Q

6. DISCUSSION

It should be emphasized that (5.2) cannot be deduced from (5.4) by
replacing u by nu. While in (5.4) the average heterozygosity can take only
the values O or 1, in (5.2) it can take the values O, 1/n,..., n/n. Also (5.3)
cannot be deduced from (5.4) by assuming independence between loci.
Remind ourselves that loci are unlinked in individuals, not in populations.
Our results reflect a dependence in all cases.

What about our basic assumptions? The island model without migration
may describe a situation for different species. Moreover, as Zouros (1979)
stated, the infinite-allele model seems acceptable for natural populations.
However, the mutation rate u is not constant over all loci and a gamma
distribution has been postulated (Nei, Fuerst, and Chakraborty 1976; Zouros
1979). Our assumption on u (as the others) is more convenient
mathematically. Notice that if we let u =0, n = c0, and L = oo, then (1 — X)
becomes the inbreeding coefficient and the variation of this trait was studied
for several mating structures (Avery and Hill (1980)). Even though our
assumptions may not always be appropriate, our conclusions might help in
formulating some general principles.

It may be relevant to point out that formulas (3.3) with formulas (B.4)
enables us to obtain the variances 77, 7, and 7, at any generation g, under
any distribution of loci and any recombination scheme. However,
computational restrictions have to be taken into account especially when the
number of loci is large. The assumptions of loci randomly distributed and
recombination scheme without interference were also made by Weir, Avery,
and Hill (1980) (see also Avery and Hill (1977, 1979)). Different recom-
bination schemes (a list is given in Karlin and Liberman (1979)) could be
considered and the linkage effects on 77, 77, and 7, studied in each case.
This will be the object of a subsequent study.

In the case of one locus, the between-population variance of
heterozygosity at any generation g is given by

2
V},‘) — 5(15) - H(lx) i
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By methods based on gene frequencies, Gery (1978) obtained the exact
expression for V§®, while Li and Nei (1975) found an approximative formula
by differentiation. Computations using our exact determinations in (B.4)
have shown that their approximations were quite accurate even for g = 10.

On the other hand, it may be of interest to compare our resuits with those
of Wright (1951, 1952). So for a trait governed by additive genes with
recurrent mutations, the proportion of the between-population variance in the
total variance is given at steady state by

_2(1-6)
Q“' 2*9 B

where 6 is the mean heterozygosity. Notice that Q > 1 for 8 < 4.

For the average heterozygosity, we have shown that Q <1 in all cases,
which implies that the between-population variability is less important than
the within-population variability. Of course, this conclusion may be strongly
dependent on our model. However, some data recently collected by Nevo
(1978) for natural populations led to a conclusion in the same way, namely,
that “levels of genetic variation may differ more within than between taxa
(i.e., taxonomic groups of species).”

Besides it has been shown that Q decreases as either the mean
heterozygosity (6 =4Nu/(1 + 4Nu)) or the mean number of mutations per
gamete per generation (v =nu) increases (see Figs. 1 and 2). There is a
symmetry between these two conditions, for an increase of # is equivalent to
an increase of Nu. If I/N may be taken as a drift measure within
populations, let us consider 1/n as a drift measure within individuals. As
long as the average heterozygosity is concerned, it seems that any drift acts
to emphasize differences between populations while mutation acts in the
opposite direction. Here drift and mutation clearly appear as two opposite
forces. Moreover, the between-population differences can actually be
neglected if either @ is close to one (or equivalently Nu is much larger than
one) or v=nu is much larger than one (except in the cases of short L).
While Q decreases rather uniformly with respect to L to a negligible value as
N increases, the effect of an increase of # on Q is strongly dependent on L. If
L is very short, the limit value is not a priori negligible and if L is very long,
an increase of n is still less efficient than an increase of N (see (5.7)). Indeed.
the number » of loci, even large, has to be taken into account.

APPENDIX A: EXCHANGEABILITY

A finite sequence (X,,..,X,) of random variables is said to be
exchangeable if the joint distribution of (X ;,..., X ,) is the same as that of

653/20/39
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(X,,, Xy) for every permutation 7. Moreover, an infinite sequence
(X,, X,,...) of random variables is said to be exchangeable if (X,,.., Xy) is
exchangeable for each N > 2.

A finite sequence (X,,..,X,) of random variables is said to be
conditionally independent identically distributed (cond. i.i.d.) if there is a o-
algebra -# such that

P(X, < Xy gy Xy < xy|#) =F(x,) -+ Flxy), (A1)

where F(x) = P(X, < x|#). An infinite sequence (X, X,,...) of random

variables is said to be cond. i.id. if (X,,.., X,) is cond. i.i.d. for each N > 2.

