J. theor. Biol. (1986) 119, 329-344

Evolutionary Principles for General Frequency-dependent
Two-phenotype Models in Sexual Populations

SABIN LESSARDT

Département de mathématiques et de statistique, Université de Montréal,
Montréal, Québec, Canada, H3C 3J7

(Received 8 July 1985, and in revised form 11 November 1985)

The evolutionary dynamics in general two-sex two-phenotype frequency-dependent
selection models are studied with respect to underlying multi-allele one-locus genetic
systems. Two classes of equilibria come into play: genotypic equilibria, with equi-
librium allelic frequencies independent of the phenotype, and phenotypic equilibria,
which are characterized by equal mean phenotypic fitnesses. The exact conditions
for genotypic equilibria to exist and be stable and for phenotypic equilibria to exist
and be evolutionarily attractive are examined. Using adequate definitions of mean
fitnesses in general contexts of frequency-dependent selection in dioecious popula-
tions, we show that two phenotypes, when they can coexist in the population, tend
to balance their fitnesses as far as is allowed by the genetic system as more alleles
responsible for phenotype determination are introduced into the population.

An intuitive basis for frequency-dependent selection thinking can be found in
Fisher’s book The Genetical Theory of Natural Selection, first published in 1930:

‘A Batesian mimic . .. will receive less protection the more numerous it is in comparison
with its model; a dimorphic Batesian mimic will therefore adjust the numbers of its two
forms if these are dependent upon a single Mendelian factor, until they receive equal
protection; any increase in the numbers of one form at the expense of the other would
diminish the advantage of the former and increase that of the latter, thus producing a
selective action tending to restore the original proportion™. (p. 185, revised edition, 1958).

According to Fisher’s rationale, if two or more phenotypes are segregating in a
population, these phenotypes are expected to equalize their average fitnesses at
equilibrium. This general equilibration principle was more recently proposed by
Lloyd (1977) and Slatkin (1979). However, if we take into account underlying genetic
structures, the feasibility of stable equilibria with equal phenotypic fitnesses is not
guaranteed. General conditions for fitness equilibration necessarily to occur at
equilibrium, with special references to heterostylous plants, were given in Heuch
(1979) and generalized further in Taylor (1984). This is the case, for instance, if it
is possible to order the phenotypic classes corresponding to a partition of genotypes
into phenotypes and find an allele in each class that is not represented in the
succeeding classes at equilibrium. Theoretically, it still remains to prove for each
particular genetic system considered that an equilibrium actually exists and is stable.
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Another theoretical approach of great interest consists of looking at the evolution
toward equal phenotypic fitnesses. Given a specific genetic system responsible for
phenotype expression, what are the long term effects of the introduction of mutant
alleles into the system? Such a problem was solved in Lessard (1984) for general
frequency-dependent two-phenotype models in monoecious random mating popula-
tions. Assuming a probabilistic phenotype-determination system based on the
genotype at a single locus, global convergence in the long run (via genetic mutations
if necessary) to either equal phenotypic fitnesses or fixation of only one phenotype
was proved. The exact conditions for equilibration to occur were also pointed out.

In the case of dioecious populations, different phenotypes may have different
fitness values in males and females. In order to measure the mean phenotypic
fitnesses in the whole population, we must resort to the notion of reproductive value:

“If we consider the aggregate of an entire generation of . .. offspring it is clear that the
total reproductive value of the males in this group is exactly equal to the total value of
all the females, because each sex must supply half the ancestry of all future generations
of the species.” (Fisher, 1958, p. 159).

Therefore, in sexual populations, the evolution of phenotypes subject to sex-
differentiated frequency-dependent selection is entangled with the evolution of the
sex ratio. Although the notion of reproductive value suggests a definition of fitness
in sexual populations based on the sex ratio, such a fitness measure is intrinsically
frequency-dependent due to sex differences and cannot generally be treated like
standard fitnesses in monoecious populations. (See Lessard (1984) for general
two-sex haploid models which are shown to be formally equivalent to frequency-
dependent selection models for monoecious diploid populations.) For pure sex ratio
evolution models, we refer to Karlin & Lessard (1983, 1984). In these models, the
phenotype coincides with sex. Optimality properties of one-to-one population sex
ratios were shown to characterize a wide class of models with random mating.

