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Abstract In this paper we consider class-structured populations in discrete time in
the limit of weak selection and with the inverse of the intensity of selection as unit of
time. The aim is to establish a continuous model that approximates the discrete model.
More precisely,we study frequency-dependent growth in an infinite haploid population
structured into a finite number of classes such that individuals in each class contribute
to a given subset of classes from one time step to the next. These contributions take
the form of generalized fecundity parameters with perturbations of order 1/N that
depends on the class frequencies of each type and the type frequencies. Moreover,
they satisfy some mild conditions that ensure mixing in the long run. The dynamics in
the limit as N → ∞ with N time steps as unit of time is considered first in the case of
a single type, and second in the case of multiple types. The main result is that the type
frequencies as N → ∞ obey the replicator equation with instantaneous growth rates
for the different types that depend only on instantaneous equilibrium class frequencies
and reproductive values. An application to evolutionary game theory complemented
by simulation results is presented.
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1 Introduction

Consider constant age-specific survival probabilities and fecundities for a discrete-time
age-structured haploid population in demographic equilibrium. These demographic
parameters determine the stable age distribution and the reproductive values associated
with the different age classes. They are such that the geometric growth rate of the total
reproductive value at any discrete time is equal to 1.

Add constant perturbations of some given order s > 0 to the demographic para-
meters.What will be the first-order effect of these perturbations with respect to s on the
geometric growth rate of the population? It can be shown that this effect is given by the
mean perturbation with respect to a weighted stable age distribution in the absence of
perturbations with the reproductive values as weights (Lessard and Soares 2016). This
is a consequence of the Perron–Frobenius theory for primitive non-negative matrices
applied to Leslie matrices for age-structured populations. It can be interpreted as a
two-timescale phenomenon with fast changes in the age distribution and slow changes
in the population size. In the limit of small perturbations as s → 0 and with �s−1�
time steps as unit of time, the derivative of this mean perturbation with respect to s
evaluated at s = 0 gives the exponential growth rate of the total reproductive value
at any continuous time. In the same limit, the relative total reproductive values of n
organisms producing copies of themselves and surviving from one age class to the next
according to perturbed demographic parameters obey the classical replicator equation
(Taylor and Jonker 1978; Hofbauer and Sigmund 1998, and references therein) with
the exponential growth rates as constant fitnesses. Therefore, it is justified to use this
equation as an approximation in the case of weak selection.

With frequency-dependent perturbations on demographic parameters, a similar con-
clusion is expected but with an instantaneous growth rate that depends on the current
population state. In order to prove this intuitive result and find the exact expression of
the growth rate, the Perron–Frobenius theory has to be extended. The reason is that
the primitive non-negative matrix in the linear transformation for the amounts of indi-
viduals of the different types in the different age classes from one time step to the next
depends on the distribution of those individuals at the current time step. Therefore, it
changes over time. With time measured in numbers of time steps given by the inverse
of the perturbation order as this order tends to 0, this leads to analyze infinite pro-
ducts of variable matrices. Moreover, the analysis can be extended to class-structured
populations with individuals in each class contributing to a given subset of classes as
long as the assumptions for the Perron–Frobenius theory hold.

Population genetics models for age-structured populations have been studied for a
long time, and approximations based on stable age distributions and supported by some
analytical results have already been used to predict the effects of density-dependent
as well as density-independent weak selection even in diploid populations (see, e.g.,
Charlesworth 1994, and references therein). Still recently, Li et al. (2015) assumed
a stable age distribution in a population with demographic structure to study evolu-
tionary game dynamics in the case of life-stage dependent strategies used in pairwise
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interactions. See also Henson (1998) for a connection of Leslie models with Mc-
Kendrick partial differential equation models.

More general class-structured populations have been considered too. The change
in a weighted average frequency of a mutant allele to first order with respect to the
intensity of selection, for instance, has been examined in this framework (Taylor 1990).
This corresponds to an ad hoc extension of Price’s (1970) covariance formula that uses
the equilibrium class frequencies and the reproductive values of the alleles in those
classes in the absence of selection to compute the covariance between the mutant
allele frequencies and the first-order effects of selection. The expected value of such
a change has also been used to get the first-order effect of selection on the probability
of fixation of the mutant allele in a finite haploid population of constant size (Rousset
2004). See also Barfield et al. (2011) for a more general extension of Price’s (1970)
equation and applications to biological populations.

A rigorous mathematical analysis on the existence, stability and bifurcation of
equilibrium points in class-structured populations of infinite size with more emphasis
on age-structured populations can be found in Cushing (1998). Local stability analyses
were also used, e.g., in Kebir et al. (2010) to study a mathematical model describing
the dynamics of a hermaphroditic species where sex allocation is density-dependent
so that the fractions of immature individuals acquiring male and female sexual roles as
adults depend on current environmental conditions. In a follow up paper (Kebir et al.
2015), the stability of sexual strategies of a hermaphrodite (simultaneous or sequential,
protandrous or protogynous) in a stable size-structured population distributed over a
finite set of sizes is analyzed taking into account the effects of costs due to sexual
competition and sex change. Notice, however, that matrix models for size-structured
populations have been criticized because their outputs, and in particular the population
growth rate, are sensitive to the dimension of the matrix or, equivalently, to the class
width (Picard and Liang 2014).

We are interested in this paper in continuous-time approximations of discrete-time
models for structured populations in the absence of stochastic effects due to a finite
population size or a random environment. Notice that continuous approximations of
probability models for finite populations have already been proposed, e.g., by Chalub
and Souza (2009) for the Moran model and by Chalub and Souza (2014) for the
Wright–Fisher model. Assuming weak frequency-dependent selection between two
types of individuals in the limits of a large population size and of a small time step,
three different partial differential equations are found for the limiting probability den-
sity of one of the two types depending on the relationship between the population
size and the time step: the diffusion equation, the replicator-diffusion equation and the
partial differential version of the replicator equation. This has been obtained under the
assumption that a limiting probability density function exists and is smooth enough.
Another class of macroscopic limits have been obtained by Champagnat et al. (2006,
2008) when modeling a population as a stochastic point process whose generator cap-
tures the probabilistic dynamics over continuous time of birth, mutation, and death, as
influenced by the trait values of each individual, and interactions between individuals.
Depending on the scalings of the model parameters, large population approximations
can be deterministic, in the form of ordinary, integro-, or partial differential equations,
or probabilistic, in the form of stochastic partial differential equations or superpro-
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cesses. In the limit of rare mutations, a possible approximation is a jump process,
justifying the so-called trait substitution sequences and their approximation known as
the canonical equation of adaptive dynamics.