De Finetti’s theorem states that an infinite sequence (X, X,,...) of random

variables is exchangeable if and only if cond. i.i.d. Moreover, if E|X,| < oo,

then

1 N

lim ~ > X,=EX,|#) as, (A.2)
i=1

N-
where # is the o-algebra on which the X, are cond. i.i.d. This is the strong
law of large numbers for exchangeable sequences (Loéve, 1969; Kingman,
1978). Then a further result can be obtained if E(X}) < o, namely,

N

Var[E(X,|#)] = ;!114[2,1_\1[2_ > Var(X)) + 2 Ni i Cov(X,,X,)] (A.3a)

i=1 i=1 j=i+1

= }Il_‘rg [—‘E%([L\l)- + (l —%) CO\((X,,XZ)] (A.3b)
= Cov(X,, X,). (A.3c)

APPENDIX B: RECURRENCE SYSTEM

(a) Recurrence Equations

Let (&",..., &M)/(CP, s &™) and (& s EPV(EGD s, L57)  be  the
genotypes of two distinct individuals 4 and B in generation g by agreement.
Let us define ’

”‘(41() =1 lf ¢;k) é c;k) (B]a)
=0 otherwise,
=1 G RG (B.1b)

=0 otherwise,
=1 i &£

=1 otherwise,

(B.1c)
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where # is a notation for non-identity between alleles. Then consider the
measures

02 =E(m), (B.2a)
% = E(mPniy), (B.2b)
8 = E(m{ny?). (B.2c)
65 =EmPny), (B.2d)
& =EmPn), (B.2¢)
A& =EmPny), (B.2f)
for k, = l....,n (k#1[). It is convenient to introduce the notation
Y& = (O I8, 48T, (B.3)

where T is a notation for transpose. Then the recurrence relations

09 =uR—u)+ (1 —u)* (1—2)6E ", (B.3a)
W =ut+ur(l—u)+2u(l—u) (1 -6 "

F (1 —u) A=) 88"+ (1 —A)(1—24)y*""],  (B.3b)
8 =y (2 —u) + 22 —u)(1 —u) (1 —A) 6"

F (1 —w)* [223(1 = 2) 8" + 441 —A)(1 —24) "

+ (1= A1 —22)(1 —32) 8 1], (B.3c)
Wil = (132 — u)? + u(@ — u)(1 — ) (1= A)(8F " + 65~ ")] 1
+ (1 —u)* M(r,) wEn, (B.3d)

can be deduced, where A = 1/2N, 1 = (1,1, 1)%,

4+ (1 —=2r)(1—=2) 2r(1 —r)(1 —24)
M@r)= [A[(1 =A)—r(1=24)] [(1—4)—r(1 —44)](1—-24)
2231 —2) 42(1 —A)(1 —24)
r’(1—24)
r(1 —2A)(1 — 34) (B.3e)

(1 = 2)(1 = 22)(1 — 34)

and r,, is the recombination rate between loci k and /. Notice that M(r) is a
positive matrix of spectral radius less or equal to (1 —2).
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(b) Deduction of (B.3)

First of all, notice that every measure of (B.2) is an expectation of an
indicator random variable and then a probability. It may also be useful to
point out that chromosomes within the same generation are exchangeable by
our assumptions. Probabilities will be written inside square brackets in the
following.

For (B.3a). &R £ if at least one is a mutant [2(2—u)] and
otherwise |(1 — u)?] if the parental genes are distinct [(1 —4)] and different
jor="].

For (B.3b). (P #£ &P £ &P if &X is a mutant [u], or otherwise [(1 —u)]
if {{¥ and &P are both mutants [4?] or only one is a mutant [2u(1 — u)] and
the parents of both others are distinct and different [(1 —A) 8¢~ "]. If there
are no mutants [(1 — u)®], the event occurs if the parents of (' and &Y are
the same one, distinct and different from that of &¥ [A(1 —4)68E~"]), or
distinct ones, both distinct and different from that of &P
[(1=A)(1 =22) ")

For (B.3c). &P £ and &P £ P if there is at least one mutant in
each pair [#*(1 — u)*] or in only one [2u(2 — u)(1 — «)?] and the parents for
the other are distinct and different [(1 —A) 8~ "]. If there are no mutants
[(1 —u)*], the event occurs if the parents for each pair are distinct and
different and this occurs with probability 2A%(1 —A) 8", 44(1 — 1) y#~ "
or 4A(1 —A)(1 — 24) 8~ accordingly as the total number of parents is 4, 3
or 2, respectively.

For (B.3d). The expressions for @), I'’), and 4} are obtained as
previously up to the case of no mutants. In this last case [(1 —u)*], the
relation is expressed by a matrix which depends only on the recombination
rate between loci k and /. We have denoted it by M. It has appeared
previously in the literature (Weir and Cockerham, 1969, 1974; Serant,
1974).