The purpose of this paper is to unify two kinds of frequency-dependent selection:
frequency-dependent selection due to interactions between individuals and affecting
viability from conception to maturity, and frequency-dependent selection arising
from sex differences and sexual reproduction. For this purpose, we examine general
two-sex two-phenotype models, including a fertility model based on the phenotypes
of the parents. For all models considered, we assume that the phenotype is prob-
abilistically determined at a single autosomal locus in a dioecious diploid population
and we study the evolutionary patterns from the equilibrium configurations and
stability properties.

Frequency-Dependent Fertility Model Based On Two Phenotypes

Consider two phenotypic classes, C, and C,, segregating in a sexually reproducing
population, such that the reproductive success (i.e. fertility) of a mating pair depends
upon the phenotypic composition of the pair and possibly also on the phenotypic
frequencies in the whole population. Such hypotheses are particularly relevant for
species in which there is parental and/or social care of offspring.
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Introducing the quantities
pi=2 p; and z;= Y Pyvy
j=1 j=1

which represent the absolute frequencies of allele A; in all adults of a given generation
and in adults that are of phenotype C,, respectively, the recurrence system of
equations (1) reduces to

r_ zQ(w) + piR(w)
" wQ(w)+R(w)’

2= z{(Vz)i(a —2pn+8)+(Vp)i(p — 8)}+pi{(Vz)(pn —8)+( VP):'5}

fori=1,...,n, (2a)

' wQ(w)+ R(w)
fori=1,...,n, (2b)
where
Q(w)=wa+(1-2w)u—(1—w)$,
R(w)=wu +(1—w)§,
(Vz);i= Z) vyz; and (Vp),= 'E‘ 0;D;,

7= 1=

with P=(P1,~--,Pn), Z=(Z|,-.-,Z") and W=Z:=1 Z;.

The equations (2a) yield two classes of equilibria: (I) Q(w) =0, and (II) z; = p;w
for i=1,..., n. In the latter case, the companion equations (2b) lead to the com-
plementary condition (II') pw=p;(Vp); for i=1,..., n, which characterizes the
so-called genotypic equilibria entirely determined by the matrix V and the equilibrium -
allelic frequencies p,, . .., p,. The former class defines the phenotypic equilibria that
depend on the phenotype frequencies but may also involve supplementary genetic
constraints. The existence of phenotypic equilibria is not immediate and has not
been demonstrated in general for (22, b). (See, e.g. Karlin (1968, pp. 256-267) and
Boorman & Levitt (1980, pp. 72-74) for some special cases based on two allleles
with dominance of one of the alleles.) However the local stability properties of the
genotypic equilibria are analytically tractable and can suggest the global dynamics.

Consider a polymorphic genotypic equilibrium p* = (p¥,..., p}), namely

e V7, .

p —Z————:=](V_ll)k>0, fori=1,...,n (3)
where (V'1); is the ith component of the inverse matrix of V times the unit vector
1=(1,...,1). Note that if a polymorphic genotypic equilibrium p* exists, then the
corresponding equilibrium frequency w* for the phenotype C, is such that

w* = _; vijP:*, forj=1,...,n @)

Therefore every gene chosen at random belongs to a C, individual with probability
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w* and the allelic frequencies are the same in the phenotypic classes C, and C,.
A local stability analysis yields the following result

A polymorphic genotypic equilibrium p* is stable if and only if

the matrix || v; — v;, — vy + Va0 || 172, is negative definite in the 5)
case Q(w*)> 0 or positive definite in the case Q(w*)<0.

(See Appendix A for proofs).

The condition (5) gives the internal stability condition of any genotypic equilibrium
if we consider only the alleles that are represented at equilibrium.

