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ABSTRACTWe use1 the ancestral influence graph (AIG) for a two-locus, two-allele selection model in the limit of a large population size
to obtain an analytic approximation for the probability of ultimate fixation of a single mutant allele A. We assume that this new mutant
is introduced at a given locus into a finite population in which a previous mutant allele B is already segregating with a wild type at
another linked locus. We deduce that the fixation probability increases as the recombination rate increases if allele A is either in positive
epistatic interaction with B and allele B is beneficial or in no epistatic interaction with B and then allele A itself is beneficial. This holds at
least as long as the recombination fraction and the selection intensity are small enough and the population size is large enough. In
particular this confirms the Hill–Robertson effect, which predicts that recombination renders more likely the ultimate fixation of
beneficial mutants at different loci in a population in the presence of random genetic drift even in the absence of epistasis. More
importantly, we show that this is true from weak negative epistasis to positive epistasis, at least under weak selection. In the case of
deleterious mutants, the fixation probability decreases as the recombination rate increases. This supports Muller’s ratchet mechanism
to explain the accumulation of deleterious mutants in a population lacking recombination.

THE Hill–Robertson (HR) effect (Hill and Robertson
1966) is often mentioned as one of the main arguments

in favor of the evolution of recombination. In short, it pre-
dicts that beneficial mutant alleles arising at different loci in
a finite population are more likely to fix in the population as
the recombination rate increases even when selection acts
independently upon the loci.

Since the early works of Fisher (1930) and Muller
(1932), it is generally believed that an evolutionary advan-
tage of recombination is to bring together beneficial mutant
alleles arising at different loci. Accordingly the effect of re-
combination should be to increase the rate of evolution of
the population (Crow and Kimura 1965). However, it has
been shown that recombination has no effect on this rate in
an infinite population if there is initial linkage equilibrium
and absence of epistasis so that linkage equilibrium is main-
tained thereafter in the population (Felsenstein 1965; May-
nard Smith 1968).

If recombination can have an effect on the rate of
evolution only by breaking down linkage disequilibrium in

absolute value, then the effect should be to increase this rate
only when linkage disequilibrium in the population is
negative (NLD). In the case of a two-locus model, this
happens when the frequency of the double mutant is strictly
smaller than the product of the frequencies of the mutant
alleles. This situation is arguably likely to happen in the
view that beneficial mutations are very rare (Crow and
Kimura 1969).

On the other hand, NLD could be produced by negative
epistasis (NE), with the double mutant being less fit than
what it would be under independent effects of the mutant
alleles. Then the double mutant would die more often than
is expected with mutant alleles acting independently,
leaving NLD in the population. In the opposite case of
positive epistasis (PE), Eshel and Feldman (1970) showed
that the frequency of the double mutant in an infinite pop-
ulation is always larger in an asexual population than in
a population with recombination. This suggests that NE
rather than PE could be advantageous for the evolution of
recombination.

In taking account of a finite population size, Bodmer
(1970) considered the expected time until the first forma-
tion of a double mutant from two initial single mutants. He
concluded that recombination would have a greater advan-
tage in a small population than in a large one. Karlin (1973)
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showed that this expected time, without selection effects,
was indeed a decreasing function of the recombination rate
r. But he showed also that the expected time until the total
fixation of the double mutant was an increasing function of
r. In other words, increasing recombination might be advan-
tageous in speeding the time until the first formation of the
double mutant, but disadvantageous by breaking apart the
favored gamete type once formed.

Summing first-order terms for expected changes in gene
frequencies in a large finite population under weak selection
with additive gene action, which corresponds to an absence
of epistasis (AE), Hill and Robertson (1966) deduced that
the probability of fixation of an allele A initially in NLD with
a beneficial allele B at another tightly linked locus increases
with the recombination fraction between the two loci. The
effects of linkage disequilibrium and epistasis on the proba-
bility of fixation of gametes and alleles in a finite population
under the assumption of weak selection were further stud-
ied by diffusion approximations in the limit of a large pop-
ulation size (Ohta 1968).

In the case of initial linkage equilibrium (LE) in a finite
population, first-order approximations fail to detect the
effect of linkage on the fixation probability. Higher-order
effects in the absence of epistasis were first exhibited by
simulations (Hill and Robertson 1966).

In a finite population initially in LE, genetic drift creates
random instances of linkage disequilibrium. Although ran-
dom drift can generate both positive and negative disequi-
libria without any a priori bias on average, selection dispels
positive linkage disequilibrium (PLD) more efficiently than
NLD even in the absence of epistasis, so that the average
linkage disequilibrium becomes negative. As shown by sim-
ulations and some analytical arguments (Hill and Robertson
1966; see also Barton and Otto 2005), this leads to an av-
erage accumulation of NLD. As a consequence, responses to
selection at different loci are expected to interfere with each
other, even in the absence of gene interaction. This is known
as the HR effect. It is by reducing the interference caused by
the randomly generated linkage disequilibrium that an in-
crease in the recombination rate raises the rate of fixation of
favorable mutants.

The relationship between the HR effect and the Fisher–
Muller theory for the evolutionary advantage of recombina-
tion was pointed out by Felsenstein (1974). Moreover, it was
noted that Muller’s ratchet mechanism (Muller 1964) for
the accumulation of deleterious mutants in the absence of
recombination, which is formally equivalent to the accumu-
lation of advantageous mutants in the presence of recombi-
nation, can be explained by the HR effect.

The theory of evolution at a selectively neutral modifier
locus that controls the recombination fraction between two
major loci that are under selection in an infinite population
was developed by Feldman et al. (1980). If the major loci
are in linkage disequilibrium at a balance between selection
against deleterious alleles and mutation toward them, then
a mutation increasing recombination succeeds if the linkage

disequilibrium is negative, which occurs when epistasis is
negative, and the modifier locus is sufficiently tightly linked
to the major loci. If the modifier locus is loosely linked, NE
has to be weak enough (Otto and Feldman 1997). A similar
conclusion has been reached for sweeps of beneficial alleles
(Barton 1995a). However, including spatial heterogeneity
extends the range of epistasis over which recombination
can be favored, from strong NE to PE depending on envi-
ronmental circumstances (Lenormand and Otto 2000).

On the other hand, Feldman et al. (1980) also showed
that, if the major loci are at a stable equilibrium in linkage
disequilibrium under selection and recombination, then
a mutation at the modifier locus increases in frequency
when rare if and only if it decreases the recombination frac-
tion. This is part of a general reduction principle for genetic
modifiers in an infinite population in a constant environ-
ment (Feldman and Liberman 1986).

It has been argued that a modifier allele that increases
the recombination rate would be promoted in a finite
population due to its role in reducing the negative effect
of poor genetic backgrounds on the probability of fixation of
favorable mutants, at least in the absence of epistasis. This
has been shown by applying a branching process to mutant
lines in an infinite population with deterministic changes in
the frequencies of the genetic backgrounds (Barton 1995b;
Otto and Barton 1997). The same approach has been used to
study the probability that both beneficial mutants fix and the
analysis of this probability has been refined to deal with the
troublesome case where the second mutant is more benefi-
cial than the first (Yu and Etheridge 2010).

Simulations have indicated that this is true across a broad
range of epistatic interactions, from weak negative epistasis
to positive epistasis, provided that the population size is
small enough (Otto and Barton 2001). This suggests that the
HR effect overwhelms the influence of epistasis on LD over
a wide range of epistasis values.

More recently, a perturbation method to track fluctua-
tions in linkage disequilibrium during the spread of benefi-
cial alleles and to measure the impact on a modifier allele of
recombination has been proposed (Barton and Otto 2005).
The method consists of considering only the first and second
moments of random sampling effects on the deterministic
dynamics for the allele frequencies and linkage disequilib-
rium in an infinite population.

A different perturbation technique to approximate the
probability of ultimate fixation of an allele in a multilocus
setting assumes small selection effects at different loci in
a population of fixed finite size (Lehman and Rousset 2009).
This is an extension of a direct Markov chain approach for
one-locus models based on expected changes in allele fre-
quencies in one time step or one generation (Rousset 2003;
Lessard and Ladret 2007; Lessard and Lahaie 2009). Then
the first-order effect of selection can be expressed in terms of
expected times that lineages of sampled genes take to merge
backward in time, under neutrality. The calculation of these
times for one-locus models in the limit of a large population
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size makes use of the coalescent (Kingman 1982) and its
extension to incorporate multiple mergers in the case of
highly skewed reproduction schemes (Pitman 1999; Sagitov
1999; Möhle and Sagitov 2001).

