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Abstract The Cannings exchangeable model for a finite population in discrete
time is extended to incorporate selection. The probability of fixation of a mutant
type is studied under the assumption of weak selection. An exact formula for the
derivative of this probability with respect to the intensity of selection is deduced,
and developed in the case of a single mutant. This formula is expressed in terms
of mean coalescence times under neutrality assuming that the coefficient of
selection for the mutant type has a derivative with respect to the intensity of
selection that takes a polynomial form with respect to the frequency of the
mutant type. An approximation is obtained in the case where this derivative is
a continuous function of the mutant frequency and the population size is large.
This approximation is consistent with a diffusion approximation under moment
conditions on the number of descendants of a single individual in one time step.
Applications to evolutionary game theory in finite populations are presented.

Keywords Exchangeable model · Coalescence times ·
Diffusion approximation · Evolutionary game theory · Fixation probability
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1 Introduction

Recently, one of the major issues in evolutionary game theory has been to
incorporate a finite number of interacting individuals (e.g., [21,22,31] see
also [3,14,24,26,27], for sex ratio evolution, kin selection or frequency-depen-
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dent selection in structured populations). Evolutionarily stable strategies, ESS
[15,16], and related concepts based originally on fitness comparisons or stability
conditions of fixation states in virtually infinite populations are currently revis-
ited on the basis of fixation probabilities when finite populations are considered.
If the population size and the mutation rate are small enough, it is reasonable
to assume that mutants are introduced one at a time into previously fixed pop-
ulations and that successive fixation states determine the course of long-term
evolution (see, for comparison, [12] for long-term evolution in infinite popula-
tions). This raises interest for the exact conditions ensuring the replacement of
one type with another as the result of the combined effects of selective forces
and random genetic drift.

In [13], we have deduced a first-order approximation for the probability of
fixation of a mutant type with respect to the intensity of selection for a wide
variety of frequency-dependent selection models using either exact solutions
for models of the Moran type for populations of any finite size N or diffusion
approximations for models of the Wright–Fisher type for populations of large
size N. When this probability is less than the initial frequency of the mutant type,
then selection opposes the mutant type replacing the wild type, or equivalently,
the wild type is favored against replacement with the mutant type. Of particular
interest, in relation with the ESS concept of a resident strategy uninvadable by
any mutant strategy, is finding a wild type that is favored against replacement
with any mutant type at least when selection is weak enough.

In [13], we have also pointed out a major difference between viability models
and fertility models when selection depends on randomly pairwise interactions
between individuals and the population size is finite. The difference stems from
the fact that the probability distribution of types for two interacting individuals
are not the same in both models. The analysis of the Wright–Fisher model in
the case of fertility selection was only heuristic however, since terms of order
1/N arising from excluding interactions of individuals with themselves were
kept in the drift parameter of the approximating diffusion process, while this
approximation should be valid only in the limit as N goes to infinity.

An interesting aspect of exchangeable models is that they allow us to con-
sider situations more general than the Wright–Fisher model, that is, models in
which the numbers of descendants left by the N individuals of the population in
one time step do not necessarily follow a multinomial distribution. This is the
case, for instance, in a conditional branching process given only that the pop-
ulation size is kept constant (see, e.g., [5, p. 103], [11], and references therein).
This is also the case when the parameters of the multinomial distribution are
themselves random variables. In particular, if these parameters have a constant
mean but a variable variance, then it becomes possible to study the evolution
of the variance in the population. In the case of haploid sex allocation, for
instance, an evolutionary decrease in the variance of the individual strategy in
support of sex ratio homeostasis has been predicted, since only a zero variance
is favored against replacement with any mutant under weak selection [13].

The fixation probability in a Wright–Fisher model with frequency-depen-
dent selection can be studied directly using, e.g., total-positivity arguments, and
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approximated in the case of weak selection applying a first-step analysis and
assuming some regularity conditions on the probability of fixation as a function
of the intensity of selection [8]. The interpretation of the coefficients coming
into play in such first-order approximations in terms of mean coalescence times
as in [25] in a context of a haploid island model is particularly appealing, since
it makes possible an extension of the results to more general settings.

Our first objective in this paper will be to ascertain the validity of the exact
first-order approximation for the probability of fixation of a single mutant in
terms of mean coalescence times in a finite population assuming weak fre-
quency-dependent selection and mild regularity conditions on the transition
probabilities for the frequency of the mutant. Our second objective will be to
study the fixation probability in a more general setting than the Wright–Fisher
model by supposing only that the numbers of descendants left by individuals of
the same type in one time step are exchangeable variables. The selection model
that will be considered can be seen as an extension of the neutral exchangeable
model known as the Cannings model [2]. Therefore, the results obtained on the
fixation probability, as well as conclusions that can be drawn from it, will prove
to be robust in the sense they will apply to a wide range of models.