(c) Solution of (B.3)

It is easy to find out the following determinations:

6P = 6 + (B — 6)(1 — u)** (1~ D), (B.42)
PO =1 + Ol — ) (1~ Ay
+ O =% = CH = w)*F (1 — ) (1= 2)% (B.4b)

G =0"+D, (1 -u)2 (1 -2+ G (1 —u)*t (1 —-2)5 (1 —24)*
+ (0P =8 — D, — G)(1 —u)*® (1 —2)% (1 — 24)% (1 — 31)%, (B.4c)
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V=93 +(1-u)* (1-1)f &,

+ (1 ~u) M(r, )¢ ¥ — V0 — @,.), (B.4d)
where
© A u(2 —u)
67 == I—(1—u?(1-2)" (B4e)
o u(ltu—ut)+ 2u+ A —w)|(1~u)P (1-4)6
=y = I—(—u)y (1-2)(1—22) B4
W2 —u) +2[u—u)+ A1 —u)’)(1 —u)* (1 -A)8
5 _ 5 +4A1 —u) (1 —2)(1—24)y
* 1—(1—=u)* (1 =) -21)(1-31) (’B_4g)
2u+ 201 - w))(6° - 6)
CETuowa-) (B.4h)
_ A0 —u) (1 =20) G+ 2[u(2 — u) + A2(1 —u)* (6" — 0) .
b= [— (1 —w)?(1—24)1 32 > (B4
G, = W0’ —7—C) (B.4))

I—(1—u)(1-34)
D, =uR—uw)@> +6"-20)[I-(1-A)""(1—u)lM(r,,)] "1 (Bdk)
VA =) =01 -1 —u) Q=2 [I -0 —u)*M(r, )] ' 1. (B4

Of course, 8, y, d, and ¥ give the unique stable equilibrium measures. Let
¥Y(r)= (O(r), I'(r), 4(r))". Then the further determinations

O(r) = (r’p,(r) + rAp,(r) + A’ps(r)) 67/q(r), (B.5a)

I(r) = (rp,(r) + rap,(r) + °ps(r)) €*/q(r), (B.5b)

A(r) = (r’p,(r) + rAp,(r) + A’pe(r) 67/q(r), (B.5¢)
with

q(r) =r’p,(r) + rip,(r) + A’p,(r), (B.5d)

can be obtained, where p,(r),..., p,(r) are polynomials of r different from zero
at r =0 given by
p\(r)=(4+8F)—(2+4B)r, (B.Se)
p(r)= (28 + 808 + 486%) — (40 + 1328 + 928%) r

+ (13 + 488 + 385%) 7, (B.5f)
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ps(r) = (36 + 1448 + 1765 + 646) — (136 + 6728 + 9208° + 3364°) r
+ (119 + 7008 + 10948 + 4408°) r?

— (30 + 2128 + 376B + 1648°%) *, (B.5g)
P.(r) = (26 4 768 + 486%) — (36 + 1248 + 926%) r
+ (9 + 408 + 386%) r*, (B.5h)

Ps(r) = (24 + 1128 + 1608* + 648%) — (99 + 5608 + 8508 + 3366°) r

+ (73 + 5488 + 9864 + 4408%) r*

— (8 4+ 1168 + 2848 + 1648°) r*, (B.5i)
pe(r) = (22 + 1088 + 1608 + 648°) — (93 + 5488 + 8508* + 3364°) r

+ (65 + 5328 + 9865” + 4408°) r*

— (4 + 1088 + 2848% + 1648°) 1, (B.5)
p-(r)= (18 + 1088 + 1608 + 645°) — (83 + 548f + 85082 + 3364°) r

+ (53 + 5328 + 9864 + 4408°) r?

— (1088 + 2848 + 1648%) r’, (B.5k)

with the notation f = 2Nu. Terms of order 4, A%,..., etc., have been neglected
in p;, ps, P, and p;.

(d) Some Approximate Determinations
It is useful to point out some approximations when N is large enough:

2
- 1+ﬂ2/z’ (B.6)
1448+ 28

S=3isprag” ®.7)
-

o) — ¢ = 1+14ﬂ]02 t r<i @Bsa)

[ 5+108+48 .
T 112 + 488 + 528% + 168° ] & if r=2 (B.8b)
] — 2
- Ll 2fr_t_22r‘]’1‘92 if r»2, (B8c)
_| 2 R )
A(r)_ez_L‘)+54ﬁ+80ﬂ’+32ﬂ’]0 if r<i (B.9a)
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1 L
*[12+48ﬂ+52,32+16ﬁs]9 if r=4  (B.9b)
[1=-2r+27) ., .
‘[(1+2ﬂ)r2]” if r>21.  (B.9¢)

Equation (B.6) is classical (Malécot, 1946; Kimura, 1964), (B.7) can be
deduced from Stewart (1976) or Nei and Roychoudhury (1974), and (B.8c¢)
and (B.9c) can be found from Serant (1974).