In this paper we consider class-structured populations in discrete time in the limit
of weak selection and with the inverse of the intensity of selection as unit of time.
The objective is to establish a continuous model that approximates the discrete model.
More precisely,we study frequency-dependent growth in an infinite haploid population
structured into a finite number of classes such that individuals in each class contribute
to a given subset of classes from one time step to the next. These contributions take
the form of generalized fecundity parameters with perturbations of order 1/N that
depends on the class frequencies of each type and the type frequencies. Moreover,
they satisfy some mild conditions that ensure mixing in the long run. The dynamics
in the limit as N → ∞ with N time steps as unit of time is considered first in the
case of a single type (Sect. 2), and second in the case of multiple types (Sect. 3). The
main result is that the type frequencies as N → ∞ obey the replicator equation with
instantaneous growth rates for the different types that depend only on instantaneous
equilibrium class frequencies and reproductive values. An application to evolutionary
game theory complemented by simulation results is considered next (Sect. 4). This is
followed by a discussion on the assumptions of the model and the implications of the
results (Sect. 6). The proofs of all the results are provided for completeness, including
technical proofs of preliminary lemmas that are relegated to an appendix.

2 Single-type model

Consider an infinite population with time measured in number of time intervals of
length �t = N−1 for some large positive integer N . Suppose d ≥ 1 possible classes
for the individuals in the population and let ck(τ ) be the amount of individuals in class
k = 1, . . . , d at time step τ ≥ 0. Therefore, the frequencies of the individuals in the
different classes at time step τ are given by

xk(τ ) = ck(τ )
∑d

l=1 cl(τ )
, (1)

for k = 1, . . . , d. The array of these frequencies is represented by x(τ ) =
(x1(τ ), . . . , xd(τ )), which belongs to the simplex of all d-dimensional frequency vec-
tors defined as

� = {x = (x1, . . . , xd) ∈ R
d : x1, . . . , xd ≥ 0, x1 + · · · + xd = 1}. (2)

Assume that an individual in class k at time step τ ≥ 0 leaves an expected number
al,k(τ ) of individuals (possibly including the individual itself) in class l at time step
τ + 1, for k, l = 1, . . . , d. This expected number, which can be viewed as a gene-
ralized fecundity parameter, depends only on the frequency vector x(τ ) as a result of
interactions between individuals.
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Weak frequency-dependent selection is modeled by assuming

al,k(τ ) = al,k + 1

N
bl,k(x(τ )), (3)

for k, l = 1, . . . , d. Here, A = (
al,k

)
is a matrix with all constant non-negative entries,

while B(x) = (
bl,k(x)

)
is a matrix with all continuous non-negative entries with the

same null entries for all x ∈ �. Note that the entries of B(x) are uniformly bounded
on the compact set �. On the other hand, the quantity s = N−1 where N is a positive
integer represents the intensity of selection.

It is assumed throughout that A is primitive, which means that AL is a positive
matrix for some integer L ≥ 1. The Perron–Frobenius theory (see, e.g., Appendix in
Karlin and Taylor 1975, or Lancaster and Tismenetsky 1985) ensures that the leading
eigenvalue of A, represented by λ, is positive and simple with associated positive left
and right eigenvectors v = (v1, . . . , vd)

T and u = (u1, . . . , ud)T . These are unique
under the conditions

vT u =
d∑

k=1

vkuk = 1 and 1T u =
d∑

k=1

uk = 1, (4)

where 1 denotes a d-dimensional vector of all ones.Moreover, it is assumed that λ = 1,
so that

Au = u, vT A = vT and lim
τ→∞ Aτ = uvT . (5)

From time step τ to time step τ + 1, the amounts of individuals in the different
classes satisfy the recurrence equation

c(τ + 1) = (c1(τ + 1), . . . , cd(τ + 1))T = A(τ )c(τ ), (6)

where c(τ ) = (c1(τ ), . . . , cd(τ ))T and

A(τ ) = A + B(x(τ ))

N
. (7)

Therefore, from time 0 to time t > 0 in number of N time steps, which represents a
new time scale, these quantities are given by

c(�Nt�) =
⎛

⎝
�Nt�−1∏

τ=0

A(τ )

⎞

⎠ c(0), (8)

where �Nt� denotes the floor value of Nt which corresponds to the integer part of Nt .
Moreover, the above product like all the products throughout this paper is understood
in the backward order, which means that
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⎛

⎝
�Nt�−1∏

τ=0

A(τ )

⎞

⎠ = A(�Nt� − 1) · · · A(1) · A(0). (9)

Notice that the non-negative matrix A(τ ) depends not only on τ but also on N . It is
primitive since AL has all positive entries for some integer L ≥ 1 by assumption, and

A(τ )L ≥ AL , (10)

the inequality being understood entrywise. This implies that A(τ )L has all positive
entries for all τ ≥ 0. Moreover, since the entries of B(x(τ )) are uniformly bounded
for all τ ≥ 0, we have

A(τ ) → A, (11)

entrywise and uniformly for all τ ≥ 0 as N → ∞.
Let us define

C(t) = lim
N→∞ c(�Nt�), (12)

if this limit exists.
Note that, in the absence of selection, which occurs when B(x) is a null matrix for

every frequency vector x, we have

C(t) = lim
N→∞ A�Nt�c(0) = uvT c(0). (13)

This result is a direct consequence of the Perron–Frobenius theory.
On the other hand, if B(x) = B for every d-dimensional frequency vector x, which

means frequency-independent selection, and if B commutes with A, which is further
assumed to be invertible, then

C(t) = lim
N→∞

(

A + B

N

)�Nt�
c(0) (14)

= lim
N→∞ A�Nt�

(

I + A−1B

N

)�Nt�
c(0) (15)

= uvT exp
{
t A−1B

}
c(0) (16)

owing to the Perron–Frobenius theory and the definition of the exponential function.
Since AB = BA and vT A = vT , then BA−1 = A−1B and vT = vT A−1. This leads
to

uvT exp
{
t A−1B

}
= uvT

+∞∑

n=0

tn
(
A−1B

)n

n! = u
+∞∑

n=0

tnvT Bn

n! . (17)
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Moreover, we have vT B = vT AB = vT BA. In this case, the Perron–Frobenius theory
ensures that vT B = mvT with m = mvT u = vT Bu. Therefore,

uvT exp
{
t A−1B

}
= uvT

+∞∑

n=0

tn
(
vT Bu

)n

n! = uvT exp
{
tvT Bu

}
. (18)

The objective of this section is to extend the convergence result to the case of
frequency-dependent selection by showing the limit exists and is given by

C(t) = uvT exp
{
tvT B(u)u

}
c(0), (19)

when B(x) is allowed to depend on x and not to commute with A, invertible or not.
This result implies that

dC(t)

dt
= mC(t), (20)

where

m = vT B(u)u (21)

and
C(0) = uvT c(0). (22)

Therefore, m is the exponential growth rate of the population in the continuous-time
limit.

Theorem 1 Suppose that A = (al,k) is a primitive non-negative d × d matrix with
leading eigenvalue 1 and associated positive left and right eigenvectors v and u such
that vT u = 1T u = 1. Let

x(τ ) = c(τ )

1T c(τ )
, (23)

where c(τ ) is a d-dimensional non-negative vector satisfying the recurrence equation

c(τ + 1) =
(

A + B(x(τ ))

N

)

c(τ ), (24)

for all τ ≥ 0 with B(x) being a non-negative d × d matrix with the same non-null
entries that are continuous with respect to all d-dimensional frequency vectors x.
Then,

lim
N→∞

�Nt�−1∏

τ=0

(

A + B(x(τ ))

N

)

= uvT exp
{
tvT B(u)u

}
, (25)

for every real number t > 0.
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The proof of this theoremwill rely on a stability result (Lemma1) and a consequence
of the Perron–Frobenius theory (Lemma 2).