2 Exchangeable selection model

The Cannings exchangeable model was originally considered under neutrality
[2], but it can be extended to incorporate selection. This can be done as follows.
Consider a population of N genes or individuals, reproducing at discrete times
t = 0, 1, 2, . . .. Assume two types of individuals, A and B. Given k individuals of
type A labelled 1, . . . , k and N − k individuals of type B labelled k + 1, . . . , N at
some current time t, the numbers of descendants left by the different individuals
at the next time t + 1, possibly including some of the individuals at time t still
present in the population at time t + 1, are random variables represented by
z1(x), . . . , zk(x) for the A individuals and zk+1(x), . . . , zN(x) for the B individ-
uals, where x = k/N is the frequency of the A individuals at time t. The key
assumption is that every marginal distribution of (z1(x), . . . , zN(x)) depends
only on the numbers of variables among z1(x), . . . , zk(x) and zk+1(x), . . . , zN(x)
that are present. In other words, the variables z1(x), . . . , zk(x) are exchangeable,
and the same for zk+1(x), . . . , zN(x). This exchangeability assumption defines
the exchangeable selection model.

In particular, the mean of z1(x), . . . , zk(x) is assumed to be the same, suppose
µA(x), and similarly for the mean of zk+1(x), . . . , zN(x), represented by µB(x).
Since

z1(x)+ · · · + zN(x) = N, (1)

we require that

xµA(x)+ (1 − x)µB(x) = 1. (2)
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In the case of neutrality, the variables z1(x),…, zN(x) do not actually depend on
x and are represented by z1, . . . , zN . These variables are all exchangeable with
common mean equal to 1. This is also the case when x = 0 or 1.

In order to allow random drift, the numbers of descendants left by the differ-
ent individuals in one time step are assumed to have some positive variance,
namely σ 2

A(x) > 0 for z1(x), . . . , zk(x) and σ 2
B(x) > 0 for zk+1(x), . . . , zN(x).

Denoting by CovAA(x), CovBB(x) and CovAB(x) the covariances between two
variables of the first set, two variables of the second set and one variable of the
first and one of the second, respectively, we have the relationship

kσ 2
A(x)+ (N − k)σ 2

B(x) = −k(k − 1)CovAA(x)

−(N − k)(N − k − 1)CovBB(x)

−2k(N − k)CovAB(x). (3)

This is a consequence of the exchangeability assumption under the constraint
(1).

Weak selection is modelled by introducing a small positive parameter s, called
the intensity of selection, which is such that the difference between the means
µA(x) and µB(x) for 0 < x < 1, called the coefficient of selection for A against
B, can be expressed as

µA(x)− µB(x) = s(hN(x)+ O(s)), (4)

where O(s) designates a function of order s. Owing to (2), the means µA(x) and
µB(x) for 0 < x < 1 take the form

µA(x) = 1 + s(1 − x)(hN(x)+ O(s)) (5)

and

µB(x) = 1 − sx(hN(x)+ O(s)), (6)

respectively.
The function hN(x), for 0 ≤ x ≤ 1, represents a rate of change in the coeffi-

cient of selection, taken with respect to the intensity of selection and evaluated
at neutrality, that is, with respect to s at s = 0. It does not depend on the intensity
of selection itself, but it may depend on the population size, N, besides being
frequency-dependent. The factor 1 − x in (5) ensures that all terms of order
smaller or equal to s vanish as x goes to 1, which corresponds to a continuity
assumption on the account that µA(1) = 1. Symmetrically, all terms of order
smaller or equal to s vanish in (6) as x goes to 0. Examples of functions hN(x),
most often in a polynomial form, can be found in the literature, e.g., in the
case of frequency-dependent viability or fertility selection or in the case of sex
allocation (see, e.g., [13], and references therein). Some are given in the next
section.
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Under weak selection, the variances σ 2
A(x) and σ 2

B(x) take the form σ 2
N +O(s)

and the covariances CovAA(x), CovBB(x) and CovAB(x) the form −cN+O(s)/N,
respectively, where

cN = σ 2
N

N − 1
, (7)

with σ 2
N > 0, owing to (3) in the case s = 0. The quantity cN corresponds to

the probability that two individuals randomly chosen at a given time have the
same parent, possibly one of the two individuals, one step backward in time
in the absence of selection. It will be assumed later on that σ 2

N is uniformly
bounded with respect to N, which is the case, e.g., for the Moran model and the
Wright–Fisher model, and which ensures that cN converges to 0 as N goes to
infinity.

The frequency of A at time t + 1 is given by

z1(x)+ · · · + zk(x)
N

, (8)

whose expected value is xµA(x) and variance is

kσ 2
A(x)+ k(k − 1)CovAA(x)

N2 . (9)

This variance depends on s and can be written as

vs(x) = x(1 − x)cN + O(s)/N, (10)

where σ 2
N > 0 is the variance in the number of descendants left by a single

individual in one time step under neutrality. On the other hand, the change in
the frequency of A has mean xµA(x)− x, which depends also on s and takes the
form

ms(x) = sx(1 − x)(hN(x)+ O(s)). (11)

The value of the expected change evaluated at s = 0 is

m0(x) = 0 (12)

while the value of its derivative with respect to s, denoted by m′
s(x) and evalu-

ated at s = 0, is

m′
0(x) = x(1 − x)hN(x). (13)

Some illustrative examples follow.
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3 Examples

Let

fA(x) = 1 + suA(x) (14)

and

fB(x) = 1 + suB(x) (15)

be the fitnesses of A and B individuals, respectively, when the frequencies of A
and B in the population are x and 1 − x, respectively. Terms of order o(s) are
ignored in these fitnesses. The functions uA(x) and uB(x) are constant in the case
of frequency-independent selection. They are linear functions of x if they result
from a large number of random pairwise interactions as in linear evolutionary
game theory [15,16], but more generally linear fractional transformations of x
if the interaction rates depend on the types of the interacting individuals [30].
These functions may depend on N. Moreover, we will assume in this section that
they are deterministic, but they may be stochastic as it occurs in studies for sex
ratio homeostasis or in conditional branching processes (see, e.g., [11,13,24].