In the case of multilocus selection models with a Wright–
Fisher reproduction scheme allowing for recombination in
a population of fixed finite size, Lehman and Rousset (2009)
considered Taylor expansions of the fixation probability with
respect to the intensity of selection. They deduced exact
linear recurrence systems of equations for gamete frequen-
cies in sampled individuals backward in time under neutral-
ity to compute the coefficients. Advanced matrix theory was
used to interpret these coefficients in terms of mean sojourn
times in the backward neutral process. However, a first-or-
der expansion of the fixation probability with respect to the
intensity of selection is not sufficient to detect the HR effect
in a two-locus model in the absence of epistasis. Actually,
a third-order expansion is necessary. In this case, the coef-
ficients of the approximation become difficult to interpret.

Our objective in this article is to consider an ancestral
recombination–selection process to deduce an analytic ap-
proximation for the probability of ultimate fixation of an
allele in a finite but large population under weak selection
and tight linkage. The allele is assumed to be a mutant type
A introduced at a given locus into the population in which
a previous mutant type B is already segregating with a wild
type at another linked locus. Exact conditions for a small
increase in the recombination rate to increase the probabil-
ity of ultimate fixation of a single A are addressed.

We focus on a discrete-time two-locus selection model
with a Moran reproduction scheme (Moran 1958). We con-
sider the ancestral recombination–selection graph for sam-
pled gametes in the limit of a large population size, which is
known as the ancestral influence graph (AIG) (Donnelly and
Kurtz 1999). The AIG provides a supragenealogy for a sam-
ple of individuals at linked, nonneutral loci in a limiting
Fleming–Viot measure-valued diffusion process with selec-
tion and recombination. It is a supragenealogy in the sense
that the true genealogy of the sample is embedded into it. It
combines the ancestral recombination graph (ARG) (Grif-
fiths and Marjoram 1996, 1997) and the ancestral selection
graph (ASG) (Krone and Neuhauser 1997; Neuhauser and
Krone 1997), extending the coalescent (Kingman 1982) to
include both recombination and selection. The ARG and
ASG, given the sample composition, have been widely used
in likelihood methods to estimate the recombination rate or
detect recombination hotspots (e.g., McVean et al. 2002;
Stephens and Donnelly 2003; Fearnhead et al. 2004; Wake-
ley and Sargsyan 2009) and to locate disease genes from
marker loci (e.g., Hudson and Kaplan 1988; Fearnhead
2003; Larribe and Lessard 2008; Larribe and Fearnhead
2011).

We make use of a discrete-time Moran model for
mortality selection determined at two loci in a finite haploid
population to ascertain the analysis. After recalling the
definitions and assumptions, the probability of ultimate

fixation of an allele is expressed in terms of sums of
expected sample frequencies, which correspond to expected
times with given ordered random samples. Then the
ancestral graphs obtained by tracing the genealogy of an
ordered random sample through coalescence, recombina-
tion, or selection events backward in time, whose limit as
the population size increases is an AIG, are described. These
graphs are used to express the expected times with ordered
random samples of given types. It is shown that an
approximation of any order of the fixation probability with
respect to the population-scaled recombination and selec-
tion parameters in the limit of a large population size can be
obtained by considering ancestral graphs with enough
recombination or selection events. Finally this is applied to
directional selection with either beneficial mutants or
deleterious mutants, in epistatic interaction or in the
absence of interaction, by considering one recombination
event and one or two selection events to detect the effect of
recombination.

It is expected that the results are valid in the domain of
attraction of the Fleming–Viot process with recombination
and selection in the same way that a wide class of Cannings
exchangeable models including the Moran model and the
Wright–Fisher model fall in the domain of attraction of the
Kingman coalescent (Möhle and Sagitov 2001).

Definitions and Model

Suppose a population of finite size N distributed over N
distinct sites, so that each site is occupied by one and only
one individual. Each individual is one of four types, AB, Ab,
aB, or ab, with respect to two loci with alleles A, a segregat-
ing at locus 1 and B, b at locus 2.

Reproduction is assumed to follow a discrete-time Moran
model. At each time step t $ 0, two individuals are sampled
at random in the population and they produce an offspring.
Random sampling of the parents is assumed to take place
with replacement so that selfing is permitted and then
occurs with probability N21.

With respect to the two loci, the offspring produced
is either an exact copy of one of its parents, with probability
1 – r, or a recombinant, with probability r. This probability of
recombination is inversely proportional to the population
size, so that r = rN21, where r represents a population-
scaled recombination fraction. Weak recombination is mod-
eled by keeping r constant as N / N.

On the other hand, one individual is chosen at random to
be replaced by the offspring. Replacement actually occurs
with some probability that depends on the type of the
individual, called its mortality. It is given by 1 – cABs, 1 – cAbs,
1 – caBs, or 1 – cabs for an individual of type AB, Ab, aB, or ab,
respectively (see Figure 1). These can be interpreted as
probabilities of dying. If replacement does not occur, then
the offspring is eliminated and there is no change in the
population during the corresponding time step.
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Here, the parameters 0 # cAB, cAb, caB, cab # 1 represent
coefficients of selection with respect to an intensity of selec-
tion 0 , s , 1. They can be viewed as viability parameters.
Neutrality corresponds to s = 0.

The intensity of selection is expressed in the form s =
sN21, where N is the population size. The parameter s

stands for a population-scaled intensity of selection. Weak
selection is modeled by keeping s constant as N / N.

Alleles A and B are mutant types, while alleles a and b are
wild types. The mutant alleles A and B are advantageous
when each one reduces the mortality of its carrier compared
to what it would be without these alleles. This is the case if
the coefficients of selection satisfy the inequalities

cAB . maxðcAb;  caBÞ$minðcAb;  caBÞ . cab: (1)

On the other hand, if we have

cAB , minðcAb;  caBÞ#maxðcAb;  caBÞ , cab; (2)

then the mutant alleles A and B are deleterious.
Allele B is a mutant that was introduced some time ago at

locus 2 into a population entirely composed of ab individuals
and its frequency has reached some value 0 , x , 1. Then
a single mutant allele A is introduced at random at locus 1
into the population, so that it is linked to B with probability x
and to b with the complementary probability 1 – x. In both
cases its frequency is given by the inverse of the population
size, that is, N21. In the former case, the frequency of aB is
reduced to x – N21 and in the latter the frequency of ab is
reduced to 1 – x – N21.

Linkage disequilibrium (LD) is measured by the differ-
ence between the frequency of the double mutant, AB, and
the product of the frequencies of the mutant alleles, A and B,
which is represented by D. Alternatively, D is equal to the
difference between the product of the frequencies of AB and
ab and the product of the frequencies of Ab and aB. In the
present case, linkage disequilibrium following the introduc-
tion of a single A is initially positive (PLD) with probability x
and given by N21(1 – x), while it is initially negative (NLD)
with probability 1 – x and given by –N21x. This yields an
average LD given by

D ¼ N21ð12 xÞx þ �2N21x
�ð12 xÞ ¼ 0: (3)

Then we are in a situation of an initial average LE.

Epistasis refers to the phenomenon in which the effect of
a mutant at one locus, here B, is masked or enhanced by
a mutant at another locus, here A. Population geneticists
extended the concept to mean nonindependent or multipli-
cative effects of mutants.

Epistasis is positive (PE) if interactions between A and B
are such that the double mutant is more fit in comparison to
the wild gamete type than what it would be if the mutant
alleles have independent effects on fitness. In terms of mor-
tality parameters, this means the inequality

12 cABs
12 cabs

,
12 cAbs
12 cabs

� 12 caBs
12 cabs

: (4)

If the inequality is reversed, then epistasis is negative (NE).
In the case of an equality, there is no epistasis (AE).

Where advantageous mutations are concerned, PE
enhances the fitness increase predicted from individual
mutational effects, whereas NE lessens it. It is the opposite
for deleterious mutations with respect to fitness decrease.