Lemma 1 Let A be a primitive non-negative d × d matrix with leading eigenvalue 1
and associated positive left and right eigenvectors v and u such that vT u = 1T u = 1.
Let A(τ ) for τ ≥ 0 be a sequence of primitive non-negative d × d matrices given by

A(τ ) = A + B(x(τ ))

N
, (26)

where x(τ ) for τ ≥ 0 is a sequence in the simplex of all d-dimensional frequency
vectors �, defined recursively by

x(τ + 1) = A(τ )x(τ )

1T A(τ )x(τ )
, (27)

while the entries of B(x(τ )) are non-negative and uniformly bounded for all τ ≥ 0.
Then, there exists a norm ‖ ·‖ onRd that depends only on A and is such that, for every
real number δ > 0,

‖x(τ ) − u‖ ≤ δ, (28)

as soon as N ≥ N1 and τ ≥ τ1 for some positive integers N1 = N1(δ) and τ1 = τ1(δ).

Remark 1 The exact form of A(τ ) does not come into play in the proof of Lemma 1,
only the property that A(τ ) → A entrywise and uniformly with respect to all τ ≥ 0
as N → ∞.

Lemma 2 Let A be a primitive non-negative d × d matrix with leading eigenvalue 1
and associated positive left and right eigenvectors v and u such that vT u = 1T u = 1.
Then, as N → ∞,

(

A + B

N

)�Nt�−τ

→ uvT exp
{
tvT Bu

}
, (29)

for any fixed real number t > 0, any fixed integer τ and any fixed non-negative d × d
matrix B.

Remark 2 Since the matrix A + B/N is not necessarily invertible, it is assumed that
N is large enough so that �Nt� − τ ≥ 1. For the same reason, only positive powers
of matrices are considered throughout the paper.

Proofs of the above two lemmas are relegated to Appendix A. We are now in a
position to prove Theorem 1.
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Proof Let ‖ · ‖ be the norm on R
d in the statement of Lemma 1 for

A(τ ) = A + B(x(τ ))

N
, (30)

with A(τ ) primitive for all τ ≥ 0. By continuity, given any positive real number ε ≤ 1,
there exists a real number δ > 0 such that

(1 − ε)B(u) ≤ B(x(τ )) ≤ (1 + ε)B(u), (31)

as soon as

‖x(τ ) − u‖ ≤ δ, (32)

which holds as soon as N ≥ N1 and τ ≥ τ1 with N1 = N1(δ) and τ1 = τ1(δ) defined
in Lemma 1. The inequalities in (31) are understood entrywise. These inequalities for
τ = τ1, . . . , �Nt� − 1, for N large enough so that N ≥ N1 and �Nt� ≥ τ1 + 1 for
any fixed real number t > 0, lead to the inequalities

(

A + (1 − ε)B(u)

N

)�Nt�−τ1

≤
�Nt�−1∏

τ=τ1

(

A + B(x(τ ))

N

)

≤
(

A + (1 + ε)B(u)

N

)�Nt�−τ1

. (33)

As N → ∞, Lemma 2 ensures that

(

A + (1 − ε)B(u)

N

)�Nt�−τ1

→ uvT exp
{
tvT B(u)u

}
exp

{
−εtvT B(u)u

}
(34)

and

(

A + (1 + ε)B(u)

N

)�Nt�−τ1

→ uvT exp
{
tvT B(u)u

}
exp

{
εtvT B(u)u

}
. (35)

On the other hand,

τ1−1∏

τ=0

(

A + B(x(τ ))

N

)

→ Aτ1 . (36)

Since ε > 0 can be chosen arbitrarily small, we conclude that

�Nt�−1∏

τ=0

(

A+ B(x(τ ))

N

)

→ Aτ1uvT exp
{
tvT B(u)u

}
=uvT exp

{
tvT B(u)u

}
. (37)

This completes the proof of Theorem 1. 
�
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3 Multi-type model

In this section, assume n ≥ 1 types of individuals distributed in d ≥ 1 classes. Let
ci,k(τ ) be the amount of individuals of type i in class k = 1, . . . , d at time step τ ≥ 0
for i = 1, . . . , n. Suppose that such an individual leaves an expected number ai,l,k(τ )

of individuals (possibly including the individual itself) of type i in class l = 1, . . . , d
at time step τ + 1. Interactions between individuals are allowed so that this expected
number, which corresponds to a generalized fecundity parameter, depends on the
frequencies of the different types in the different classes at time step τ given by

zi,k(τ ) = pi (τ )xi,k(τ ), (38)

for i = 1, . . . , n and k = 1, . . . , d, where

xi,k(τ ) = ci,k(τ )

ci (τ )
, (39)

with

ci (τ ) =
d∑

l=1

ci,l(τ ), (40)

is the frequency of individuals in class k among the individuals of type i , while

pi (τ ) =
d∑

k=1

zi,k(τ ) = ci (τ )
∑n

j=1 c j (τ )
(41)

is the frequency of type i among all individuals. The array of n × d frequencies at
time step τ ≥ 0 that sum up to 1 is represented by z(τ ) = (

zi,k(τ )
)
.

Weak selection is modeled by assuming

ai,l,k(τ ) = al,k + 1

N
bi,l,k(z(τ )), (42)

for k, l = 1, . . . , d and i = 1, . . . , n. Here,

A = (
al,k

)
(43)

is a primitive d × d matrix with all constant non-negative entries that do not depend
on i , while

Bi (z) = (
bi,l,k(z)

)
(44)

is a non-negative d × d matrix with the same non-null entries that are continuous
functions with respect to frequency arrays z of dimension n × d that may depend
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on i . The special case of frequency-independent Leslie matrices for age-structured
populations was studied in Lessard and Soares (2016).

The amounts of individuals of type i in the different classes satisfy

ci (τ + 1) = (ci,1(τ + 1), . . . , ci,d(τ + 1))T = Ai (τ )ci (τ ) (45)

from time step τ to time step τ + 1, where ci (τ ) = (ci,1(τ ), . . . , ci,d(τ ))T and

Ai (τ ) = A + Bi (z(τ ))

N
, (46)

and therefore,

ci (�Nt�) =
⎛

⎝
�Nt�−1∏

τ=0

Ai (τ )

⎞

⎠ ci (0) (47)

from time 0 to time t > 0 in number of N time steps, where �Nt� denotes the floor
value of Nt .

The main objective of this section is to prove the following result.