In a haploid Wright–Fisher model [6,32], time steps correspond to non over-
lapping generations and the parent of every individual in the next generation is
chosen independently of all others with a probability proportional to its fitness.
Therefore, the vector (z1(x), . . . , zk(x), zk+1(x), . . . , zN(x)) for the numbers of
descendants left in the next generation by the Nx individuals of type A and the
N(1 − x) individuals of type B in this order will have a multinomial distribution
of parameters (N; q1, . . . , qk, qk+1, . . . , qN) given by

q1 = · · · = qk = fA(x)

Nf
= 1 + suA(x)

N(1 + su)
(16)

and

qk+1 = · · · = qN = fB(x)

Nf
= 1 + suB(x)

N(1 + su)
, (17)

where

f = xfA(x)+ (1 − x)fB(x) = 1 + s(xuA(x)+ (1 − x)uB(x)) = 1 + su (18)

represents the mean fitness. Then, the difference between the mean numbers
of descendants left by single individuals of types A and B, respectively, is

µA(x)− µB(x) = fA(x)− fB(x)

f
= s(uA(x)− uB(x))

1 + su
, (19)
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which is in the form s(hN(x)+ O(s)), where

hN(x) = uA(x)− uB(x). (20)

Moreover, the variances are

σ 2
A(x) = fA(x)

f

(
1 − fA(x)

Nf

)
(21)

and

σ 2
B(x) = fB(x)

f

(
1 − fB(x)

Nf

)
, (22)

which are in the form σ 2
N + O(s), where

σ 2
N = 1 − 1

N
(23)

is the variance in the number of descendants left in the next generation by a
single individual under neutrality.

In a Moran model [20], generations are overlapping and at each time step
an individual chosen with a probability proportional to its fitness produces an
offspring and this offspring replaces an individual chosen at random among
all individuals but the parent. Then, the numbers of descendants left by the
N individuals at the next time step form a vector (z1(x), . . . , zk(x), zk+1(x),
. . . , zN(x)) which is a permutation of (2, 0, 1, . . . , 1) and whose distribution is
determined by the type of the individual leaving two descendants in one time
step, including the individual itself, and the type of the individual being replaced
and leaving none. Since an individual of type A leaves two descendants in one
time step with probability

P(z1(x) = 2) = fA(x)

Nf
, (24)

one with probability

P(z1(x) = 1) =
(

1 − fA(x)

Nf

)(
1 − 1

N − 1

)
, (25)

and zero otherwise, we find that

µA(x) = 1 − 1
N − 1

+ fA(x)

(N − 1)f
, (26)
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and similarly for µB(x), so that

µA(x)− µB(x) = fA(x)− fB(x)

(N − 1)f
, (27)

from which

hN(x) = uA(x)− uB(x)
N − 1

. (28)

Moreover, ignoring terms of order s, the variances are

σ 2
N = 2

N
. (29)

Notice that the Moran model can be extended by allowing the individual chosen
with a probability proportional to its fitness to produce either Nψ − 1 offspring
with probability N−α or 1 with probability 1 − N−α , which replace the same
number of individuals chosen at random among all individuals but the parent
[4]. The parameter α is positive, while the parameterψ is a proportion such that
Nψ is a positive integer. Then, the vector (z1(x), . . . , zk(x), zk+1(x), . . . , zN(x))
is a permutation of (2, 0, 1, . . . , 1) with probability N−α and a permutation of
(Nψ , 0, . . . , 0, 1, . . . , 1)with 0 appearing Nψ−1 times and 1 appearing N(1−ψ)
times. In such a case, an individual of type A leaves Nψ descendants in one time
step with probability

P(z1(x) = Nψ) = fA(x)

N1+αf
, (30)

two with probability

P(z1(x) = 2) =
(

1 − 1
Nα

)
fA(x)

Nf
, (31)

one with probability

P(z1(x) = 1) =
(

1 − fA(x)

Nf

)(
N1−α(1 − ψ)+ (N − 2)(1 − N−α)

N − 1

)
(32)

and zero otherwise. This leads to

µA(x) = 1 −
(

1
N − 1

− fA(x)

(N − 1)f

)(
1 + Nψ − 2

Nα

)
(33)
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and similarly for µB(x), from which

hN(x) =
(

uA(x)− uB(x)
N − 1

)(
1 + Nψ − 2

Nα

)
. (34)

Moreover, we have

σ 2
N = 2

N
+ Nψ(Nψ − 1)− 2

N1+α (35)

for the variance in the number of descendants left in one time step by a single
individual in the absence of selection. Notice that this variance is not bounded
as N goes to infinity if α < 1.