Suppose that a mutant (i.e. not previously represented) allele A,., is introduced
into the population. Defining the quantity

Wtﬂ: Z vi,n-flp’ik’ (6)
i=1

the frequency p,., of A, near the equilibrium state p* and to a first order (linear)
approximation satisfies the recurrence relation

. [ wEaQ(w*)+ R(w¥)
n+1=— * * * n+l- (7)
w*Q(w*)+ R(w¥)
Therefore the frequency of A,., will increase near p* accordingly as
wi > wrif Q(w*)>0, or wi., <w*if Q(w*)<0. (8)

The condition (8) is the external instability condition for a genotypic equilibrium. It
says that a mutant allele destabilizes a genotypic equilibrium where Q is positive
if the marginal mutant frequency of C, exceeds the equilibrium frequency of C,,
or vice versa where Q is negative. Note that the mean fitnesses of the phenotypes
C, and G, in the fertility model (2) are

Fi(w)=wa+(1-w)u, and F,(w)=wu+(1-w)8, respectively, 9)

so that Q(w)= F,(w)— F,(w). Therefore, the function Q is positive or negative
accordingly as the mean fitness of C, exceeds or not the mean fitness of C,.

Frequency-dependent Two-phenotype Two-sex Model

Let the matrices V = v,]|7;=, and U=V =1 - v;||7;~, give the probabilities that
the genotypic compositions {A;A;}7;-, lead to the expression of the two possible
phenotypes C, and C,, respectively, in an infinite population. The phenotype-
determination matrices V and U — V are assumed to be independent of sex. However,
the phenotypes themselves are subject to sex-differentiated frequency-dependent
selection.

Let F;= F,(w) be the expectation for a female of phenotype C; of participating
in reproduction (i =1, 2) if w is the frequency of C, in the population and therefore
1—w is the frequency of C,. The corresponding selective functions for a male are
given by M;= M;(w) for i=1,2. Assume random mating and a 1:1 progeny sex
ratio at concepfion. If the frequencies of the ordered genotypes {A;A;}7;-, are
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denoted by {p;}i;-, in the female parental population and {g;};-, in the male
parental population, with corresponding allelic frequencies {p;}/-; and {g:}/-,,
respectively, the recurrence equations over two successive non-overlapping gener-
ations take the form

2}'-"P:j = (Pi‘lj +qui)[vijF1 +(1- vij)FZJ,
2Mgqj;= (Pin+I7jQi)[vijM| +(1~-v;)M,],

(10)
where
F=F(w)=wF,+(1-w)F,,
M=M(w)=wM,+(1-w)M,,

with w=w(p,q) =X}, vypig;- In terms of the allelic frequencies p; =Y., p; and
=Y, ,g;fori=1,...,n we have

2Fpi=p[Vq):(F, - F,)+ K]+ q[(Vp):,(F,- F,)+ F;),
2Mq;=p,[(Vq):(M,— M,)+ M,]+ g[(Vp):(M,— M)+ M,],

where p=(p1,...,Pn), 4=(41,-.., qn), (V)i =X -, vyp; and (V@);i=1 ., v;q;. In
particular, these equations entail the relation

2Fp;—(pi+q)F, 2Mgi—(pi+q)M,

(11)

12
Fl‘“Fz MI_MZ ( )

Hence at equilibrium, we must have for every i=1,...,n
PlQ2F - B)(M, — M,)+ My(F, — F))]1= q,{(2M — My)(F, - F,) + Fp(M, — M,)],
or equivalently, after easy algebraic manipulations,
pQ(w) = q.Q(w) (13)
where

Q(w)= Fi(w) — Fy(w)  M;(w)— My(w)
2F(w) 2M(w)

Therefore an equilibrium {p, q} for (11) must satisfy either (I) Q(w)=0 where
w=w(p, 11):22,-:; vypig;, or (II) p,=g; for all i, and then pw=p,(Vp); for i=
1,..., n. In our terminology, the equilibrium is either phenotypic or genotypic.
Note that the condition Q(w) =0 is not sufficient for equilibrium in (11) and a
deeper analysis is required. The occurrence of phenotypic equilibria can be checked
directly for some two-allele cases (see, e.g. O’Donald (1980) for a special case with
dominance and St Lawrence & O’Donald (1981) for a homozygote-heterozygote
scheme). For the multiallele case, we rely on the following general characterization.