Theorem 2 Let the amounts of individuals of type i in d classes from time step τ ≥ 0
to time step τ + 1 satisfy the recurrence equation

ci (τ + 1) = Ai (τ )ci (τ ), (48)

where

Ai (τ ) = A + Bi (z(τ ))

N
, (49)

for i = 1, . . . , n. Here, A be a primitive non-negative d × d matrix with leading
eigenvalue 1 and associated positive left and right eigenvectors v and u such that
vT u = 1T u = 1. On the other hand, Bi (z(τ )) is a non-negative d × d matrix with
the same non-null entries that are functions of class C1 (that is, continuous with
continuous partial derivatives) with respect to frequency arrays

z(τ ) = (
pi (τ )xi,k(τ )

)
, (50)

where

pi (τ ) = 1T ci (τ )
∑n

j=1 1T c j (τ )
(51)

is the frequency of individuals of type i at time step τ , and

xi,k(τ ) = ci,k(τ )

1T ci (τ )
(52)
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is the frequency of individuals in class k among the individuals of type i , respectively,
for i = 1, . . . , n and k = 1, . . . , d. Assume that

Ci (t) = lim
N→∞ ci (�Nt�) = lim

N→∞ ci (�Nt� + 1) (53)

exists in Rd+, the set of d-dimensional real vectors with non-negative components, for
every real scaled time t > 0, for i = 1, . . . , n. Then,

Pi (t) = lim
N→∞ pi (�Nt�), (54)

for i = 1, . . . , n, which exists in [0, 1] for every real scaled time t > 0, satisfies the
replicator equation

dPi (t)

dt
= Pi (t) (mi (t) − m(t)) , (55)

where

mi (t) = vT Bi (P(t)uT )u, (56)

with

m(t) =
n∑

j=1

m j (t)Pj (t) (57)

and P(t) = (P1(t), . . . , Pn(t))T .

This theorem shows that the instantaneous growth rate of type i at time t > 0 in
the continuous-time limit is given by mi (t) for i = 1, . . . , n. The proof will rely on
Lemmas 1 and 2, and the following lemma whose proof is also given in Appendix A
for completeness.

Lemma 3 Under the assumptions and notations of Theorem 2, we have

Ci (t) = vT Ci (t)u (58)

and

vT ci (τ ) = vT Ci (t) + O(h), (59)

uniformly for N large enough and �Nt� ≤ τ ≤ �N (t + h)� with t > 0 and h > 0
small enough.

We are now ready to prove Theorem 2.
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Proof Owing to Lemma 3, we have

Pi (t) = lim
N→∞

1T ci (�Nt�)
∑n

j=1 1T c j (�Nt�) = 1T Ci (t)
∑n

j=1 1T C j (t)
= vT Ci (t)

∑n
j=1 vT C j (t)

, (60)

for i = 1, . . . , n. Notice that if

dvT Ci (t)

dt
= mi (t)vT Ci (t), (61)

then we have

dPi (t)

dt
= mi (t)vT Ci (t)

∑n
j=1 vT C j (t) − vT Ci (t)

∑n
j=1m j (t)vT C j (t)

∑n
j=1(v

T Ci (t))2

= Pi (t) (mi (t) − m(t)) , (62)

for i = 1, . . . , n. Therefore, it suffices to show that

vT Ci (t + h) − vT Ci (t) = hmi (t)vT Ci (t) + o(h), (63)

for i = 1, . . . , n.
Notice that there exists a continuous one-to-one correspondence between all possi-

ble frequency arrays z(τ ) = (
zi,k(τ )

) = (
pi (τ )xi,k(τ )

)
and the weighted-frequency

arrays w(τ ) = (
wi,k(τ )

) = (
qi (τ )yi,k(τ )

)
defined by

qi (τ ) = vT ci (τ )
∑n

j=1 vT c j (τ )
(64)

and

yi,k(τ ) = vkci,k(τ )

vT ci (τ )
, (65)

so that

wi,k(τ ) = vkci,k(τ )
∑n

j=1
∑d

l=1 vl c j,l(τ )
= vk zi,k(τ )

∑n
j=1

∑d
l=1 vl z j,l(τ )

, (66)

for i = 1, . . . , n and k = 1, . . . , d. Using this change of arrays, let

Hi (w(τ )) = Bi (z(τ )), (67)
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for �Nt� ≤ τ ≤ �N (t + h)� with t > 0 and h > 0 small enough. The mean value
theorem for the continuous entries of this matrix, the extreme value theorem for their
continuous partial derivatives and the Cauchy–Schwarz inequality entail that

Hi (w(τ )) − Hi (w(�Nt�)) ≤ K |w(τ ) − w(�Nt�)|Bi (P(t)uT ), (68)

where K > 0 is some positive constant that depends on the positive entries of
Bi (P(t)uT ) and the maxima of the partial derivatives in absolute value on the simplex
of (n × d)-dimensional frequency arrays. Owing to Lemmas 1 and 2, we have

zi,k(τ ) = uk + O(h), qi (τ ) = Pi (t) + O(h), (69)

and then,

w(τ ) = (
qi (τ )yi,k(τ )

) = ((Pi (t) + O(h))(vkuk + O(h))) = (Pi (t)vkuk + O(h)) ,

(70)

for �Nt� ≤ τ ≤ �N (t + h)� if N is large enough. This implies that there exists a
constant L > 0 such that

|w(τ ) − w(�Nt�)| ≤ Lh

2K
. (71)

Finally, if N is large enough so that

Hi (w(�Nt�)) = Bi (z(�Nt�)) ≤ Bi (P(t)uT ) + Lh

2
Bi (P(t)uT ), (72)

then

A ≤ Ai (τ ) = A + Bi (z(τ ))

N
≤ A + (1 + Lh)Bi (P(t)uT )

N
, (73)

which holds for �Nt� ≤ τ ≤ �N (t + h)�. Using the fact that

ci (�N (t + h)�) =
⎛

⎝
�N (t+h)�−1∏

τ=�Nt�
Ai (τ )

⎞

⎠ ci (�Nt�), (74)

the above inequalities lead to

vT ci (�Nt�) ≤ vT ci (�N (t + h)�)

≤ vT
(

A + (1 + Lh)Bi (P(t)uT )

N

)�N (t+h)�−�Nt�
ci (�Nt�). (75)
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In the limit as N → ∞, Lemma 2 yields

(

A + (1 + Lh)Bi (P(t)uT )

N

)�N (t+h)�−�Nt�
→ uvT exp {h(1 + Lh)mi (t)} , (76)

where

mi (t) = vT Bi (P(t)uT )u. (77)

Therefore,

vT Ci (t) ≤ vT Ci (t + h) ≤ vT Ci (t) exp {h(1 + Lh)mi (t)} , (78)

with

exp {h(1 + Lh)mi (t)} = 1 + hmi (t) + o(h). (79)

The proof is complete. 
�

4 Application to evolutionary game theory

In this section, we consider a game with n possible strategies in a class-structured
population. The type of an individual corresponds to the strategy that this individual
uses in pairwise interactions. These interactions are assumed to occur at random so that
the expected payoffs are linear functions of the strategy frequencies. These expected
payoffs, multiplied by a small factor 1/N , as well as type- and class-specific payoff
allocation frequencies, perturb the fecundity parameters given by the entries of a
primitive non-negative matrix A = (al,k) whose leading eigenvalue is 1. This is a
linear case of the frequency-dependent growth model described in Sect. 3.