ACKNOWLEDGMENTS

I am very grateful to Professors A. Jacquard, S. Karlin, and B. S. Weir for their
encouragement and their valuable comments.

REFERENCES

AVERY, P. J. anD HiLr, W. G. 1977. Variability in genetic parameters among small
populations, Genet. Res. 29, 193-213.

AVERY, P. J. anp HiLt, W. G. 1979. Variance in quantitative traits due to linked dominant
genes and variance in heterozygosity in small populations, Genetics 91, 817-844.

CoCKERHAM, C. C. 1969. Variance of gene frequencies, Evolution 23, 72-84.

CockeRHAM, C. C. 1971. Higher order probability functions of identity of alleles by descent.
Genetics 69, 235-246.

CockerHAM, C. C. 1973. Analyses of gene frequencies, Genetics 74, 679-700.

FRANKLIN, L. R. 1977. The distribution of the proportion of the genome which is homozygous
by descent in inbred individuals, Theor. Pop. Biol. 11, 60-80.

GERry, G. 1978. Coefficient de parenté et dispersion en population finie. Incidence de la
mutation, Ann. Génét. Sél. Anim. 10, 533-540.

HALDANE, J. B. S. 1919. The combination of linkage values and the calculation of distance
between the loci of linked factors, J. Genet. 8, 299-309.

JACQUARD, A. 1975. Inbreeding: One word, several meanings, Theor. Pop. Biol. 7, 338-363.

KARLIN, S. AND TAYLOR, H. M. 1966. “A First Course in Stochastic Processes.” Academic
Press, New York.

KARLIN, S. AND LIBERMAN, U. 1979. A natural class of multilocus recombination processes
and related measures of crossover interference, Adv. Appl. Prob. 11, 479-501.

KIMURA, M. AND CRoW, J. F. 1964. The number of alleles that can be maintained in a finite
population, Genetics 49, 725-738.

KingMaN, J. F. C. 1978. Uses of exchangeability, Ann. Prob. 6. 183-197.

Li, W. H. AND NEI1, M. 1975. Drift variances of heterozygosity and genetic distance in tran-
sient states, Genef. Res. 25, 229-248.

LoEvVE, M. 1960. “Probability Theory,” 2nd ed., Van Nostrand, Princeton. N. J.

MALEcOT, G. 1946. La consanguinité dans une population limitée, C. R. Acad. Sci. 222,
841-843.

MaLEcoT, G. 1948. “Les Mathématiques de I’'Hérédite,” Masson, Paris.

NEl. M., FuersT, P. A., AND CHAKRABORTY, R. 1976. Testing the neutral mutation
hypothesis by distribution of single locus heterozygosity, Narure (London) 262, 491-493.



410 * S, LESSARD

NEI, M. AND ROYCHOUDHURY, A. K. 1974. Sampling variances of heterozygosity and genetic
distance, Genetics 76, 379-390.

NEvo, E. 1978. Genetic variation in Natural populations: Patterns and theory, Theor. Pop.
Biol. 13, 121-177.

ScHNELL, F. W. 1961. Some general formulations of linkage effects in inbreeding, Genetics
46, 947-957.

SERANT, D. 1974. Linkage and inbreeding coefficients in finite random mating population,
Theor. Pop. Biol. §, 251-263.

STEWART, F. M. 1976. Variability in the amount of heterozygosity maintained by neutral
mutations, Theor. Pop. Biol. 9, 188-201.

SvED, J. A. 1968. The stability of linked systems of loci with a small population size, Genetics
59, 543-563.

SvED, J. A. 1971. Linkage disequilibrium and homozygosity of chromosome segments in finite
populations, Theor. Pop. Biol. 2, 125~141.

WEIR, B. S., AVERY, P. J., AND HiLL, W. G. 1980. Effect of mating structure on variation in
inbreeding, Theor. Pop. Biol. 18, 396-429.

WEIR, B. S. AND CockerHAM, C. C. 1969. Group inbreeding with two linked loci, Genetics
63, 711-743.

WEIR, B. S. AND CockerHAM, C. C. 1974. Behavior of pairs of loci in finite monoecious
populations, Theor. Pop. Biol. 6, 323-354.

WRIGHT, S. 1951. The genetical structure of populations, Ann. Eugen. 15, 323-354.

WRIGHT, S. 1952. The theoretical variance within and among subdivisions of a population
that is in a steady state, Genetics 37, 313-321.

Zouros, E. 1979. Mutation rates. Population sizes and amounts of electrophoretic variation
of ensyme loci in natural populations, Genetics 92, 623-646.