If Q(w)=0, then there exists a non-genotypic equilibrium {p, q} for
(11) with w(p, §) = w if and only if there exist two genotypic equilibria
{p*, p*} and {p**, p**} such that w(p*, p*) <w < w(p**, p**). Actually
there exist a whole surface of phenotypic equilibria corresponding to
w and separating p* from p**. (See Appendix B for more details).



EVOLUTIONARY DYNAMICS OF SELECTION MODELS 335

On the other hand, the exact conditions for the existence and stability of genotypic
equilibria can be readily obtained. These conditions follow the scheme of the
previous model. Namely, a polymorphic genotypic equilibrium {p*, p*} for (11)
exists if and only if p* satisfies (3); the equilibrium is stable if the internal stability
condition (5) with the function Q of (13) and w* = w(p*, p*) holds; it is destabilized
by a mutant allele according to the external instability condition (8) (see Appendix
C).

For the two-sex two-phenotype model (11), a measure of the mean fitness of C; is
F(w)  Mi(w)
2F(w) 2M(w)’

so that Q(w) = F,(w)— F5(w) analogously to the previous model.

Fi(w)= fori=1,2, (15)

Maternal Inheritance Version of the General Two-sex Two-phenotype Model

Suppose that an A;A; mother is of phenotype C, with probability v; and C, with
probability 1—v; (i, j=1,..., n). Let w be the frequency of C, among all mothers
of a given generation. It is assumed that a female offspring from a pure C;-mother
has a fitness F;(w) while the corresponding fitness function for a male offspring is
M;(w) (i=1,2). The frequencies p; and g; of the ordered genotype A;A; (i,j=
1,...,n) in the female and male populations, respectively, are related over two
successive generations with random mating by the recurrence equations

2Fpj= “Z Pl v Fi + (1 — vy ) F5] + ’gzl\: Pigal vp Fy+ (1 — vy) F3)
=1 =1
(16)
2Mgq;; = UZ 1 Pin@il vacM, + (1 — vy ) M, ] + k.;_l Pigul M, + (1 —v) M,]
where F=wF,+(1—w)F, and M =wM,+(1—w)M, with w=Y7,_ vypu. If we
denote by p; and g; the frequencies of allele A; (i=1,..., n) in females and males,

respectively, and define z; = Z:=1 va P for i=1,..., n, then the recurrence system
can be written into the form

2Fpi=1z(F,— F,)+p;F,+q,F,

2Mg| = z;( M, — M,) + p;M, + q:M, (19)
2Fzi= [Zl’(Fl_F2)+piF2](Vq)i+qi[( Vz),(F,— F,)]1+(Vp),F..
In particular, for every i=1,...,n
FI_FZ MI—M2} {F2 M2}
't gl=z +pi—=t+—=t+g;
pira; z‘{ 2F T am | TPlaF Mm%

so that, at equilibrium, we must have

z{F1‘F2+M1"M2}= _{l_ﬂ_&}
‘1 2F 2M ' 2F 2M

Fl_FZ Ml_Mz
=P'. .

(20)

+
2F 2M
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The equilibria of (19) satisfying z¥=p¥w* for i=1,...,n have gqf=p¥=

pH(Vp*),/w* for i=1,..., n. These equilibria are genotypic in our terminology,
with the same allelic frequencies in males and females. It can be checked that a
polymorphic genotypic equilibrium with Q(w*)>0 where Q=(F,-F,)/
2F+(M,—M,)/2M is internally stable if the matrix [|vy— vin — Ui+ UnallLjoy is
negative definite and externally unstable following the introduction of a mutant
allele A,y if Y|, Uyne1 p¥F> w*. For the case Q(w*) <0, it suffices to replace the
quantities v; by ||1 —v;|| in the above conditions (see Appendix D for technical
details).