The payoff matrix is class-dependent and given by

Mk,l = (mi, j,k,l), (80)

where mi, j,k,l is the payoff that an individual of type i in class k receives when in
interaction with an individual of type j in class l for i, j = 1, . . . , n and k, l =
1, . . . , d.

If the strategy frequencies in the different classes are given by the array z = (z j,l)
as in (38), then the expected payoff of an individual of type i in class k is

βi,k(z) =
d∑

l=1

n∑

j=1

mi, j,k,l z j,l , (81)

for i = 1, . . . , n and k = 1, . . . , d. Following allocation theory (see, e.g., Baudisch
and Vaupel 2012), it is assumed that this expected payoff is allocated to the production
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of an excess of individuals of type i in class l with probability qi,l,k so that the total
expected number is given by

bi,l,k(z) = qi,l,kβi,k(z), (82)

for l = 1, . . . , d. Moreover,

0 ≤ qi,l,k ≤ 1 with
d∑

l=1

qi,l,k ≤ 1 (83)

and qi,l,k = 0 for the same couples (l, k) with 1 ≤ l, k ≤ d for i = 1, . . . , n. The
parameters qi,l,k determine how available resources are allocated, e.g., to survival and
reproduction at all ages over the life span in an age-structured population. Note that
1 − ∑d

l=1 qi,l,k represents the fraction of wasted resources by an individual of type i
in class k for i = 1, . . . , n and k = 1, . . . , d.

According to Theorem 2, the strategy frequencies at time t > 0 in number of time
steps as N → ∞ satisfy the replicator equation (55) with

mi (t) = vT Bi (P(t)uT )u (84)

as instantaneous rate of increase of strategy i for i = 1, . . . , n, where

Bi (P(t)uT ) =
(
qi,l,kβi,k(P(t)uT )

)
(85)

with P(t) = (P1(t), . . . , Pn(t))T being the current strategy frequency vector, while

Au = u = (u1, . . . , ud)
T and vT A = vT = (v1, . . . , vd) (86)

are positive vectors satisfying

vT u =
d∑

l=1

vlul = 1 and 1T u =
d∑

l=1

ul = 1. (87)

Since P(t)uT = (Pj (t)ul), we have

βi,k(P(t)uT ) =
n∑

j=1

mi, j,k Pj (t), (88)

where

mi, j,k =
d∑

l=1

mi, j,k,lul (89)
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is the expected payoff of an individual of type i in class k in interaction with an
individual chosen at random in a population with class probability distribution given
by u. This leads to

mi (t) =
n∑

j=1

mi, j Pj (t), (90)

where

mi, j =
d∑

l=1

d∑

k=1

vlqi,l,kmi, j,kuk . (91)

This represents the expected payoff in reproductive value of an individual of type
i in a population exhibiting stable class frequencies and reproductive values in the
absence of selection. Moreover, the replicator equation (55) is the same in this case as
in the case of a linear game in a well-mixed population with game matrix M = (mi j ).
Therefore, this matrix is called an effective game matrix.

4.1 Evolutionary game in an age-structured population

Consider an age-structured haploid population with d age classes. From one time step
to the next, an individual in age class k can produce new individuals entering age class
1, and survive to the next age class k + 1, for k = 1, . . . , d with age class d + 1
corresponding to death. This is done according to some allocation of the payoff to
n possible individual strategies in the context of a linear game as a result of random
pairwise interactions and class-dependent payoffmatrices in the formMk,l = (mi, j,k,l)

as in (80). More precisely, the payoff of an individual of type i for i = 1, . . . , n in age
class k = 1, . . . , d is allocated to reproduction with probability qi,1,k and to survival
with probability qi,k+1,k . There is no contribution to the other age classes, so that
qi,l,k = 0 if l �= 1 and l �= k + 1.

According to (91), the entries of the effective game matrix M = (mi j ) in the
continuous-time limit are given by

mi, j =
d∑

k=1

mi, j,kuk
(
v1qi,1,k + vk+1qi,k+1,k

)
(92)

withmi, j,k defined in (89) and vd+1 = 0. In the case of two age-independent individual
strategies, that is n = 2, the replicator equation (62) with P(t) = P1(t) and 1−P(t) =
P2(t) becomes

dP(t)

dt
= P(t)(1 − P(t)) (m1(t) − m2(t)) , (93)
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where

mi (t) = P(t)mi,1 + (1 − P(t))mi,2. (94)

With two age classes and two pure strategies, 1 and 2, but in the case where an
individual can use different strategies in the two age classes as considered in Li et al.
(2015), there are four possible individual strategies, namely, 1 for (1, 1), 2 for (1, 2),
3 for (2, 1) and 4 for (2, 2). Assuming a constant payoff matrix for the pure strategies
given by

M =
(
a b
c d

)

, (95)

and defining the permutation matrix

E =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠ , (96)

the class-dependent payoff matrices in (80) for the age-dependent individual strategies
are given by

M1,1 =

⎛

⎜
⎜
⎝

a a b b
a a b b
c c d d
c c d d

⎞

⎟
⎟
⎠ (97)

and

M1,2 = M1,1E, M2,1 = EM1,1, M2,2 = EM1,1E . (98)

According to (92), this leads to an effective gamematrixM = (mi j ) in the continuous-
time limit whose entries are given by

mi j = (mi, j,1,1u1 + mi, j,1,2u2)u1qi,1 + (mi, j,2,1u1 + mi, j,2,2u2)u2qi,2 (99)

with

qi,1 = v1qi,1,1 + v2qi,2,1, qi,2 = v1qi,1,2, (100)

for i, j = 1, 2, 3, 4. If

qi,1 = q1, qi,2 = q2, (101)
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for i = 1, 2, 3, 4, then the effective game matrix is

M = u21q1M1,1 + u1u2(q1M2,1 + q2M1,2) + u22q2M2,2. (102)

Avariant of thismodel assumes that an individual can use different strategies according
to the age class of the interacting individual which leads to an effective game matrix

M = u21q1M1,1 + u1u2(q1M2,1 + q2M1,2) + u22q2M2,2 (103)

under the condition (101).

4.2 Simulation results with two strategies in two age classes

In the case of two age-independent strategies in two age classes, the population dyna-
mics from time step τ to time step τ + 1 given by (45) reduces to the recurrence
equations

c1(τ + 1) =
(

A + 1

N
B1(z(τ ))

)

c1(τ ), (104)

c2(τ + 1) =
(

A + 1

N
B2(z(τ ))

)

c2(τ ), (105)

while the frequency of strategy 1 at time step τ ≥ 0 is given by

p(τ ) = 1T c1(τ )

1T c1(τ ) + 1T c2(τ )
. (106)