Note that, in the limit of weak selection when s = sN21

/ 0 as N / N, epistasis is positive, negative, or null if

e ¼  cAB2 cAb2 caB þ cab (5)

is positive, negative, or null, respectively. Moreover, note
that 22 # e # 2 under our general conditions on the coef-
ficients of selection, but 21 , e , 1 in the case of either
advantageous mutations or deleterious mutations.

Expected Change in Allele Frequency

Let x(t) = (xAB(t), xAb(t), xaB(t), xab(t)) be the vector of the
individual type frequencies at the current time step t $ 0.
Then the frequency of AB at the next time step will increase
by N21 with probability

nABðtÞ ¼ xABðtÞð12 xABðtÞÞ þ N21sxABðtÞðcABxABðtÞ2�cðtÞÞ
þ N21rð12 xABðtÞÞðxAðtÞxBðtÞ2 xABðtÞÞ
þ N22srðcABxABðtÞ2�cðtÞÞðxAðtÞxBðtÞ2 xABðtÞÞ:

(6)

Similarly it will decrease by N21 with probability

Figure 1 Two mutant alleles, A and B, segregating with
two wild types, a and b, at two linked loci.
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mABðtÞ ¼ xABðtÞð12 xABðtÞÞ2N21scABxABðtÞð12 xABðtÞÞ
2  N21rxABðtÞðxAðtÞxBðtÞ2 xABðtÞÞ
þ N22srcABxABðtÞðxAðtÞxBðtÞ2 xABðtÞÞ:

(7)

Otherwise it will remain the same with the complementary
probability 1 –nAB(t) – mAB(t). Here we use the notation

xAðtÞ ¼ xABðtÞ þ xAbðtÞ ¼ 12 xaðtÞ (8)

for the frequency of allele A and similarly

xBðtÞ ¼ xABðtÞ þ xaBðtÞ ¼ 12 xbðtÞ (9)

for the frequency of allele B. Moreover,

�cðtÞ ¼ cABxABðtÞ þ cAbxAbðtÞ þ caBxaBðtÞ þ cabxabðtÞ (10)

stands for the mean coefficient of selection at time step t.
Therefore, the change in the frequency of AB from time

step t to time step t + 1, given by DxAB(t) = xAB(t + 1) –

xAB(t), is found to have

EðDxABðtÞjxðtÞÞ ¼N22sxABðtÞðcAB2�cðtÞÞ
þ N22rðxAðtÞxBðtÞ2 xABðtÞÞ
2  N23sr�cðtÞðxAðtÞxBðtÞ2 xABðtÞÞ

(11)

as conditional expectation. Similarly we have

EðDxAbðtÞ
��xðtÞÞ ¼N22sxAbðtÞðcAb 2�cðtÞÞ

þ N22rðxAðtÞxbðtÞ2 xAbðtÞÞ
2  N23sr�cðtÞðxAðtÞxbðtÞ2 xAbðtÞÞ

(12)

for the change in the frequency of Ab. Hence the change in
the frequency of allele A, which can be expressed as DxA(t)
= DxAB(t) + DxAb(t), has conditional expectation

EðDxAðtÞ
��xðtÞÞ ¼ N22sxAðtÞð�cAðtÞ2�cðtÞÞ: (13)

Here the quantity

�cAðtÞ ¼ cAB
xABðtÞ
xAðtÞ þ cAb

xAbðtÞ
xAðtÞ (14)

represents the marginal coefficient of selection of allele A at
time step t. Straightforward algebraic manipulations lead to
the following conclusion.
Proposition 1 For the discrete-time Moran model with re-
combination and selection described in Figure 1, the condi-
tional expected change in the frequency of A is given by

N2s21EðDxAðtÞjxðtÞÞ ¼ xABðtÞxaBðtÞðcAB2 caBÞ
þ xABðtÞxabðtÞðcAB2 cabÞ
þ xAbðtÞxaBðtÞðcAb 2 caBÞ
þ xAbðtÞxabðtÞðcAb2 cabÞ;

(15)

where N is the population size and s = sN is a population-
scaled intensity of selection with coefficients 0 # cAB, cAb, caB,
cab # 1 for the individual types AB, Ab, aB, and ab,
respectively.

Probability of Fixation of an Allele at One Locus

The random process x(t) = (xAB(t), xAb(t), xaB(t), xab(t))
for t $ 0 is a Markov chain on a finite state space S. This is
the set of all four-dimensional frequency vectors whose
entries are multiples of N21.

There are four absorbing states represented by

eAB ¼ ð1; 0; 0; 0Þ;  eAb ¼ ð0; 1; 0; 0;Þ;  eaB ¼ ð0; 0; 1; 0Þ;
eab ¼ ð0; 0; 0; 1Þ:

These correspond to the fixation of AB, Ab, aB, and ab, re-
spectively. All other states are transient.

In virtue of the ergodic theorem for Markov chains 2(see,
e.g., Karlin and Taylor 1975; Grimmett and Stirzaker 1982),
the 3probability of transition from state x to state y in k time
steps, namely

PxyðkÞ ¼ PðxðkÞ ¼ y   j  xð0Þ ¼ xÞ; (16)

converges to some fixation probability in the limit of a large
number of time steps, represented by Pxy(N). This proba-
bility is 0 unless y is an absorbing state. Therefore,

EðxAðkÞjxð0Þ ¼ xÞ ¼
X
y
ðyAB þ yAbÞPxyðkÞ; (17)

where the summation is over all y = (yAB, yAb, yaB, yab) in S,
converges in the same limit to

PXeABðNÞ þ PXeAbðNÞ ¼ uAðxÞ: (18)

This is the probability of ultimate fixation of A given an
initial population state x.

On the other hand, we have

xAðkÞ ¼ xAð0Þ þ
Xk
t¼0

DxAðtÞ; (19)

and therefore

EðxAðkÞjxð0ÞÞ ¼ xAð0Þ þ
Xk
t¼0

EðDxAðtÞjxð0ÞÞ (20)

by additivity of conditional expectation. As k / N, this
leads to

uAðxð0ÞÞ ¼ xAð0Þ þ
XN
t¼0

EðDxAðtÞjxð0ÞÞ: (21)

The law of total expectation guarantees that

Fixation Probability 5

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

Administrateur
Barrer 

Administrateur
Texte inséré 
x

Administrateur
Barrer 

Administrateur
Texte inséré 
x

Administrateur
Barrer 

Administrateur
Texte inséré 
x



EðDxAðtÞjxð0ÞÞ ¼ EðEðDxAðtÞjxðtÞÞjxð0ÞÞ: (22)

Then Proposition 1 for the conditional expected change in
the frequency of A leads to the following result.
Proposition 2 For the discrete-time Moran model with re-
combination and selection of Proposition 1, the probability
of ultimate fixation of A is given by

uAðxð0ÞÞ ¼ xAð0Þ þ s

2
ðcAB 2 caBÞEAB;aBðxð0ÞÞ

þ 
s

2
ðcAB2 cabÞEAB;abðxð0ÞÞ

þ 
s

2
ðcAb 2 caBÞEAb;aBðxð0ÞÞ

þ 
s

2
ðcAb 2 cabÞEAb;abðxð0ÞÞ;

where

Ez1;z2ðxð0ÞÞ ¼ 2N22
XN
t¼0

Eðxz1ðtÞxz2ðtÞjxð0ÞÞ; (23)

for z1 = AB, Ab and z2 = aB, ab.
The quantity Ez1;z2ðxð0ÞÞ defined in Proposition 2 repre-

sents the expected time in number of N2/2 time steps and
over all time steps that two individuals chosen at random
with replacement in the population at the same time step t $

0 will be of types z1 and z2 in this order.

Ancestral Recombination–Selection Graph

An ancestral recombination–selection graph is a Markov
chain on ordered samples obtained by tracing backward in
time the ancestors, real or virtual, of a given number of
individuals chosen at random without replacement in the
population at a given time step. It is characterized by a se-
quence of changes in the ancestry of the sample and times
between these events.

As in Krone and Neuhauser (1997), this process is con-
sidered in the framework of a Moran model, but in discrete
time and with recombination allowed, so that a change in
the ancestry can involve simultaneous events of coalescence,
recombination, or selection. In the limit of a large popula-
tion size, however, with time and parameters for recombi-
nation and selection appropriately scaled, only one event of
coalescence, recombination, or selection can occur at a time
with probability one. The limiting process corresponds to the
AIG introduced by Donnelly and Kurtz (1999), as described
in Fearnhead (2003). An exact description of the ancestral
graph incorporating recombination and selection in a dis-
crete-time Moran model could not be found in the literature,
although it might exist. Such a description is actually neces-
sary to establish rigorous approximation results for the prob-
ability of fixation in the presence of recombination and
selection.