On the other hand, the non-genotypic equilibria {p, q, z} for (19) must satisfy
Q(W)=0where w=Y|_, Z. It can be argued as in Appendix B that such phenotypic
equilibria exist if and only if there exist two genotypic equilibria with associated
w* and w**, respectively, such that w*<w<w** Therefore the equilibrium
configurations are similar to the configurations of the previous two-sex two-
phenotype model (11).

Discussion

In a previous paper (Lessard, 1984), we considered frequency-dependent two-
phenotype selection models in monoecious random mating populations: two
phenotypes C, and C, whose frequencies in the population are w and 1—w,
respectively, have fitnesses assumed to be given by general functions F;(w) and
F,(w), respectively, that can take into account interactions between individuals from
conception to maturity and any other form of frequency-dependent selection based
on phenotype of offspring but independent of mating. In this case, if the phenotype
is probabilistically determined at a single multiallelic locus, the phenotypic equilibria
correspondong to the zeros of Q(w)= F,(w)— F,(w) with negative slope and the
phenotypic fixation states w =0 and w =1 such that Q(0) <0 and Q(1)> 0, respec-
tively, are evolutionarily attractive. An evolutionarily attractive state w* with domain
of attraction D,. is defined as a phenotypic equilibrium such that a population in
a phenotypic state w in D,. will evolve to w*, with the introduction of mutant
alleles if necessary. Once reached, an evolutionarily attractive state is stable as a
population phenotypic equilibrium against any mutation within the genetic system
under consideration.

In this paper, we have studied three different models involving two phenotypes
in dioecious populations in order to test the robustness of our previous results on
frequency-dependent selection and suggest some general principles on fitness calcu-
lation and evolutionary dynamics in sexual populations. In dealing with phenotypic
selection models with underlying genetic systems, there are three problems of
particular interest: (1) Existence and characterization of phenotypic equilibria
associated with equal mean phenotypic fitnesses; (2) Local stability conditions of
genotypic (non-phenotypic) equilibria arising from the underlying genetic structure
and conditions for the initial increase in frequency of mutant alleles near such
equilibria; (3) Global convergence to evolutionarily attractive states via allelic
mutation within the underlying genetic system. While global dynamical properties
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seem difficult to prove for models with general fertility schemes and/ or sex-differenti-
ated frequency-dependent selection, the local stability conditions at the non-
phenotypic equilibria can suggest the evolutionary tendencies.

For the fertility model (2) in which the fitness of an offspring depends on the
phenotypes of its parents and possibly also the frequencies of the phenotypes in
the parental generation in the large, the existence of phenotypic equilibria in the
general case is still an open problem. Nevertheless the condition (5) for internal
stability with the condition (8) for external instability of a genotypic equilibrium
implies (see, e.g. Kingman, 1961) that a non-phenotypic equilibrium where Q is
positive (i.e. where the mean fitness of phenotype C, exceeds the mean fitness of
phenotype C, with the formulas given in (9)) is stable if and only if the frequency
of C, is locally maximized at equilibrium. Symmetrically, in the case where Q is
negative, a non-phenotypic equilibrium is stable if and only if it corresponds to a
local maximum for the frequency of C, with respect to the underlying allelic
frequencies. Therefore, near a non-phenotypic equilibrium, the dynamical genetic
system locally favors an increase in the frequency of C, as long as C, has a larger
fitness and similarly for C,. This property suggests that the zeros from plus to minus
of Q(w)= F,(w)— F,(w), where w is the frequency of C, and 1—w the frequency
of ‘C, are evolutionary attractive at least in a weak sense. The same is true for w =20
if Q(0)<0 and w=1if Q(1)>0.

Note that the fertility model (2) is general enough to include cases of kin selection,
specifically those with parent-to-offspring fitness transfers as considered in Cavalli-
Sforza & Feldman (1978). Other cases with sib-to-sib interactions as studied in
Uyenoyama et al. (1980) are beyond the scope of application of our present analysis.