4 Fixation probability for a mutant type under weak selection

In this section, we consider the fate of a mutant type A in the long run. Suppose
that A is represented k times at t = 0 and let Xt be the frequency of A at times
t = 0, 1, 2, . . .. We have a Markov chain on the states i/N for i = 0, 1, . . . , N,
with initial distribution X0 = k/N and fixation states x = 0 and x = 1, while
all other states are transient. The probability of transition from i/N to j/N in
one time step will depend on the intensity of selection and will be represented
by Pij(s), for i, j = 0, 1, . . . , N. It will be assumed throughout that the transition
probabilities and their derivatives with respect to s, which are supposed to exist,
are continuous at s = 0. The one-step transition matrix P = (

Pij(s)
)

satisfies

PT = P(T), where P(T) = (P(T)ij (s)) represents the T-step transition matrix.
From its initial state k/N, the chain will converge in probability to a random

variable X∞ which takes the value 1 with some probability pN(s) and 0 with the
complementary probability 1 − pN(s), where pN(s) is the probability of fixation
of A as a function of the intensity of selection. Notice that pN(0) = k/N, since
one of the initial individuals will be the ancestor of all the population in the
long run and it will be one chosen at random by symmetry if no selection takes
place.

Being uniformly bounded, the chain will also converge in mean. Therefore,
we have

Es(X∞ − X0) = lim
T→∞ Es(XT − X0), (36)

where Es designates expectation when the intensity of selection is s. Writing

XT − X0 =
T−1∑
t=0

(Xt+1 − Xt), (37)
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the above equation takes the form

Es(X∞ − X0) =
∞∑

t=0

Es(Xt+1 − Xt). (38)

This equation becomes

pN(s)− pN(0) =
∞∑

t=0

Es(ms(Xt)), (39)

using the identity

Es(Xt+1 − Xt) = Es(Es(Xt+1 − Xt|Xt)) (40)

and the fact that the conditional expectation of Xt+1 − Xt given Xt is ms(Xt).
Notice that

Es(ms(Xt)) =
N∑

j=0

ms ( j/N)P(t)kj (s). (41)

Then, differentiating with respect to s in (39) yields (see the second paragraph
below Result 1)

p′
N(s) =

∞∑
t=0

d
ds

Es(ms(Xt)), (42)

where the derivative on the right-hand side can be expressed in the form

E′
s(ms(Xt))+ Es(m′

s(Xt)), (43)

with

E′
s(ms(Xt)) =

N∑
j=0

ms (j/N)
[

d
ds

P(t)kj (s)
]

(44)

and

Es(m′
s(Xt)) =

N∑
j=0

[
d
ds

ms ( j/N)
]

P(t)kj (s). (45)

Finally, evaluating at s = 0 and using (11), we find that

p′
N(0) = E0(m′

0(Xt)), (46)
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where E0 denotes expectation when s = 0. This derivative represents the rate
of change in the probability of fixation of the mutant type A, taken with respect
to the intensity of selection and evaluated at neutrality. It gives the first-order
effect of the intensity of selection on the fixation probability. Appealing to (13),
we have the following approximation under weak selection.

Result 1 In the exchangeable selection model for a population of fixed size N
with a small intensity of selection s and a first-order coefficient of selection for a
mutant type A in the form shN(x), the probability of fixation of the mutant type
A is approximated by

pN(s) = pN(0)+ sp′
N(0)+ o(s), (47)

where pN(0) is the initial frequency of A and

p′
N(0) =

∞∑
t=0

E0(Xt(1 − Xt)hN(Xt)), (48)

with E0 denoting expectation under neutrality.

Result 1 holds for any population size and in this sense it is complemen-
tary to a diffusion approximation for a large population size. Moreover, we
will see later on (Result 4 and Discussion) that it is consistent with a diffusion
approximation when the population size is large and selection very weak under
moment conditions on the number of descendants left in one time step by a
single individual.

The approach and some of the arguments leading to Result 1 can be found in
Rousset [25], but (42) which claims that the derivative of the series in (39) is the
series of the derivatives has to be justified. This will be the case if the series in
(42), or equivalently the derivative of Es(XT) in (36), converges uniformly for s
in a neighborhood of 0. The states being fixed and their number finite, it suffices
to show that this is the case for the derivative of the T-step transition matrix
P(T). A formal proof of this statement under our assumptions is provided in the
Appendix.