Consider the model of the previous section with 1 – cABs,
1 – cAbs, 1 – caBs, and 1 – cabs as mortalities associated to the

individual types AB, Ab, aB, and ab, respectively, under the
conditions 0 # cAB, cAb, caB, cab # 1 and 0 , s , 1.

The replacement rule for an individual chosen at random
can be described as follows. Replacement is inevitable
irrespective of the type of the individual with probability 1
– s, which corresponds to the lowest possible mortality. On
the other hand, replacement is type specific with probability
s. In this case, replacement occurs with conditional
probability 8>><

>>:
12 cAB if AB;
12 cAb if Ab;
12 caB if aB;
12 cab if ab:

The law of total probability guarantees that the probability
of replacement is given by the mortality of the individual.
For an individual of type Ab, for instance, replacement will
occur with probability 1 – s+ s(1 – cAb), which is the same as
1 – cAbs. With the complementary probability, there is no
replacement.

A type-specific replacement is considered to be a selection
event. Its probability in one time step is expressed in the
form s= sN21. Recall that the probability of a recombination
event in one time step is expressed in a similar form, namely
r = rN21.

The scaling used for the probabilities of selection or
recombination events, along with N2/2 time steps as unit of
time, will simplify the ancestral process in the limit of a large
population size. This timescale is standard for a discrete-
time Moran model (see, e.g., Ewens 1990).

Consider a sample of n distinct individuals in the popu-
lation at a given time step and label them arbitrarily with
the integers i = 1, . . . , n. Label arbitrarily the other N – n
individuals in the population at the same time step with the
integers i = n + 1, . . . ,N.

Following the lineages of the sampled individuals in one
time step back, there will be pure coalescence of i and j, for i,
j= 1, . . . , n with i 6¼ j, if the offspring produced was an exact
copy of j [probability N21(1 – rN21)] and the individual
replaced irrespective of its type was the individual that oc-
cupied the site of i [probability N21(1 – sN21)] or vice
versa. We conclude that

2
N2

�
12

s

N

��
12

r

N

�
¼ 2N22�1þ O

�
N21��#2N22 (24)

is the probability for each pure coalescence event to occur
within a sample of size n in one time step back. Then the
sample size is reduced by one by merging the lineages of two
sampled individuals.

On the other hand, there will be pure recombination of i
in one time step back, for i = 1, . . . , n, if the offspring pro-
duced was a recombinant of k and l not in the sample and
different from each other, that is, for k, l= n+ 1, . . . , N with
k 6¼ l [probability rN21(N – n)(N – n – 1)N22], and the
individual replaced irrespective of its type was the individual

6 S. Lessard and A. R. Kermany

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

Administrateur
Barrer 

Administrateur
Texte inséré 
x

Administrateur
Barrer 

Administrateur
Texte inséré 
x

Administrateur
Barrer 

Administrateur
Texte inséré 
x

Administrateur
Barrer 

Administrateur
Texte inséré 
x

Administrateur
Barrer 

Administrateur
Texte inséré 
x



that occupied the site of i [probability N–1(1 – sN21)].
Therefore, we find that

rðN2 nÞðN2n2 1Þ
N4

�
12

s

N

�
¼ rN22�1þ O

�
N21��#rN22

(25)

is the probability for each pure recombination event to occur
in a sample of size n in one time step back. In this case the
sample size is increased by one by splitting the lineage of
one sampled individual into two, each one being actually
ancestral to the sampled individual at only one of the loci.

Finally there will be pure selection of i in one time step
back, for i = 1, . . . , n, if the offspring produced was an exact
copy of k not in the sample, that is, for k = n + 1, . . . ,N
[probability (N – n)N21(1 – rN21)], and the individual cho-
sen to be replaced according to its type is the one that oc-
cupied the site of i (probability sN22). We conclude that

sðN2 nÞ
N3

�
12

r

N

�
¼ sN22�1þ O

�
N21��#sN22 (26)

is the probability for each pure selection event to occur in
a sample of size n in one time step back.

In the case of a pure selection event, the sample size is
increased by one by branching the lineage of one sampled
individual into two, each one being potentially ancestral to
the sampled individual at both loci. The incoming lineage is
the lineage of the offspring produced one time step back,
while the continuing lineage is the lineage of the individual
chosen to be replaced by the offspring. One of these lineages
is real and the other virtual, but both lineages must be
traced back until ancestors of known types are reached.
Then the conditional probability of replacement can be
determined.

Note that the probabilities of pure coalescence, recombi-
nation, or selection events in one time step back for a sample
of fixed size n are all functions of order N22, denoted by
O(N22). On the other hand, the probabilities of multiple
events involving simultaneous coalescence, recombination,
or selection events that would affect the lineages of the
sampled individuals in one time step back are all functions
of order O(N23). In all cases the sample size can decrease by
at most one, when a pure coalescence event occurs, and
increase by at most two, when a selection event and a re-
combination event occur simultaneously but without any
coalescence event occurring.

Given a sample of size n, the total number of pure co-
alescence events to consider is n(n – 1)/2, while this number
is n for pure selection events and for pure recombination
events. Therefore, the total probability of change in one time
step back for the whole sample is given by

pn ¼ 2lnN22 þ O
�
N23�; (27)

where

ln ¼ nðn2 1þ rþ sÞ
2

: (28)

This quantity represents the total rate of change in the limit
of a large population size with N2/2 time steps as unit of
time. Moreover, given a change in one time step back, the
conditional probability of each pure coalescence, recombi-
nation, or selection event is

PðCnÞ ¼ 1
ln

þ O
�
N21�; (29)

PðRnÞ ¼ r

2ln
þ O

�
N21�; (30)

or

PðSnÞ ¼ s

2ln
þ O

�
N21�; (31)

respectively, and independently of everything else, while the
conditional probability of each multiple event is

PðMnÞ ¼ O
�
N21�: (32)

In the limit of a large population size, the conditional
probabilities of multiple events vanish.

Let the time back, in number of time steps, for a sample
of size n to be affected by any coalescence, recombination,
or selection event be represented by tn. This sojourn time is
a geometric random variable independent of all previous
transition events and sojourn times, whose expected value
is given by

EðtnÞ ¼
XN
k¼0

Pðtn.kÞ; (33)

where

Pðtn.kÞ ¼ ð12pnÞk: (34)

The corresponding time back in number of N2/2 time steps,
namely

Tn ¼ 2tnN22; (35)

converges in distribution to an exponential random variable
with parameter ln in the limit of a large population size. As
a matter of fact,

PðTn > tÞ ¼ P
�
tn > ºtN

2

2 ⌋�; (36)

where ⌊ ⌋ denotes the integer value, and

lim
N/N

P
�
tn > ºtN

2

2 ⌋� ¼ expð−lntÞ; (37)
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for every t . 0. Moreover,

EðTnÞ ¼
Z N

0
PðTn.tÞdt; (38)

where

PðTn.tÞ#�12lnN22�tN2=221
#2  exp

2 lnt
2

; (39)

for N large enough. Therefore,

lim
N/N

EðTnÞ ¼
Z N

0
expð2lntÞdt ¼ l21

n (40)

in virtue of the dominated convergence theorem.
Let us summarize.

Proposition 3 Consider the discrete-time Moran model
of Proposition 1 with population-scaled recombination frac-
tion r = rN and population-scaled intensity of selection s =
sN in the case of coefficients of selection 0 # cAB, cAb, caB, cab #
1. In addition, consider an ordered sample without replace-
ment of size n in a population of large size N. Backward in
time, each pair of lineages merges as a result of a coalescence
event with approximate probability 2N–2, while each lineage
splits into two as a result of a recombination event with ap-
proximate probability rN–2 or branches into two as a result of
a selection event with approximate probability sN–2, for an
approximate total probability of change 2lnN–2 = n(n – 1
+ r + s)N–2. In number of N2/2 time steps in the limit of
a large population size, the expected time for a change is l21

n .
Moreover, in the case of a change caused by a selection event,
the incoming lineage is real with probability 1 – cAB, 1 – cAb,
1 – caB, or 1 – cab if the type of the individual on the continuing
lineage is AB, Ab, aB, or ab, respectively.