Here, we use

A =
(
0.65 0.50
0.70 0

)

with Au = u =
(
0.59
0.41

)

and vT A = vT = (
1.26 0.63

)
,

(107)

while we set N = 100. Moreover, the entries of B1(z(τ )) and B2(z(τ )) are in the form
(82), where

q1,1,2 = q2,1,2 = 1, q1,2,2 = q2,2,2 = 0, (108)

and

q1,1,1 = q1, q1,2,1 = 1 − q1, q2,1,1 = q2, q2,2,1 = 1 − q2, (109)

with q1 = 0.50 and q2 = 0.30.
Without loss of generality, the payoffs are chosen so that the effective payoffs in

the limit as N → ∞ given by (91) satisfy the inequality m11 > m22. Otherwise, it
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Fig. 1 Frequency of strategy 1 p(τ ) at time step τ ≥ 0 in two age classes for a selection of 10 initial
conditions. a Prisoner’s dilemma with m21 > m11 and m22 > m12. b Snowdrift game with m21 > m11
and m12 > m22. c Stag hunt game with m11 > m21 and m22 > m12. d No conflict with m11 > m21 and
m12 > m22

suffices to permute the strategies 1 and 2 or to smally perturb their payoffs. Four cases
are considered: (a) m21 > m11 and m22 > m12, which corresponds to the Prisoner’s
Dilemma, (b) m21 > m11 and m12 > m22, which is known as the Snowdrift game,
(c) m11 > m21 and m22 > m12, which is referred to as the Stag Hunt game, and
(d) m11 > m21 and m12 > m22, which is the case with no conflict that is symmetric
to case (a). A review of these four possible situations can be found for example in
Archetti and Scheuring (2012).

The numerical values of the different payoffs are given in Supplementary Material
and the simulation results for the dynamics of the frequency of strategy 1 for a selection
of 10 initial conditions in each case are shown in Fig. 1. These are consistent with
the dynamics described by the replicator equation with the effective game matrix
M = (mi j ). This supports convergence to this equation in the continuous-time limit.

5 Discussion

According to (19) proved in Theorem 1, our continuous-time limit ascertains an expo-
nential growth ratevT B(u)u for the size of a single type in a class-structuredpopulation
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under frequency-dependent selection with the inverse of the intensity of selection as
unit of time. Here, the components of u and v are the equilibrium class frequencies and
reproductive values in the absence of selection, while the entries of B(u) are the coef-
ficients of the first-order effects of selection. As the continuous time t goes to ∞, the
population size goes to 0 if vT B(u)u < 0, while it goes to infinity if vT B(u)u > 0.
This gives the condition for the extinction equilibrium to be locally asymptotically
stable or unstable, respectively, in agreement with Cushing (1998).

With multiple types, the growth rate of each type depends on the population state
so that the instantaneous rate of increase of type i at continuous time t > 0 is
vT Bi (P(t)uT )u, where the components of P(t) are the type frequencies at this time.
These are the rates that come into play in the replicator equation for the type frequen-
cies according to (55) in the statement of Theorem 2. Such rates can be traced back
to a covariance formula for the change in the frequency of an allele, from one time
step to the next and to first order with respect to the intensity of selection, proposed
by Taylor (1990). The continuous-time limit requires to consider a number of time
steps that goes to infinity, however, and this is what makes the analysis so difficult
even under the assumption that the limits of the type frequencies exist. Notice that this
assumption holds in the case of a single type as shown in Theorem 1, and is supported
by simulations in the case of multiple types as illustrated in Sect. 4.2.

Finally, the instantaneous growth rates that have been confirmed in the continuous-
time limit, which relies on two-timescale arguments, can be used to get effective game
matrices in the case of evolutionary games in class-structured populations as shown
in Sect. 4 and applied to an age-structured population in Sect. 4.1. Notice that two-
timescale arguments have already been applied to deduce effective payoffs in other
structured populations such as group-structured or hierarchically structured popula-
tions (Lessard 2009, 2011; Kroumi and Lessard 2015a, b). The main difference—and
difficulty—in the case of class-structured populations is that the class sizes depend on
the composition of the population.
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6 Appendix A: Proofs of Lemmas

6.1 Proof of Lemma 1

The proof of this lemma will rely on three well-known facts in matrix analysis and
real analysis.

Fact 1 Let ‖ · ‖ be a norm on Rd , so that

1. ‖x‖ ≥ 0 for every x ∈ R
d with equality if and only if x = 0;

2. ‖ax‖ = |a| · ‖x‖ for every x ∈ R
d and every a ∈ R with modulus |a|;

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ for every x ∈ R
d and every y ∈ R

d .
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Moreover, let

‖M‖ = sup

{‖Mx‖
‖x‖ : x ∈ R

d , x �= 0
}

, (110)

where 0 denotes a d-dimensional vector of all zeros, be the induced norm of a real
d × d matrix M. Then, there exist real numbers c,C > 0 such that for every x =
(x1, . . . , xd) ∈ R

d ,

c|x| ≤ ‖x‖ ≤ C |x|, (111)

where

|x| =
√
x21 + · · · + x2d (112)

defines the Euclidian norm. Moreover, there exist real numbers r, R > 0 such that

r |M | ≤ ‖M‖ ≤ R|M |. (113)

Therefore, every norm ‖ · ‖ on Rd is equivalent to the Euclidian norm and continuous
with respect to this norm. Actually, all norms on R

d are equivalent to one another.

Fact 2 Let M be a real d × d matrix with all eigenvalues, real or complex, less than
1 in modulus. Then, there exist a norm ‖ · ‖ on Rd and 0 < α < 1 such that for every
x ∈ R

d ,

‖Mx‖ ≤ α‖x‖. (114)

Fact 3 Let f(x) = ( f1(x), . . . , fd(x)) be a continuously differentiable transformation
of the frequency simplex � ⊆ R

d into itself. Suppose that f(x◦) = x◦ ∈ � is a fixed
point of this transformation such that the gradient matrix evaluated at y ∈ �, namely

f ′(y) =
(

∂ fl
∂xk

(y)

)

, (115)

satisfies

‖f ′(x◦ + t (x − x◦))‖ ≤ γ, (116)

for some x ∈ � and all 0 ≤ t ≤ 1, for some real number γ > 0 and some norm ‖ · ‖
on Rd . Then,

‖f(x) − x◦‖ ≤ γ ‖x − x◦‖. (117)
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Proofs of Facts 1 and 2 can be found, e.g., in Horn and Johnson (2012), and proof
of Fact 3 in Rudin (1976, p. 218). For completeness, proofs of these facts that follow
closely unpublished notes by Samuel Karlin (SIAM REVIEW, Chapter 1, Section 2,
Stanford University, 1981) are provided in Supplementary Material. We are now in a
position to prove Lemma 1.