5 Fixation probability for a single mutant

In this section, we focus on a mutant type whose initial frequency is 1/N and
we assume that the rate of change in its selection coefficient is in a polynomial
form, namely,

hN(x) = a0 + a1x + · · · + anxn, (49)
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for some n ≥ 0 and some constants a0, . . . , an. Then, the rate of change in its
fixation probability becomes

p′
N(0) =

n∑
i=0

aidi, (50)

where

di =
∞∑

t=0

E0

(
Xi+1

t − Xi+2
t

)
. (51)

Defining ξl = 1 if individual l at time t is of type A and 0 otherwise for l =
1, . . . , N, the frequency of A at time t can be expressed as

Xt = 1
N

N∑
l=1

ξl (52)

and its ith power as

Xi
t = 1

Ni

∑
i1, . . . , iN ≥ 0

i1 + · · · + iN = i

(
i

i1, . . . , iN

)
ξ

i1
1 . . . ξ

iN
N . (53)

The variables ξl being exchangeable when s = 0 and satisfying ξ il
l = ξl if il ≥ 1

and 1 if il = 0, the expected value of Xi
t under neutrality will be

E0(Xi
t ) = 1

Ni

min(i,N)∑
l=1

N[l]SilE0(ξ1 . . . ξl), (54)

where N[l] = N(N − 1) · · · (N − l + 1) and

Sil = 1
l!

∑
r1, . . . , rl ≥ 1

r1 + · · · + rl = i

(
i

r1, · · · , rl

)
. (55)

This is a Stirling number of the second kind (see, e.g., [1]), that is, the number
of ways of partitioning a set of i elements into l nonempty subsets, which can
also be expressed as

Sil =
l∑

k=1

(−1)l−k ki

k!(l − k)! (56)
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using an inclusion–exclusion argument. Moreover, we have

E0(ξ1 . . . ξl) = 1
N

P0(Tl ≤ t), (57)

where P0 represents probability in the neutral model and Tl stands for the coa-
lescence time of l lineages, that is, the number of steps backward in time starting
from l individuals at time t and ending with their most recent common ancestor.
If Tl ≤ t, then this common ancestor and its l descendants at time t are all of
type A with probability 1/N, the frequency of type A at time 0. Otherwise, this
probability is 0. Writing P0(Tl ≤ t) = 1 − P0(Tl > t), we find

E0(Xi
t ) = 1

N
− 1

Ni+1

min(i,N)∑
l=1

N[l]SilP0(Tl > t). (58)

Since
∑∞

t=0 P0(Tl > t) = E0(Tl) and E0(T1) = 0, we get

di =
min(i+2,N)∑

l=2

N[l]
[

Si+2,l

Ni+3 − Si+1,l

Ni+2

]
E0(Tl), (59)

with the convention that Si+1,i+2 = 0. Thus, we have proved the following.

Result 2 In the exchangeable selection model for a population of fixed size N, if
the rate of change in the coefficient of selection for a mutant allele against a wild
type is in the form

hN(x) =
n∑

i=0

aixi, (60)

then the rate of change in the probability of fixation of this allele when represented
once in the population takes the exact form

p′
N(0) =

n∑
i=0

aidi, (61)

where di is given in (59).

Notice that the expected coalescence times in (59) satisfy the formula

E0(Ti) = 1
1 − pii

+
i−1∑
l=2

pil

1 − pii
E0(Tl), (62)
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where

pil =

(
N
l

)
(

N
i

) ∑
r1, . . . , rl ≥ 1

r1 + · · · + rl = i

E0

((
z1
r1

)
· · ·

(
zl
rl

))
(63)

is the probability for i individuals to have l parents one time step back (see, e.g.,
[18]). In particular, we have

E0(T2) = 1
p21

= N − 1
E0(z1(z1 − 1))

= N − 1

σ 2
N

= c−1
N . (64)

The next expected values can be found recursively.

6 Approximation in the case of a large population size

In order to get an approximation in the case of a large population size, we will
make the following assumption.

Assumption A supN E0(zk
1) < ∞ for all k ≥ 2.

Assumption A means that the number of descendants of a single individual
in one time step under neutrality exhibits moments of every order uniformly
bounded with respect to N. In particular, the variance σ 2

N is uniformly bounded
with respect to N. Assumption A holds, e.g., for the Moran model and the
Wright–Fisher model, but not necessarily for models with a highly skewed dis-
tribution for the number of descendants among individuals (see, e.g., [4]).

Under assumption A, the ancestral process starting from l individuals with
c−1

N time steps as the unit of time converges under neutrality to Kingman’s
[10] coalescent as N goes to infinity (see, e.g., [17,29], for more details). As a
consequence, the time to the most recent common ancestor in number of c−1

N
time steps, that is, the scaled coalescence time τl = cNTl, has a mean under
neutrality E0(τl) = cNE0(Tl)which converges to 2(1−1/l) as N goes to infinity.
Therefore, we have

lim
N→∞ σ

2
Ndi = 2

(i + 1)(i + 2)
. (65)

This yields the following approximation.

Result 3 If the population size N is large and Assumption A holds, then the rate
of change in the probability of fixation of a single mutant in Result 2 reduces to
the approximation
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p′
N(0) ≈

n∑
i=0

2aiσ
−2
N

(i + 1)(i + 2)
, (66)

where σ 2
N is the variance in the number of descendants of a single individual in

one time step under neutrality.