Calculation for Fixation Probability

An ordered sample of n individuals is represented by an n-
dimensional vector z = (z1, . . . , zn), where zi = AB, Ab, aB,
or ab, for i = 1, . . . , n. The sample configuration is given by
the vector n = (nAB, nAb, naB, nab) with nAB + nAb + naB +
nab = n.

Let z(t) be an ordered sample of n individuals chosen at
random without replacement at time step t $ 0. The proba-
bility distribution of this sample will depend on the ancestral
recombination-selection graph from time step t to time step
0, represented by G(t), and the type frequencies at time step
0, given by x(0). What will actually matter is the topology of
the graph from time step t to time step 0. It is represented by
sequence events backward in time written in the form

G ¼ ðG1;   . . .  ;Gmt
Þ; (41)

where mt is the total number of events. These are events of
coalescence, recombination, or selection in one step back,
either pure or multiple.

Let nG be the number of ancestors after the occurrence of
the last event of G backward in time. This last event is
assumed to take place at time back tG. On the other hand,
the time with nG ancestors is represented by tnG. For G to be
an admissible topology of the graph from time step t to time
step 0, it is necessary that tG#t,tG þ tnG . We define

GðtÞ ¼ fG; tG#t,tG þ tnGg: (42)

Note that tG and tnG are independent random variables.
Moreover, tnG is a geometric random variable with parame-
ter pnG, while tG is a sum of independent geometric random
variables.

The probability of the event z(t) = z, given x(0), can be
expressed in the form

PðzðtÞ ¼ zjxð0ÞÞ ¼
X
GðtÞ

PðzðtÞ ¼ zjGðtÞ; xð0ÞÞPðGðtÞÞ: (43)

The conditional probability in the summand of the above
equation does not actually depend on time step t. Therefore,
we define

PGðzjxð0ÞÞ ¼ PðzðtÞ ¼ zjGðtÞ; xð0ÞÞ: (44)

On the other hand, we have

PðGðtÞÞ ¼ PðGÞPðtG#t,tG þ tnGÞ; (45)

where

PðGÞ ¼
Ymt

k¼1

PðGkÞ; (46)

with P(Gk) defined by (29)–(31) for pure events of coales-
cence, recombination, or selection and by (32) for multiple
events. Moreover, we have

PðtG#t,tG þ tnGÞ ¼ PðtG þ tnG.tÞ2 PðtG.tÞ: (47)

Note that

XN
t¼0

PðtH#t,tG þ tnGÞ ¼ EðtG þ tnGÞ2 EðtGÞ ¼ EðtnGÞ:

(48)

Summing over t $ 0 in (43) yields the following result.
Proposition 4 Let z(t) be an ordered sample of n individuals
chosen at random without replacement at time step t $ 0 and
x(0) be the vector of the individual type frequencies at time
step 0. Then we have

XN
t¼0

PðzðtÞ ¼ zjxð0ÞÞ ¼
X
G
PGðzjxð0ÞÞPðGÞEðtnGÞ; (49)

where G is a sequence of pure or multiple events of coalescence,
recombination, or selection from time step t to time step 0, nG
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is the number of ancestors at time step 0, and tnG is a time back
with this number of ancestors.

Actually the conditional probability of z, given G and
x(0), in Proposition 4 depends on the types of the nG or-
dered ancestors at time step 0, represented by z(0), so that

PGðzjxð0ÞÞ ¼
X
zð0Þ

PGðzjzð0ÞÞPGðzð0Þjxð0ÞÞ: (50)

Moreover, we have

PGðz j zð0ÞÞ ¼ 0; (51)

if z is incompatible with G and z(0). Otherwise, this condi-
tional probability is 1 times a product of conditional proba-
bilities of replacement, which is different from 1 only in the
case of selection events in G. On the other hand,

PGðzð0Þjxð0ÞÞ ¼ N2nGðNABð0ÞÞnABð0ÞðNAbð0ÞÞnAbð0Þ

· ðNaBð0ÞÞnaBð0ÞðNabð0ÞÞnabð0Þ;

(52)

where (N)n = N · (N 2 1) · . . . · (N 2 n + 1) denotes
a falling factorial, while

Nxð0Þ ¼ ðNABð0Þ; NAbð0Þ; NaBð0Þ; Nabð0ÞÞ (53)

and

nð0Þ ¼ ðnABð0Þ; nAbð0Þ; naBð0Þ; nabð0ÞÞ (54)

represent the population configuration at time step 0 and
the sample configuration of z(0), respectively. Moreover, this
sample satisfies

nABð0Þ þ nAbð0Þ þ naBð0Þ þ nabð0Þ ¼ nG; (55)

with the inequalities

nABð0Þ # NABð0Þ;
nAbð0Þ # NAbð0Þ;
naBð0Þ # NaBð0Þ;
nabð0Þ # Nabð0Þ;

which are necessary conditions for z(0) to be compatible
with G and x(0).

Consider, for instance, a sequence of events backward in
time, G = R2S3C4 for an ordered sample of size n = 2, as
illustrated in Figure 2. Here we have a pure recombination
event, a pure selection event, and a pure coalescence event,
in this order backward in time. In the case of recombination,
one lineage splits into two, a left lineage assumed to be
ancestral at locus 1 and a right lineage assumed to be an-
cestral at locus 2. In the case of selection, one lineage
branches into two, a continuing lineage and a new incoming
lineage, both potentially ancestral. And last, in the case of
coalescence, two lineages merge. The probability of the
whole sequence of events is

PðGÞ ¼ PðR2ÞPðS3ÞPðC4Þ: (56)

Note that the number of ancestors increases by one
following the recombination event and the selection event,
but decreases by one following the coalescence event, so
that the number of ancestors at the end is nG = 3. The 4time
back to the last event, tG, can be expressed in the form

tG ¼ t2 þ t3 þ t4; (57)

where t2, t3, and t4 are independent geometric random
variables with parameters p2, p3, and p4, respectively. On
the other hand, the time back spent with nG ancestors, tnG ,
is a geometric random variable with parameter p3.

Finally, given that G = R2S3C4 and tG # t , tG + tnG, the
ordered sample z(t) = (AB, ab) occurs with probability 1 –

caB, if the ancestral state at time step 0 is z(0) = (Ab, aB,
ab). The probability of this initial ancestral state given the
initial type frequencies is

Pðzð0Þ¼ðAb; aB; abÞj  xð0ÞÞ¼xAbð0ÞxaBð0Þxabð0Þð1þ OðN21Þ:
(58)

Of course, we have to consider all possible initial ancestral
states for this particular G and then all possible G for this
particular ordered sample.

Approximation Results

We are now ready to approximate the probability of ultimate
fixation of A under the assumptions that the population size
is large and the population-scaled recombination and selec-
tion parameters are small.

Consider z= (z1, z2), where z1 = AB or Ab and z2 = aB or
ab. First note that

Eðxz1ðtÞxz2ðtÞjxð0ÞÞ ¼ ð12N21ÞPðzðtÞ ¼ zjxð0ÞÞ; (59)

so that Proposition 4 leads to the expression

Ezðxð0ÞÞ ¼ ð12N21Þ
X
G
PGðzjxð0ÞÞPðGÞEðTnGÞ; (60)

Figure 2 Possible ancestral recombination–selection graph of topology
represented by G = R2S3C4 for two ordered individuals from time step t to
time step 0 to be of types AB and ab in this order.
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where TnG ¼ 2tnGN
22, for the quantity defined in Proposi-

tion 2.
Let |G| denote the minimum of number of ancestors

along a sequence of events G for the ordered sample z =
(z1, z2). Note that

PGðz j xð0ÞÞ ¼ 0; (61)

if |G| = 1, since alleles A in z1 and a in z2 cannot have the
same ancestor, while

PGðz  j xð0ÞÞ#xAð0Þ; (62)

if |G|$ 2, since allele A in z1 must be present in at least one
ancestor. This leads to the inequality

Ezðxð0ÞÞ#xAð0ÞEðW2Þ; (63)

where

EðW2Þ ¼
X

fG:jGj$2g
PðGÞEðTnGÞ: (64)

Actually, W2 is the time back in number of N2/2 time steps
for the number of ancestors in the ancestral graph starting
from a sample of size 2 to reach one for the first time. This
occurs when the most recent ultimate ancestor (MRUA) is
found. It can be shown that E(W2) is finite and bounded by
a constant that does not depend on N. This is also true for
E(Wn)$ E(Wn–1), which is defined analogously for a sample
of any size n $ 3. (See Appendix.)