Since the non-negative d × d matrix A(τ ) is primitive, then the Perron–Frobenius
theory (see, e.g., Appendix in Karlin and Taylor 1975, or Lancaster and Tismenetsky
1985) ascertains that there exist λ(τ) > 0 and positive d-dimensional vectors v(τ )

and u(τ ) such that

v(τ )T A(τ ) = λ(τ)v(τ )T , A(τ )u(τ ) = λ(τ)u(τ ),

v(τ )T u(τ ) = 1 and 1T u(τ ) = 1. (118)

Notice that A(τ ), λ(τ), v(τ ) and u(τ ) all depend on N . Moreover, as N → ∞,

A(τ ) → A (119)

uniformly with respect to τ ≥ 0 using any induced matrix norm (see Fact 1). Then by
continuity, as N → ∞,

λ(τ) → 1, v(τ )T → vT and u(τ ) → u (120)

uniformly with respect to τ ≥ 0 using the same norm.
Note that

x(τ + 1) = fτ (x(τ )), (121)

for τ ≥ 0, where

fτ (x) = A(τ )x
1T A(τ )x

, (122)

for all x ∈ �. This transformation is such that

fτ (u(τ )) = A(τ )u(τ )

1T A(τ )u(τ )
= λ(τ)u(τ )

λ(τ)1T u(τ )
= u(τ ). (123)

For x = u(τ ) + ξ ∈ �, we have

fτ (u(τ ) + ξ) = A(τ )u(τ ) + A(τ )ξ

1T A(τ )u(τ ) + 1T A(τ )ξ

= λ(τ)u(τ ) + A(τ )ξ

λ(τ) + 1T A(τ )ξ

= u(τ ) +
(
A(τ ) − u(τ )1T A(τ )

λ(τ)

)

ξ + o(|ξ |). (124)
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Therefore, the gradient matrix of fτ evaluated at u(τ ) is given by

f ′
τ (u(τ )) = A(τ ) − u(τ )1T A(τ )

λ(τ)
. (125)

Moreover,

f ′
τ (u(τ )) → A − u1T A = f ′(u), (126)

uniformly with respect to τ ≥ 0 as N → ∞, where f ′(u) is the gradient matrix of the
transformation

f(x) = Ax
1T Ax

, (127)

evaluated at u.
Note that

f ′
τ (x) = A(τ )

1T A(τ )x
− A(τ )x1T A(τ )

(1T A(τ )x)2
(128)

and

f ′
τ (x) → A

1T Ax
− Ax1T A

(1T Ax)2
= f ′(x) (129)

uniformly with respect to τ ≥ 0 and x ∈ � as N → ∞. Note also that the matrix
f ′(u) admits 0 as an eigenvalue with associated left and right eigenvectors 1 and u,
respectively. As a matter of fact,

1T
(
A − u1T A

)
= 1T A − 1T u1T A = 1T A − 1T A = 0 (130)

and
(
A − u1T A

)
u = Au − u1T Au = u − u = 0, (131)

where 0 denotes a d-dimensional vector of all zeros. The other eigenvalues of f ′(u)

are associated with left eigenvectors z ∈ C
d which are also left eigenvectors of A,

since they must satisfy zT u = 0. Therefore, they are associated with eigenvalues
of A different from 1, which are necessarily less than 1 in modulus owing to the
Perron–Frobenius theory. Then Fact 2 ascertains that there exist a norm ‖ · ‖ on R

d

and 0 < α < 1 such that

‖f ′(u)x‖ ≤ α‖x‖, (132)

for every x ∈ R
d , which means that ‖f ′(u)‖ ≤ α. By continuity of f ′(x) with respect

to x ∈ � and uniform convergence of f ′
τ (x) as N → ∞, with respect to all τ ≥ 0
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and all x in any compact subset of �, there exist a real number δ0 > 0 and an integer
N0 = N0(δ0) ≥ 1 that depend only on A such that

‖f ′(x) − f ′(u)‖ ≤ 1 − α

4
(133)

and

‖f ′
τ (x) − f ′(x)‖ ≤ 1 − α

4
, (134)

as soon as N ≥ N0 and x ∈ � with ‖x − u‖ ≤ δ0. Under the same conditions, we
have

‖f ′
τ (x)‖ = ‖f ′

τ (x) − f ′(x) + f ′(x) − f ′(u) + f ′(u)‖
≤ ‖f ′

τ (x) − f ′(x)‖ + ‖f ′(x) − f ′(u)‖ + ‖f ′(u)‖
≤ 1 − α

4
+ 1 − α

4
+ α = γ < 1. (135)

On the other hand, for every positive real number δ ≤ δ0, there exist integers
N1 = N1(δ) ≥ N0 and τ1 = τ1(δ) ≥ 1 such that

‖u(τ ) − u‖ ≤ δ(1 − γ )

2
, (136)

∥
∥
∥
∥x(τ1) − Aτ1x(0)

1T Aτ1x(0)

∥
∥
∥
∥ ≤ δ(1 − γ )

4
(137)

and

∥
∥
∥
∥

Aτ1x(0)

1T Aτ1x(0)
− u

∥
∥
∥
∥ ≤ δ(1 − γ )

4
, (138)

as soon as N ≥ N1 and τ ≥ τ1. The last inequality comes from the fact that

Aτ x(0)

1T Aτ x(0)
→ uvT x(0)

1T uvT x(0)
= u, (139)

as τ → ∞, owing to the Perron–Frobenius theory. The second inequality holds by
continuity, since

x(τ1) =
(∏τ1−1

τ=0 A(τ )
)

x(0)

1T
(∏τ1−1

τ=0 A(τ )
)

x(0)
→ Aτ1x(0)

1T Aτ1x(0)
, (140)

as N → ∞ for any fixed integer τ1 ≥ 1. Finally, the fact that
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u(τ ) → u, (141)

uniformly with respect to τ ≥ 0 as N → ∞, entails the first inequality.
Note that (136) implies that

‖u(τ ) + t (x − u(τ )) − u‖ = ‖t (x − u) + (1 − t)(u(τ ) − u)‖
≤ t‖x − u‖ + (1 − t)‖u(τ ) − u‖
≤ tδ + (1 − t)

δ(1 − γ )

2
≤ δ, (142)

for 0 ≤ t ≤ 1, as soon as

‖x − u‖ ≤ δ. (143)

Under the same condition and the inequality δ ≤ δ0, (135) ensures that

‖f ′
τ (u(τ ) + t (x − u(τ )))‖ ≤ γ, (144)

and then Lemma 3 that

‖fτ (x) − u(τ )‖ ≤ γ ‖x − u(τ )‖. (145)

On the other hand, (137) and (138) imply that

‖x(τ1) − u‖ ≤
∥
∥
∥
∥x(τ1) − Aτ1x(0)

1T Aτ1x(0)

∥
∥
∥
∥ +

∥
∥
∥
∥

Aτ1x(0)

1T Aτ1x(0)
− u

∥
∥
∥
∥

≤ δ(1 − γ )

4
+ δ(1 − γ )

4

= δ(1 − γ )

2
≤ δ, (146)

and with (136) that

‖x(τ1) − u(τ1)‖ ≤ ‖x(τ1) − u‖ + ‖u − u(τ1)‖
≤ δ(1 − γ )

2
+ δ(1 − γ )

2
= δ(1 − γ ), (147)

as soon as N ≥ N1.
We will show that

‖x(τ1 + k) − u‖ ≤ δ, (148)
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for all integers k ≥ 0 as soon as N ≥ N1. This will be proved by induction along with

‖x(τ1 + k) − u(τ1 + k)‖ ≤ δ(1 − γ )

k∑

i=0

γ i , (149)

for all integers k ≥ 0 as soon as N ≥ N1. Equations (148) and (149) hold for k = 0
owing to Eqs. (146) and (147). Let us assume that they hold for some integer k ≥ 0.
Then, using (136) and (145) for τ = τ1 + k, x = x(τ1 + k) and fτ (x) = x(τ1 + k + 1)
leads to