Now, let us consider any continuous function hN(x), for 0 ≤ x ≤ 1, as rate of
change in the selection coefficient for the mutant allele. Owing to Weierstrass
theorem, there exists a sequence of polynomials that converges uniformly to
hN(x), that is, given any ε > 0, there exists a polynomial

gN(x) =
n∑

i=0

aixi (67)

such that

|hN(x)− gN(x)| < ε, (68)

for 0 ≤ x ≤ 1. Then, we have

∣∣∣∣∣
∞∑

t=0

E0(Xt(1 − Xt)(hN(Xt)− gN(Xt)))

∣∣∣∣∣ ≤ εd0, (69)

where d0 is defined in (51) and is such that σ 2
Nd0 tends to 1 as N tends to infinity

owing to (65). On the other hand, Result 3 ensures that

∞∑
t=0

E0(Xt(1 − Xt)gN(Xt)) ≈
n∑

i=0

2aiσ
−2
N

(i + 1)(i + 2)
, (70)

if N is large enough and Assumption A holds, which can be written in the form

∞∑
t=0

E0(Xt(1 − Xt)gN(Xt)) ≈ 2σ−2
N

1∫
0

y∫
0

gN(x)dx dy. (71)

Finally, using the fact that

∣∣∣∣∣∣
1∫

0

y∫
0

hN(x)dx dy −
1∫

0

y∫
0

gN(x)dx dy

∣∣∣∣∣∣ ≤
1∫

0

y∫
0

|hN(x)− gN(x)| dx dy ≤ ε

2
, (72)
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we find the approximation

∣∣∣∣∣∣p
′
N(0)− 2σ−2

N

1∫
0

y∫
0

hN(x)dx dy

∣∣∣∣∣∣ ≈ 2εσ−2
N . (73)

Therefore, we have established the following.

Result 4 If the rate of change in the coefficient of selection for a mutant allele
in the exchangeable selection model for a population of large size N under
Assumption A, represented by hN(x), is continuous for 0 ≤ x ≤ 1, then we have
the approximation

p′
N(0) ≈ 2σ−2

N

1∫
0

y∫
0

hN(x)dx dy (74)

for the rate of change in the probability of fixation of this allele when represented
once in the population.

7 Discussion

Introducing selection into the Cannings exchangeable model, we have studied
the rate of change in the fixation probability for a mutant type, more precisely,
the derivative of the probability for the mutant type to become fixed in the
population, the derivative being taken with respect to the intensity of selection,
represented by s, and evaluated at s = 0. This rate has been obtained rigou-
rously assuming mild regularity conditions on the transition probabilities for
the type frequencies under weak selection. Moreover, it has been expressed
exactly in terms of mean coalescence times under neutrality in the case of a
single mutant in a population of fixed size N whose coefficient of selection has
a rate of change in a polynomial form with respect to the type frequencies.
This rate, denoted by hN(x) where x is the current frequency of the mutant
type, is defined as the derivative of the difference between the mean number
of descendants from one mutant and the mean number from one non mutant
in one time step, again with respect to s and evaluated at s = 0.

In a haploid Wright–Fisher model with numbers of descendants left by the
individuals of the population in one time step given by a multinomial vec-
tor (z1(x), . . . , zN(x)) whose parameters are determined by fertility differences
resulting from pairwise interactions between parents having additive effects
with intensity in the form s = γ /(N − 1), we found [13]

hN(x) = a0 + a1x, (75)
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where

a0 = (pA − pB)
TMpB − pT

AMpA

N
+ pT

BMpB

N
(76)

and

a1 = (pA − pB)
TM(pA − pB). (77)

Here, M is a game matrix, while pA and pB are frequency vectors that represent
mixed strategies used by the individuals of the mutant type A and the individ-
uals of the wild type B, respectively. On the other hand, the mean coalescence
times in a exact neutral Wright–Fisher model can be calculated directly. We find
E0(T2) = N and

E0(T3) = N(4N − 3)
(3N − 2)

, (78)

from which (55) and (59) yield

d0 = N − 1
N

(79)

and

d1 = N − 1
3N − 2

. (80)

Finally, Result 2 gives

pN

(
γ

N − 1

)
= 1

N
+ γ

N

(
a0 + N

(3N − 2)
a1

)
+ o

( γ
N

)
(81)

as approximation for the probability of fixation of a single mutant A under
weak selection. This is in agreement with the heuristic diffusion approximation
in [13] if N is large and the direct first-step analysis in [8] if we set w = γ /N.

The corresponding Moran model with the vector (z1(x), . . . , zN(x)) being a
permutation of (2, 0, 1, . . . , 1) has hN(x)/(N − 1)with hN(x) given in (75) as rate
of change in the selection coefficient and E0(Tl) = N(N − 1)(1 − 1/l) for l ≥ 2
as mean coalescence times. We find

d0 = (N − 1)2

2N
(82)

and

d1 = (N − 1)2(N + 1)
6N2 , (83)
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from which we deduce the approximation

pN

(
γ

N − 1

)
= 1

N
+ γ

2N

(
a0 + (N + 1)

3N
a1

)
+ o

( γ
N

)
(84)

for the probability of fixation of a single mutant A under weak selection, which
is close to (81) if N is large and γ is replaced with 2γ . This factor 2 differentiating
the Wright–Fisher model and the Moran model is familiar (see, e.g., [5, p. 121]).