Now, suppose that the population-scaled recombination
and selection parameters, r and s, are small and of the same
order of magnitude, so that r = ds ,, 1 for some constant
d . 0. Let nþG designate the sum of all increases in the
number of ancestors along a sequence of events G for the
ordered sample z = (z1, z2). If nþG . k, then

G ¼ ðGð1Þ; Gð2ÞÞ; (65)

where G(1) is a sequence of events such that nþGð1Þ.k and
nGð1Þ#kþ 2. The number nGð1Þ is the sample size at the be-
ginning of G(2) just after the first increase in the number of
ancestors that brings this number above k. Note that there is
a finite number of G(1) satisfying these conditions and that
the probability of each one can be neglected compared to sk;
that is,

PðGð1ÞÞ ¼ Oðskþ1Þ: (66)

On the other hand,X
fGð2Þ:jGð2Þj$2g

PðGð2ÞÞEðTnGð2Þ
Þ#EðWkþ2Þ; (67)

which is a finite bound. Since P(G) = P(G(1))P(G(2)) and
nG ¼ nGð2Þ , we conclude that

X
fG:jGj$2;nþ

G.kg
PGðzjxð0ÞÞPðGÞEðTnGÞ#xAð0ÞO

�
skþ1

�
: (68)

This gives the order of the error in the following approxi-
mation result.
Proposition 5 Ignoring terms of order N–1O(slrm) for l + m
$ k + 1 where r = rN and s = sN are the population-scaled
parameters for recombination and selection, respectively, the
expected times in the probability of ultimate fixation of A given
in Proposition 2 are approximated by

Ezðxð0ÞÞ �
X

fG:jGj$2;nþ
G#kg

PGðzjxð0ÞÞPðGÞEðTnGÞ; (69)

for z = (z1, z2), with z1 = AB, Ab and z2 = aB, ab, where all
terms in the summation, given by (40), (46), and (50), are
approximated by their leading terms in the case of a large
population size. Here, the summation is over all sequences G
of pure coalescence, recombination, or selection events back-
ward in time with at most k pure recombination or selection
events and a number of ancestors always larger than two with
final value nG.

Note that the coefficient of slrm for l + m # k in Prop-
osition 5 is obtained by considering all sequences of events G
involving up to l pure selection events and m pure recombi-
nation events.

Using MATHEMATICA and (69), a polynomial of degree k
with respect to s and r approximating the quantity (23) in
Proposition 2 for s and r small enough can be calculated.
This approach leads to the main results of this article.
Proposition 6 Consider the discrete-time Moran model with
small population-scaled recombination fraction r = rN and
small population-scaled intensity of selection s = sN with
coefficients of selection 0 # cAB, cAb, caB, cab # 1 such that e
= cAB – cAb – caB + cab 6¼ 0. Given the initial conditions in
Figure 1 with xA(0) = N–1 and ignoring terms of order N–1O
(slrm) for l + m $ 4, the probability of ultimate fixation of A
is approximated by

uAðxð0ÞÞ � 1
N
þ s

2N
ðcAb 2 cab þ exÞ

þ s2

12N

��
cAb2cabÞ2
þ exðcAB2 caB þ cAb 2 cab
þ 2ð12 xÞðcaB 2 cabÞÞÞ

2
s3

24N
xð12 xÞðcaB 2 cabÞ2ðcAb2 cab þ exÞ

þ rs2e
432N

xð12 xÞð3ðcAB2 cAbÞ þ 2ðcaB 2 cabÞ
�
:

(70)

Proposition 7 Under the conditions of Proposition 6 but in
the case where the coefficients of selection satisfy e = cAB 2 cAb
– caB + cab = 0 and terms of order N21O(slrm) for l + m $ 5
are ignored, the probability of ultimate fixation of A is approx-
imated by
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uAðxð0ÞÞ � 1
N
þ s

2N
ðcAb 2 cabÞ þ

s2

12N
ðcAb 2 cabÞ2

2
s3

24N
xð12 xÞðcAb 2 cabÞðcaB 2 cabÞ2

2
s4

720N
ðcAb 2 cabÞ

��
cAb2cabÞ3

þ ðcaB 2 cabÞ2xð12 xÞð8ðcAb2 cabÞ
þ 7ðcaB 2 cabÞð12 2xÞÞÞ

þ 19rs3

432N
xð12 xÞðcAb 2 cabÞðcaB 2 cabÞ2:

(71)

Discussion

Effect of selection at linked loci on the probability of
fixation of a single mutant allele

The conditional expected change in the frequency of an
allele A in a two-locus two-allele Moran model from one
time step to the next as expressed in (15) can be interpreted
[see (13)] as the current frequency of A in the proportion of
the population chosen to be replaced (here, N21) times its
average excess in fitness (Fisher 1930). In this average ex-
cess, the differences between the coefficients of selection of
A-bearing and a-bearing individuals have relative weights
given by the products of the frequencies of the individual
types. Proposition 2 says that the difference between the
probability of ultimate fixation of A and its initial frequency
takes the same form with weights given by expected times
with pairs of individual types over all time steps. This cor-
responds to a projected average excess in fitness (Lessard
and Lahaie 2009).

The expected times in Proposition 2 depend on the
population-scaled parameters, s = sN and r = rN, for the
intensity of selection and the recombination fraction, respec-
tively. As shown in Proposition 5, expansions in slrm for l +
m # k and a population size N large enough are obtained by
considering up to k pure recombination or selection events
in the ancestral graph of pairs of individuals chosen at
random.

This has been applied to get analytical approximations
for the probability of ultimate fixation of a single mutant A
introduced at random into a population in which a previous
mutant B is segregating at another locus and has reached
some frequency x. Here we make the assumptions of weak
selection (s ,, 1), tight linkage (r ,, 1), and large pop-
ulation size (N .. 1). In the case of positive or negative
epistasis, the first-order effect of recombination on the fixa-
tion probability is of order rs2. It is detected as soon as one
pure recombination event and one pure selection event are
considered. This is best understood from the leading recom-
bination terms when the single mutant A is initially linked to
B and LD is positive, which occurs with probability x, and
when it is the opposite, which occurs with the complemen-
tary probability 1 – x. In the case of coefficients of selection

given by cab = 0, caB = cAb = c, cAB = 1 with 0 # c # 1, so
that A and B are equally advantageous, and epistasis given
by e = 1 – 2c, these leading terms are approximated by

LBðrÞ �2
rs

24N
ð12 xÞð3þ eÞ

þ rs2

864N
ð12 xÞðxð12 eÞð24þ 5eÞ þ 3eð2þ eÞ þ 27Þ

LbðrÞ �
rs

24N
xð3þ eÞ

2
rs2

864N
xðxð12 eÞð24þ 5eÞ þ eð1þ 2eÞ þ 27Þ;

respectively, which yields

LðrÞ ¼ xLBðrÞ þ ð12 xÞLbðrÞ �
rs2

864N
xð12 xÞeð5þ eÞ;

for the weighted average in agreement with Proposition 6.
We see that the primary effect of increasing the recombina-
tion rate is to increase the fixation probability in the case of
initial NLD, but the opposite happens in the case of initial
PLD. In the case of initial average LE, the primary effects
cancel out, while the weighted average of the secondary
effects, obtained by taking into account one pure selection
event in addition to one pure recombination event, is of the
same sign as epistasis. In the absence of epistasis (e = 1 – 2c
= 0), tertiary effects obtained by taking into account a sec-
ond pure selection event have to be considered, and their
weighted average is approximated by

LðrÞ � 19rs3

3456N
xð12 xÞ;

according to Proposition 7. This expression is always
positive and increases with the recombination rate. This
confirms the HR effect when both mutants are advantageous
and epistasis is absent (Hill and Robertson 1966).