For the two-sex two-phenotype model (11) and the corresponding maternal
inheritance version (19), the function Q takes the form

Fl_Fz MI_MZ
= +
Q 2F 2M 1)

where F, and M, represent the mean fitnesses of C; (i =1, 2) in the female and male
populations, respectively, whose mean fitnesses are F and M, respectively. (M: F
is the sex ratio at maturity if we allume a 1: 1 sex ratio at conception.) This expression
for Q has an intuitive interpretation. In the model (11), if w; is the frequency of C;
offspring (i =1, 2), then the proportion of C; adult females will be w;F;/ F and the
proportion of C; adult males w;M;/ M. Under random mating, the frequency of C;
parents for the next generation will be

W, (—F—+£) i=1,2. (22)

Since w; is the probability that an offspring chosen at random is of phenotype C,,
the quantity in brackets in (22) is proportional to the probability of a C; offspring
of participation in reproduction (i=1,2). This quantity corresponds to the well-
known Shaw-Mohler formula (Shaw & Mohler, 1953). Observe that Q in (21) is
simply the difference between these quantities for C, and C,.
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In the case F,=1, F,=0, M, =0, M, =1, the phenotype coincides with sex (all
females being of phenotype C; and all males of phenotype C,) and

Q== (23)

where w is the proportion of females in the population. Such models in a multi-allele
context were introduced in Eshel & Feldman (1982) in order to study the evolution
of the sex ratio under genetic mutatioi. The existence conditions and the evolutionary
properties of one-to-one population sex ratio equilibria corresponding to w=1/2
were given in Karlin & Lessard (1983, 1984). Maternal inheritance versions were
also considered in this case and led to similar conclusions.

Our results in the case of general fitness functions extend our previous studies
on sex ratio evolution. Particularly interesting is the necessary and sufficient condi-
tion (14) for the existence of phenotypic equilibria: a phenotypic equilibrium
corresponding to a zero w* of Q exists if and only if there exist genotypic equilibria
on both sides of w*. Moreover a phenotypic equilibrium generally corresponds to
a surface of equilibrium allelic frequencies and those that are potentially evolutionary
attractive, apart from the fixation states, corresponds to the zeros from plus to minus
of Q. The analysis for the model (19) with maternal inheritance is more recondite
but leads to the same conclusions.

Models of sexual selection are subsumed in our general formulation (11). Pure
sexual selection arising from female preferences between two types of males in
competition as recently studied in Raper (1982) in a general multi-allele framework
corresponds to the case F, = F, with no selective differentials in females. See, e.g.
Karlin & Raper (1979), Eshel (1979), Charlesworth & Charlesworth (1981) for
examples of frequency-dependent fitnesses in males as consequences of sexual
selection. Some models taking also into account fitness differences in females were
considered in the framework of two allele one-locus genetic systems in O’Donald
(1980) and St Lawrence & O’Donald (1981). Our general conclusions apply to all
these models.

Models for the evolution of altruistic traits in populations subdivided into small
groups have also led to general fitness functions (see, e.g. Matessi & Jayakar, 1976;
Cohen & Eshel, 1976; Karlin & Matessi, 1983). Our frequency-dependent selection
model (11) is relevant to such cases even with sex-differentiated fitnesses.

Our definition of an evolutionary attractive equilibrium in the context of
frequency-dependent selection is linked to the notion of ESS. In Lessard (1984),
we showed that the evolutionary attractive states in monoecious random mating
populations correspond to ESS’s as originally defined in Maynard Smith & Price
(1973) by comparing payoff functions. The exact evolutionary properties of
phenotypic equilibria corresponding or not to ESS’s are generally more difficult to
establish for dioecious populations with underlying genetic systems. This paper is
an attempt to understand the evolutionary dynamics in such populations in a general
context of sex-differentiated frequency-dependent selection.