‖x(τ1 + k + 1) − u(τ1 + k + 1)‖ ≤ ‖x(τ1 + k + 1) − u(τ1 + k)‖ + ‖u(τ1 + k) − u‖
+ ‖u − u(τ1 + k + 1)‖

≤ γ ‖x(τ1 + k) − u(τ1 + k)‖ + δ(1 − γ )

2

+ δ(1 − γ )

2

≤ δ(1 − γ )

k∑

i=0

γ i+1 + δ(1 − γ )

= δ(1 − γ )

k+1∑

i=0

γ i (150)

and

‖x(τ1 + k + 1) − u‖ ≤ ‖x(τ1 + k + 1) − u(τ1 + k)‖ + ‖u(τ1 + k) − u‖
≤ γ ‖x(τ1 + k) − u(τ1 + k)‖ + δ(1 − γ )

2

≤ δγ (1 − γ )

k∑

i=0

γ i + δ(1 − γ )

≤ δγ + δ(1 − γ )

= δ, (151)

as soon as N ≥ N1. This establishes (148) and (149) for k + 1.
Therefore, we have proved that, for every positive real number δ ≤ δ0, there exist

positive integers N1 = N1(δ) and τ1 = τ1(δ) such that

‖x(τ ) − u‖ ≤ δ (152)

as soon as N ≥ N1 and τ ≥ τ1. For δ > δ0, it suffices to pose N1(δ) = N1(δ0) and
τ1(δ) = τ1(δ0) to conclude.
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6.2 Proof of Lemma 2

The Jordan normal form of the d × d primitive matrix

A(s) = A + sB, (153)

for s close enough to 0, leads to a decomposition in the form

A(s) = (
u(s) P(s)

)
(

λ(s) 0T

0 J (s)

) (
v(s)T

R(s)

)

. (154)

Here,

λ(s) = 1 + ms + o (s) , (155)

is the leading positive eigenvalue of A(s), which is a differentiable function with
respect to s in a neighborhood of 0. Let v(s) and u(s) be the associated positive left
and right eigenvectors, respectively, that satisfy

1T u(s) = 1, v(s)T u(s) = 1. (156)

We use 1 and 0 to denote vectors of all ones and all zeros, respectively. Moreover,
J (s) is a Jordan matrix of size (d − 1) × (d − 1) associated with eigenvalues of A(s)
whose moduli are all less than λ(s) and, by continuity, less than some positive number
strictly smaller than λ(0) = 1 for s small enough. Note that the matrices P(s) and
R(s) of sizes d × (d − 1) and (d − 1) × d, respectively, satisfy

v(s)T P(s) = 0T , R(s)u(s) = 0, R(s)P(s) = I, (157)

where I denotes the (d − 1) × (d − 1) identity matrix.
The above decomposition leads to

A(s)�s−1t�−τ = (
u(s) P(s)

)
(

λ(s)�s−1t�−τ 0T

0 J (s)�s−1t�−τ

)(
v(s)T

R(s)

)

, (158)

for any real number t > 0 and any integer τ ≤ �s−1t�, where

λ(s)�s−1t�−τ =
(
(1 + ms + o (s))s

−1
)s(�s−1t�−τ) → exp{mt} (159)

and

J (s)�s−1t�−τ → 0(d−1)×(d−1), (160)
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as s → 0, with 0(d−1)×(d−1) denoting the null matrix of size (d − 1) × (d − 1).
Therefore,

A(s)�s−1t�−τ → u(0)v(0)T exp{mt}, (161)

as s → 0. This is the case with s = N−1 as N → ∞. Moreover, by continuity,
v(0) = v and u(0) = u are the positive left and right eigenvectors, respectively,
associated with the eigenvalue 1 of A(0) = A that satisfy 1T u = 1 and vT u = 1.

It remains to calculate m which is the derivative of the leading eigenvalue λ(s) of
A(s) evaluated at s = 0. Note that

λ(s) = λ(s)v(s)T u(s) = v(s)T A(s)u(s) = v(s)T (A + sB)u(s). (162)

Therefore,

m = λ′(0) = v(0)T Bu(0) + v′(0)T Au(0) + v(0)T Au′(0)
= vT Bu + v′(0)T u(0) + v(0)T u′(0)
= vT Bu, (163)

owing to (156). This is in agreementwith awell-known result on the leading eigenvalue
of an irreducible aperiodic (primitive) non-negative matrix (see, e.g., Lancaster and
Tismenetsky 1985, Section 11.6, or Cushing 1998, p. 20), and completes the proof of
Lemma 2.

6.3 Proof of Lemma 3

From (48) and (53), we have

Ci (t) = lim
N→∞ ci (�Nt� + 1) =

(

lim
N→∞ Ai (�Nt�)

)(

lim
N→∞ ci (�Nt�)

)

= ACi (t)

(164)

with Ci (t) ∈ R
d+. Then the Perron–Frobenius theory for primitive non-negative matri-

ces ensures that

Ci (t) = vT Ci (t)u. (165)

Owing to (51), (53) and (54), it remains to show that

vT ci (τ ) = vT Ci (t) + O(h), (166)

uniformly for N larger than some threshold value N0 and �Nt� ≤ τ ≤ �N (t + h)�.
By the extreme value theorem for continuous functions, there exists a non-negative
non-null d × d matrix B such that
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Bi (z(τ )) ≤ B, (167)

entrywise for all τ ≥ 0. For �Nt� ≤ τ ≤ �N (t + h)�, we have

Aτ−�Nt�ci (�Nt�) ≤
⎛

⎝
τ−1∏

k=�Nt�

(

A + Bi (z(k))
N

)
⎞

⎠ ci (�Nt�)

≤
(

A + B

N

)τ−�Nt�
ci (�Nt�), (168)

where the inequalities hold entrywise, andmultiplyingon the left byvT A�Nh�+2−τ+�Nt�
yields

vT A�Nh�+2ci (�Nt�) ≤ vT A�Nh�+2−τ+�Nt�ci (τ ) ≤ vT
(

A + B

N

)�Nh�+2

ci (�Nt�).
(169)

Therefore,

vT ci (�Nt�) ≤ vT ci (τ ) ≤ vT
(

A + B

N

)�Nh�+2

ci (�Nt�). (170)

Moreover, as N → ∞, Lemma 2 ensures that

vT
(

A + B

N

)�Nh�+2

→ vT uvT exp
{
hvT Bu

}

= vT exp
{
hvT Bu

}
≤ vT

(
1 + hvT Bu

)
(171)

for h > 0 small enough and vT Bu > 0, while

vT ci (�Nt�) → vT Ci (t). (172)

Therefore, for N larger than some threshold value N0 that depends on t > 0 and h > 0
small enough, we have

vT Ci (t)(1 − 2hvT Bu) ≤ vT ci (τ ) ≤ vT Ci (t)(1 + 2hvT Bu), (173)

for �Nt� ≤ τ ≤ �N (t + h)�. This completes the proof of Lemma 3.
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