The following explanation for the HR effect has been
given in Barton and Otto (2005, p. @@) 5: “. . .beneficial
alleles that arise in coupling rise rapidly and fix within the
population, leading to the disappearance of the positive dis-
equilibrium. The negative disequilibrium persists for a much
longer period of time, until one or the other allele becomes
fixed. Therefore, with multiplicative selection, the variance
in disequilibrium present in the first generation ultimately
leads to negative disequilibrium, on average.” It is the asym-
metric action of selection upon the initial positive and neg-
ative disequilibria and further disequilibria generated by
random genetic drift that is responsible for the accumulation
of negative disequilibrium, on average. This in turn provides
an evolutionary advantage to recombination. If this is true in
the case of AE, then it should also be true in the case of PE,
which enhances the effect of selection. Actually, the average
leading recombination term in the fixation probability for A
that takes into account two pure selection events in the
presence of epistasis is given by
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LðrÞ � r

17; 280N
xð12 xÞð95sþ 100e

þ  ð512 44xÞesþ 20e2

2  ð452 34xÞe2s2 5ð12 2xÞe3sÞ:

For s and e small enough, this expression for the average
leading recombination term is positive if e . – 0.95s. More
generally, it has been checked that this leading term when at
most four pure recombination or selection events are taken
into account is positive if e is larger than some negative
value (see Figure 3).

Therefore, our analytical approximations indicate that
recombination increases the probability of ultimate fixation
of beneficial mutants in the case of positive epistasis or weak
negative epistasis, at least under weak enough selection.
This is supported by simulations (see Figure 4A for e = 1).
Even in the case of strong negative epistasis, an increase in
the recombination fraction may increase the fixation proba-
bility in a range of values of the recombination fraction (see
Figures 3 and 4B for e = –1). This effect, though small,
should provide some evolutionary advantage to recombina-
tion. This suggests that random drift may be an important
factor in the evolution of recombination in the presence of
selection.

Since negative epistasis is generally considered to be
favorable to recombination in an infinite population, our
conclusion that positive epistasis or weak negative epistasis,
at least under weak selection, is a condition for recombina-
tion to help ultimate fixation of beneficial mutants may
appear surprising. Some numerical results for approxima-
tions based on branching processes (Barton 1995a,b) and 6
simulations for modifiers of the recombination fraction
(Otto and Barton 2001) obtained under the assumption of
stronger selection (sN .. 1) suggested that this could be
the case. However, this seems to have been little noticed up
to now.

Note also that AE in an exact finite population is modeled
by multiplicative gene action. If advantageous mutants act
additively and selection is weak, then epistasis is negative
and weak. This is the situation that was actually simulated
in Hill and Robertson (1966). However, comparisons with
results obtained under multiplicative selection showed no
significant differences.

Conditions on the selection coefficients for
recombination to be favored

In the presence of epistasis and assuming that allele B is
advantageous, so that the coefficients of selection satisfy
cAB – cAb . 0 and caB – cab . 0, the coefficient of rs2 in

Figure 3 Contour plot of the derivative
of the probability of ultimate fixation of
A with respect to r, based on analytical
approximations obtained by considering
at most four selection or recombination
events in the ancestry of samples of size
2. We consider the case where muta-
tions are advantageous and mortalities
of ab, aB, Ab, and AB are given by 1,
1 – csN21, 1 – csN–1, and 1 – sN–1,
respectively. In this case e ¼ 1 – 2c. Here
we assume that s ¼ 0.5 and x ¼ 0.1.
The values of the derivative are
expressed in (100N)–1 units. Regions
with negative values indicate the param-
eter set for e and r, where increasing
recombination reduces the fixation
probability.
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the probability of ultimate fixation of A given in Proposition
6, which is the leading recombination term under weak
selection and low recombination, is positive if and only if e
= cAB – cAb – caB + cab . 0; that is, cAB – cAb . caB – cab . 0.
This means that A enhances the beneficial effect of B. Under
these circumstances, the probability of ultimate fixation of A
increases as the recombination rate increases. Note, how-
ever, that this does not require that allele A itself is benefi-
cial. It is favored to go to fixation as a result of a hitchhiking
effect.

In the absence of epistasis, that is when e = 0, an approx-
imation to the next order is necessary to detect the effect of
recombination on the probability of ultimate fixation of A.
Then the leading recombination term is given by the term in
rs3 in Proposition 7, whose coefficient is positive if A is
advantageous, so that cAb – cab = 0cAB – caB . 0. Under this

condition, an increase of the recombination rate results in an
increase of the fixation probability. This is in agreement with
the HR effect when both mutants are advantageous (Hill
and Robertson 1966). Note, however, that allele B does
not have to be beneficial, since the sign of caB – cab = cAB
– cAb does not matter.

In both cases, the effect of recombination is more
pronounced when the differences in the coefficients of
selection are larger and when the frequency of B is
closer to x = 1

2.
The situation with deleterious mutants is comprised in

the above discussion, since an allele is deleterious if and
only the alternate allele is advantageous. Therefore, the
probability of ultimate fixation of an allele A decreases as
the recombination rate increases if this allele either is in
positive epistatic interaction with a deleterious allele B or
is itself deleterious in the case of no epistasis with B. This
explains how recombination can reduce the rate at which
the ratchet-like mechanism suggested by Muller (1964)
slows down the rate of evolution.

Comparisons with previous results

In the absence of selection, the expected allele frequencies
do not change and the probability of fixation of a gamete
can be obtained from a transformation of a transition matrix
(Karlin and McGregor 1968).

In the case where alleles B and b are neutral at locus 2
while alleles A and a are under selection at locus 1, so that
cAB – cAb = caB – cab = 0 and cAB – caB = cAb – cab = 1, there is
no epistasis (e = 0). It follows from (71) that the probability
of ultimate fixation of A when its initial frequency is the
inverse of the population size, that is N21, is approximated
by

uA
�
N21� ¼ N21

�
1þ s

2
þ s2

12
2

s4

720
þ O

�
s5��: (72)

It is easy to see that this is consistent with a Taylor
expansion around s = 0 of the formula

uA
�
N21� ¼ 12 e2sN21

12 e2s
; (73)

which is predicted from a diffusion approximation for allele
frequencies at a single locus (Kimura 1957, 1962).

When selection acts on both loci, it is possible to use the
Kolmogorov forward or backward diffusion equation for
two-locus gamete frequencies (Kimura 1955) to approxi-
mate the probability of ultimate fixation of a gamete and
then that of an allele. The approximations obtained in this
way up to the first-order effect of selection (Hill and Rob-
ertson 1966; Ohta 1968) are consistent with Propositions 6
and 7.

Lehman and Rousset (2009) expressed the probability of
ultimate fixation as a sum of expected changes in frequen-
cies in an exact Wright–Fisher model and then considered

Figure 4 (A and B) Simulation results for the effect of recombination on
the probability of ultimate fixation of A assuming that mutations are
advantageous with mortalities given by 1, 1 – csN–1, 1 – csN–1, and
1 – sN–1 for ab, aB, Ab, and AB, respectively. The values on the y-axis
show the mean difference between the number of times (in a block of 5 ·
106 runs) that A went to fixation compared to the case of no recombi-
nation. Means and 95% confidence intervals are calculated from 4 · 104

blocks of runs for the case of positive epistasis (A) and from 105 trials for
the case of negative epistasis (B). The dashed line shows the theoretical
prediction based on our analytical approximations of the fixation proba-
bility. In this simulation N = 50; x = 0.1; s = 0.5; and r = 0.0, 0.25, and
0.5.
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a Taylor expansion of this expression with respect to the
intensity of selection. The coefficients in this expansion were
obtained from a backward approach in a neutral model and
symbolic calculation. An interpretation makes a clever use of
matrix theory. Their approximation (A.34) for the reduction
in the probability of ultimate fixation of A due to interfer-
ence in the case of no epistasis is consistent with Proposition
7 with the correspondences 2sA = (cAb – cab)sN–1, 2sB = (caB
– cab)sN–1, 2r = rN–1, and pB(0) = x, ignoring terms of
order O(N–2). Therefore, the Moran and Wright–Fisher mod-
els lead to the same results after appropriate rescaling in the
limit of a large population size.