In Maynard Smith (1982) an ESS is defined at the phenotypic level as a strategy
that is better than any other once adopted by all members of a population. In a






340 S. LESSARD
APPENDIX A

Let p*=(pY, ..., p}) be a polymorphic genotypic equilibrium of (2) with w*=
(Vp*); for i=1,..., n. Writing p=p*+§, y=2/w=p*+m, and w=w*+y where
&, m, and vy are small perturbations, we have over two successive generations

3 1 R(w*)I w*Q(w*)I 0[¢&

",’ T [w*Q(w*) + R(w*)] RWH[I+V(p¥)] w*Q(w*)[I+V(p*)] 0|[n

¥ 0 0 o] Ly
+higher order terms (A1)

where V(p*)= D,.V/w*. (D, denotes the diagonal matrix with the components
of p* on the main diagonal.) Apart from 0, the eigenvalues for the linear terms in

(A1) are in the form
w*Q(w*)
’+{w*o<w*)+R(w*)} A (A2)

where A is an eigenvalue for V(p*). The corresponding right eigenvectors are in
the form (a&; b§; 0) where V(p*)§=A£. Only the casesE=(¢,,..., &) withY|_, &=
0 are relevant in (A1) since the components of p*+& always sum up to 1. This
eliminates the eigenvalue A =1 with associated right eigenvector p*. The other
eigenvalues A,, ..., A,_, of V(p*) are real (since V(p*) is the product of a symmetric
matrix with a diagonal matrix) and strictly less than 1 in absolute value (owing to
the Perron-Frobenius theory for positive matrices). Moreover these eigenvalues
have corresponding right eigenvectors £, ..., £~ whose components sum up to
0 (because they must be perpendicular to the left eigenvector associated with A =1
whichis1=(1,...,1)). We refer to Gantmacher (1959) for a review of matrix theory.

Therefore in the case Q(w*)> 0, the relevant eigenvalues in (A1) are all less than
1 in absolute value if and only if the eigenvalues A,,...,A,_, of V(p*) are all
negative, or equivalently,

n—1 n
Z (Uij — U~ vnj+ vnn)g(ik)ék) = Z vl:if(ik) )('k)
ij=1 ij=1

n g(,k)
=w* T 2 (V(p*)EY),
i=1 Pi

(A3)

<0

for the corresponding right eigenvectors £*=(£9, ... &) with ¢F=
—g0 —. . —¢® for k=1,...,n—1. These (n—1) vectors being independent, the
matrix || v; — v, — Uy + v, )| 1721 is actually negative definite everywhere if (A3) holds.

In the case Q(w*)<0, we get by symmetry the stability condition [(1-v;)—
(1= ) — (1= vy) + (1 — v,,)| ;2,1 negative definite, i.e. [|v; — Vi, — Up + Vpa || 7741 POSi-
tive definite.
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APPENDIX B
We first observe that

FI—F2+M|_M2=

+
Q 2F M

0 (B1)

if and only if

F M _F M
2F 2M 2F 2M ! (B2)

where F=wF,+ (1 - w)F, and M = wM,+ (1 —w)M, such that in all circumstances

F, M,) (F2 Mz)
L) -w) 2+ 2 ) =
w(ZF oM (1-w) + 1.

Under the condition Q =0, the recurrence equations (11) yield
pit+qi=p+gq fori=1,...,n (B3)
and then there is equilibrium if and only if
pi=pi(Hq);+q(Hp); fori=1,...,n (B4)

where

(FL-FK)V+FRU
2F

H=

with the notation U for the matrix that has all unit entries. Note that the entries of
H are all between 0 and 1 owing to (B2). Henceforth the functions F;, F,, and F
are evaluated at a zero w of Q and the equilibrium condition (B4) is associated
with the condition w(p, q)=w. It is also assumed that F,<F;.at w (relabel the
phenotypes if necessary).