In a general exchangeable model, E0(T2) = c−1
N and the mean coalescence

times E0(Tl) for l ≥ 3 can be found recursively. If the rate of change in the
selection coefficient is constant and given by a0, then the rate of change in the
fixation probability is a0d0, where

d0 = (N − 1)2

N2σ 2
N

. (85)

A model of this kind for the evolution of the variance of the sex ratio with σ 2
N

converging to 1 as N goes to infinity was studied by a diffusion approximation
in [13].

If the rate of change in the selection coefficient is proportional to a0 + a1x
with a0 and a1 given by (76) and (77), respectively, in the context of a linear
game, then the rate of change in the fixation probability will be proportional to

a0d0+a1d1 = d0(pA−pB)
TM̃pB+

(
Nd1 − d0

N − 2

)
(pA−pB)

TM̃(pA − pB), (86)

where

M̃ = M − 1
N

(
M + MT

)
. (87)

If a0d0 +a1d1 < 0, then weak selection opposes A replacing B, in the sense that
the probability of fixation of a single mutant A, expressed as pN(s), is less than
the initial frequency of A, given by 1/N, when the selection intensity s is small
enough. If Nd1 > d0, this is the case for every pA �= pB close enough to pB if
and only if for every pA �= pB we have

(pA − pB)
TM̃pB ≤ 0 (88)

and, in case of equality,

(pA − pB)
TM̃(pA − pB) < 0. (89)

This means that, ignoring degeneracies, a necessary and sufficient condition for
weak selection opposing pA replacing pB for every pA �= pB close enough to
pB is that pB is an ESS for the game matrix M̃ [15,16]. Notice that this does not
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preclude weak selection favoring pA replacing an ESS pB if pA is far enough
from pB.

In the case of two pure strategies pA = (1, 0) and pB = (0, 1) for a 2×2 game
matrix

M =
(

a b
c d

)
, (90)

for instance, with a > c and d > b, which means that pA and pB are the best
replies to themselves, weak selection favors A replacing B if a0d0 + a1d1 > 0.
This condition is equivalent to

d − b + a+d
N

a − b − c + d
<

d1

d0
. (91)

The left-hand member of this inequality as N goes to infinity corresponds to
the unstable equilibrium frequency of the pure strategy pA for the replicator
dynamics in an infinite population (see, e.g., [7, p. 147]). The right-hand member
reduces to 1/3 in the limit as long as one remains in the domain of application
of Kingman’s [10] coalescent. This generalizes the 1/3-law originally proposed
by Nowak et al. [21] for the Moran model to a larger class of models. (See
also [8], for the Wright–Fisher model.) In general however, the ratio d1/d0 may
converge to a different limit.

The approximation for the rate of change in the probability of fixation of
a single mutant in a large population given in Result 3 strongly depends on
Assumption A that the number of descendants left by a single individual in
one time step under neutrality has bounded moments as N goes to infinity. If
Assumption A does not hold, then the ancestral process with c−1

N time steps
as the unit of time may still converge as N goes to infinity, but to a more
general coalescent process which admits multiple mergers as the �-coalescent
[19,23,28]. This is the case for the extended Moran model presented in the
example section if α ≤ 2 [4]. In such a case, the limit of σ 2

Ndi may still exist, but
it will generally lead to a different approximation.

For a large population under Assumption A and for any continuous rate of
change in the coefficient of selection hN(x), we have deduced the approximation

pN(s) ≈ 1
N

+ 2sσ−2
N

1∫
0

y∫
0

hN(x)dx dy (92)

for the probability of fixation of a single mutant under weak selection. This
approximation neglects terms of order s2, uniformly with respect to N, and terms
of the form so(1) where o(1) tends to 0 as N goes to infinity. It makes sense if s
is small compared to 1/N when N is large. This agrees with a diffusion approx-
imation if we take c−1

N time steps as the unit of time and assume γ = s(N − 1)
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small enough for N large enough. Then, the drift and diffusion parameters of
the diffusion process, a(x) and b(x), are approximated by γ x(1 − x)σ−2

N hN(x)
and x(1 − x), respectively, and the fixation probability by (see, e.g., [5, p. 140],
and references therein)

pN(s) =
∫ 1/N

0 ψ(y)dy∫ 1
0 ψ(y)dy

, (93)

where

ψ(y) = exp

⎧⎨
⎩−2

y∫
0

a(x)
b(x)

dx

⎫⎬
⎭ . (94)

Using the approximation

ψ(y) ≈ 1 − 2γ σ−2
N

y∫
0

hN(x)dx, (95)

we find

pN(s) ≈ 1
N

+ 2
(

N − 1
N

)
sσ−2

N

1∫
0

y∫
0

hN(x)dx dy (96)

as approximation for the fixation probability of a single mutant, in agreement
with (92) for N large enough. Notice that this approximation makes sense only
if s is much smaller than 1/N, the value of pN(0), and this is consistent with
γ small. Moreover, the diffusion approximation requires that σ−2

N hN(x) con-
verges uniformly as N goes to infinity besides other conditions on higher-order
moments for the change of the mutant frequency (see, e.g., [9, Chap. 15]). These
conditions are satisfied, e.g., for the Moran model and the Wright–Fisher model.
If Assumption A does not hold however, a diffusion approximation may not be
available.
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Appendix