One of the main interests in the approach based on the
ancestral recombination–selection graph presented in this
article is that the term in slrm in the fixation probability is
known to come up when considering at most l – 1 selection
events and m recombination events in the genealogy of or-
dered sampled gametes backward in time to compute
expected times in given states. The approach has been ap-
plied to the probability of ultimate fixation of a single mu-
tant allele at one locus in initial linkage equilibrium with
another segregating locus. It could be applied as well to an
allele or a gamete given any initial conditions, e.g., a double
mutant given an initial single double mutant or two initial
single mutants with mutants being deleterious when alone
but beneficial when coupled as in simulations by Michalakis
and Slatkin (1996). The results, however, would involve
high-order polynomials with respect to the initial frequen-
cies in the case of general initial conditions.

Implementation of the approach

The approximations given in Propositions 6 and 7 for the
fixation probability rely on expected times in given ordered-
sample states. These expected times are computed by
conditioning on events of coalescence, recombination, or
selection in the ancestry of the sample. Note that the
calculation time can be shortened by considering only the
material that is potentially ancestral to the original sample
at either of the loci at every state change backward in time.
Therefore, if the current number of ancestors at only one
locus is n1 and that of ancestors at both loci is n2, then the
total rate of change is

ln ¼ nðn2 1þ sÞ þ n2r
2

; (74)

where n = (n1, n2) with n = n1 + n2. This is the case since
a recombination event on an ancestral sequence will change
the state of the ancestral material only if the sequence is
ancestral at both loci.

Extensions to other models

The model considered in this article is a particular discrete-
time viability model of the Moran type (Moran 1958)
expressed in terms of probabilities of mortality that are lin-
ear functions with respect to some intensity of selection.

This model was used to make as clear as possible the main
ideas of the approach and to simplify as far as possible the
rigorous justifications of the approximations. In the case of
relative mortalities, for instance, the probabilities of replace-
ment would generally be functions of any order with respect
to the intensity of selection. Then Propositions 1 and 2 for
the expected change in frequency and fixation probability
for an allele would give only approximations up to terms of
order O(N–2). This would introduce technical details in the
limit of a large population size. Note, however, that a fertility
model with the probability of replacement depending on the
type of the offspring produced instead of the type of the
individual chosen to be replaced could be analogously
treated.

The Wright–Fisher model would introduce other kinds of
difficulties. These are related to the possible number of
ancestors in the exact ancestral recombination–selection
graph and the expected time to reach the most recent ulti-
mate ancestor. The analysis presented in the Appendix to
justify the approach would have to be refined.

It is relatively easy to understand that the fixation
probability in a finite population can be expressed in terms
of expected times. It is less obvious to establish the
corresponding result in the limiting process for an infinite
population. Actually, (69) and (40) show that

Ez1;z2ðxð0ÞÞ �
Z N

0
Eðxz1ðtÞxz2ðtÞjxð0ÞÞdt; (75)

for z1 = AB, Ab and z2 = aB, ab, with time t measured in
number of N2/2 time steps, for a large enough population
size N and small enough population-scaled parameters r and
s for recombination and selection, respectively. This sug-
gests that the fixation probability corresponding to Proposi-
tion 2 in the limiting AIG is given by the same expression but
with integrals instead of sums.

Like those for the coalescent (Kingman 1982), the results
obtained for the Moran model in the limit of a large popu-
lation size are expected to be valid for a wide range of
exchangeable models. This could be established by consid-
ering an exact model extending the Cannings neutral model
(Cannings 1974) to take into account not only selection
(Lessard and Ladret 2007) but also recombination in the
limit of a large population size. It could also be done by
showing that the fixation probability obtained from a Kolmo-
gorov backward or forward diffusion equation for gamete
frequencies (Kimura 1955; Hill and Robertson 1966; Ohta
1968) takes the form given in Proposition 2 with expected
values computed according to (75) in the corresponding
AIG.
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Appendix: Bound for the Expected Time to Reach
the Most Recent Ultimate Ancestor

Consider the Markov chain describing the number of
ancestors in the ancestral recombination–selection graph
backward in time for an ordered sample in a population of
size N. For s = sN and r = rN small enough, the probabil-
ities of transition pi,j, from i to j for i, j = 1, . . . ,N, satisfy the
inequalities

pi;i21  $ 
iði2 1Þ
N2

�
12

s

N

��
12

r

N

�
 $ 

iði2 1Þ
2N2 ; (A1)

pi;iþ1  # 
iðsþ rÞ

N2  # 
i

12N2; (A2)

and

pi;iþ2  # 
isr
N3  # 

i
12N2: (A3)

The lower bound comes from the probability of a pure
coalescence event, and the upper bounds come from the
probability of a recombination event and/or a selection
event. Moreover, we have

pi;i ¼ 12 pi;i21 2 pi;iþ1 2 pi;iþ2; (A4)

since pi,j = 0 if j , i – 1 or j . i + 2.
The sojourn time in state i $ 2 in number of time steps is

a geometric random variable of parameter 1 – pi,i, whose
expected value is

�
12pi;i

�21
#

2N2

iði2 1Þ#N2: (A5)

In number of N2/2 time steps, the upper bound is 2. There-
fore, the time in number of N2/2 time steps to reach state 1
for the first time from state i $ 2, denoted by Wi, has an
expected value satisfying

EðWiÞ #  2EðMiÞ; (A6)

where Mi is the number of state changes before reaching
state 1 for the first time from state i.

Given that the chain leaves state i $ 2, the conditional
transition probabilities satisfy

qi;iþ1 ¼ pi;iþ1

12 pi;i
 # 

2
12ði2 1Þ  # 

1
6
; (A7)

qi;iþ2 ¼ pi;iþ2

12 pi;i
 # 

2
12ði2 1Þ  # 

1
6
; (A8)

and

qi;i21 ¼ pi;i21

12 pi;i
¼ 12 qi;iþ1 2 qi;iþ2  $ 

2
3
: (A9)

Let {Xn}n$0 be a Markov chain on the integers i $ 1 with qi,j
above as transition probabilities for i $ 2 and state 1 ab-
sorbing. Such a Markov chain can be constructed from a se-
quence of independent random variables {Un}n$1, each one
being uniformly distributed on (0, 1]. Given Xn–1 = i $ 2,
the nth increment for n $ 1 is defined as

Xn2Xn21 ¼ 2Ið0;qi;iþ2�ðUnÞ þ Iðqi;iþ2;12qi;i21�ðUnÞ2 Ið12qi;i21;1�ðUnÞ;
(A10)

where I(a,b](u) = 1 if a , u # b and 0 otherwise. Analo-
gously, given Yn–1 = i $ 2, define

Yn 2 Yn21 ¼ 2Ið0;1=6�ðUnÞ þ Ið1=6;1=3�ðUnÞ2 Ið1=3;1�ðUnÞ:
(A11)

In both cases, the increment is 0 if the current state is 1.
Moreover, given X0 = Y0 = i $ 2, we have

Xn ¼ X0 þ
Xn
k¼1

ðXn2Xn21Þ#Y0 þ
Xn
k¼1

ðYn 2 Yn21Þ ¼ Yn;

(A12)

for n $ 1. In particular,

PðXn.1jX0 ¼ iÞ#PðYn.1jY0¼iÞ; (A13)

from which
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EðMiÞ ¼
XN
n¼0

PðXn.1j  X0 ¼ iÞ#
XN
n¼0

PðYn.1jY0 ¼ iÞ ¼ EðNiÞ:

(A14)

Here, Ni represents the number of transitions for the Markov
chain {Yn}n$0 to reach state 1 for the first time from state
i $ 2.

The Markov chain {Yn}n$0 has transition probabilities 1
6,

1
6, and

2
3 from state i to states i + 2, i + 1, and i – 1, re-

spectively, for i $ 2. State 1 is an absorbing state. Reaching
state 1 from state i $ 2 in {Yn}n$0 corresponds to extinction
in a Galton–Watson process {Zn}n$0 starting with Z0 = i – 1

individuals, each individual leaving independently of all
others 2, 1, or 0 offspring with probability 1

6,
1
6, or

2
3, respec-

tively. Extinction occurs with probability 1, since the
expected number of offspring per individual is g = 1

2 , 1.
Moreover,

EðNiÞ ¼ E

 XN
n¼1

Zn

!
¼
XN
n¼1

EðZnÞ ¼
XN
n¼1

gnEðZ0Þ ¼ ði2 1Þg
12 g

:

(A15)

We conclude that that E(Wi) # 2E(Ni) , N.
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