We want to prove that the derivative of the T-step transition matrix, that is,

dP(T)

ds
=
(

d
ds

P(T)ij (s)
)

, (97)
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converges uniformly for s in a neighborhood of 0 as T → ∞. Since P(T) = PT ,
where P represents the one-step transition matrix, we have

dP(T)

ds
=

T−1∑
t=0

Pt dP
ds

PT−t−1. (98)

Since 0 and 1 are absorbing states, it follows that the transition matrix P can be
written in the form

P =
⎡
⎣1 0 0

x A y
0 0 1

⎤
⎦ , (99)

where 0 denotes a zero row vector of dimension N − 1, while x and y are two
column vectors of dimension N − 1 and A is a square matrix of order N − 1.
Thus, a straightforward calculation leads to the expression

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

(
S(T)1

dx
ds

+ S(T)3 x
)

S(T)2

(
S(T)1

dy
ds

+ S(T)3 y
)

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(100)

for the derivative (98), where

S(T)1 =
T−1∑
t=0

At, (101)

S(T)2 =
T−1∑
t=0

At dA
ds

AT−t−1, (102)

S(T)3 =
T−1∑
t=0

At dA
ds

⎛
⎝T−t−1∑

k=0

Ak

⎞
⎠ . (103)

These are all square matrices of order N − 1. Using the infinite norm

‖x‖ = max
i=1,...,N−1

|xi|, (104)

for a vector x = (x1, . . . , xN−1), the associated norm for a square matrix A =
(Aij) of order N − 1 is

‖A‖ = sup
x �=0

‖Ax‖
‖x‖ = max

i=1,...,N−1

N−1∑
j=1

|Aij|. (105)
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This norm has the property that

‖AB‖ ≤ ‖A‖‖B‖, (106)

for two square matrices A and B of order N − 1.
Since P(0) is the transition matrix for a standard Cannings exchangeable

model, its eigenvalues in decreasing order, denoted by λ0 ≥ λ1 ≥ λ2 ≥ λ3 ≥
· · · ≥ λN , satisfy 1 = λ0 = λ1 > λ2 = 1 − cN ≥ λ3 · · · ≥ λN ≥ 0 ([2], see,
e.g., [5]). Hence, the eigenvalues of A(0), namely λ2 ≥ λ3 ≥ · · · ≥ λN , are
all strictly less than 1 in absolute value. Consequently, the matrix I − A(0) is
invertible and

∥∥A(0)T
∥∥ converges to 0 as T goes to infinity. Therefore, we have

that
∥∥(I − A(0))−1

∥∥ is finite and

∥∥∥AT0(0)
∥∥∥ = max

i=1,...,N−1

N−1∑
j=1

P(T0)
ij (0) < 1, (107)

for some T0 ≥ 1. Assuming that A(s) and dA(s)/ds are continuous at s = 0,
we can find some neighbourhood V of s = 0 in which

∥∥(I − A(s))−1
∥∥ and

‖dA(s)/ds‖ are uniformly bounded and
∥∥∥AT0(s)

∥∥∥ = φ < 1. (108)

Moreover, we have always ‖A(s)‖ ≤ 1. Writing t ≥ 1 in the form t = λT0 + k,
where λ ≥ 0 and 0 ≤ k ≤ T0 − 1, it follows from (106) and (108) that

∥∥At(s)
∥∥ ≤

∥∥∥AT0(s)
∥∥∥λ ‖A(s)‖k ≤ φλ (109)

and

∞∑
t=0

∥∥At(s)
∥∥ ≤ T0

∞∑
λ=0

φλ = T0

1 − φ
, (110)

for all s in V. On the other hand, we have

S(T)1 − (I − A)−1 = (I − A)−1(−AT), (111)

from which ∥∥∥S(T)1 − (I − A)−1
∥∥∥ ≤

∥∥∥(I − A)−1
∥∥∥
∥∥∥AT

∥∥∥ , (112)

for all T ≥ 1. Moreover, if T ≥ 2t0 + 1, then

∥∥∥S(T)2

∥∥∥ ≤ 2
∥∥At0

∥∥ ∥∥∥∥dA
ds

∥∥∥∥
∑
t≥0

∥∥At∥∥ , (113)
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which is obtained from the expression

S(T)2 =
t0−1∑
t=0

At dA
ds

AT−t−1 +
T−1∑
t=t0

At dA
ds

AT−t−1. (114)

Finally, one can write

S(T)3 = S(T)1
dA
ds
(I − A)−1 − S(T)2 A(I − A)−1. (115)

Combining (112), (113) and (115) with (109) and (110), we conclude that the
derivative (98) converges uniformly in V as T goes to infinity and

lim
T→∞

dP(T)

ds
=
⎡
⎣ 0 0 0

u O v
0 0 0

⎤
⎦ , (116)

where O denotes a zero square matrix of order N − 1, while

u = (I − A)−1 dx
ds

+ (I − A)−1 dA
ds
(I − A)−1x

and

v = (I − A)−1 dy
ds

+ (I − A)−1 dA
ds
(I − A)−1y.
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