The system of equations (B4) is in a form that was studied in Karlin and Lessard
(1984). In matrix notation, we have

p=Bu(q)p with By(q)=Dy,+DH (B5)

(D, and Dy, are the diagonal matrices with q and Hg, respectively, on the main
diagonal.) In such a case, the Perron-Frohenius theory for non-negative matrices
informs us that By(q) has 1 as its principal eigenvalue (the largest eigenvalue in
magnitude) with p as a principal right eigenvector. Writing p;(q) for the principal
eigenvalue of By(q) for every frequency vector q (i.e. a vector whose components
are all non-negative and sum up to 1), the equilibrium relation (B4) is characterized
by the equation

pufg)=1. (B6)

On the other hand, it can be shown (see Karlin & Lessard, 1984) that for every
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genotypic equilibrium p* = (p¥,..., p¥) for H (or equivalently for V) we have

pu(p*) = max {2 ;l p¥(Hp*); and (Hp*), for all k such that p’,f=0},

=2 5 pH(HPY), if pu(p®)>1, (B7)

F,— FE)w(p*, p)+F, . .
—_-( I(FZ—)F(l))W-l:-Il 2 if w(p*, p*) < w.
1 2 2

(Note that (Hp*), <1 for all k since the entries of H are between 0 and 1 while
F,<F, by assumption.) Moreover we have also the property that every local
maximum (and in particular the global maximum) of py; (q) with respect to frequency
vectors corresponds to a genotypic equilibrium.

Similarly, (BS) and (B6) are equivalent to

q9=By-u(p)g and py_u(p)=1 (B8)

respectively, and every genotypic equilibrium p** (in particular the equilibrium

corresponding to the global maximum of py_x(p)) With py_x(p**) > 1 is such that
w(p**, p**) > W, and vice versa.

We are now ready to conclude. If a non-genotypic equilibrium associated with

w exists, then the function py(q) and py_y(p) take the value 1 at some frequency

vectors p and q, and their global maxima over all frequency vectors exceed 1. The
genotypic equilibria corresponding to these maxima, p* and p**, respectively, satisfy

w(p*, p*) <W < w(p**, p**). (B9)
Conversely, if two genotypic equilibria p* and p** satisfy (B9), then (B7) yields
pu(p*)> 1> py (p*)

and the continuous function py(q) takes the value 1 corresponding to w somewhere
on every continuous path of frequency vectors joining p* and p**.

APPENDIX C

Writing p=p*+£ and q=p*+m in (11) where p* is a polymorphic genotypic
equilibrium, we have over two successive generations

1 [Bue(p*) Bye(p* )
[ﬁ,] = [BG‘E:*; BZ-E:*;][EI] + higher order terms, (C1)
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where
By«p*)=1/2+ D,,.H"=

Bo+(p*)=1/2+ D,.G*

_(F}-FHV+F}U
2F*

(M¥—M*V+M*U
2M*

H*

G*=

with “*” meaning an evaluation at p* or w* = w(p*, p*).

The relevant eigenvalues for internal stability of p* are those of By-(p*)+
Bg+(p*) = B y+.c+(p*) with right eigenvectors whose components sum up to 0. These
eigenvalues are in the form

1+w*Q*A
where
F*_F* M*_ M*
x_11 2 + 1 2
Q 2F* 2M*

and A is an eigenvalue for V(p*)= D,.V/w*. The rest of the analysis for internal
stability follows from Appendix A.

For external instability, it suffices to notice that the frequencies p,+, and g,, of
a mutant allele A, ., near p* satisfy

Prns1F Gner = (Prsr + @i )[1+(wihi, — w*) Q* 1+ higher order terms,

where w¥,, is defined in (6).

APPENDIX D

Defining the variables £ =p—p*, { =q—p*, n=2/w—p* and y = w— w™ where p*
with associated w* is a polymorphic genotypic equilibrium of (19), the linear terms
for the transformation of these variables over two successive generations form the

matrix

[ F* 1 w*(F¥— F¥) ]
2F*I 21 2F* I 0
M 1, wME-MD)

2M* 2 2M*

Fz * 1 W Fl —‘Fz)
~{I+V(p*) ————2{I+V(p*

SEIHVEN} Ve oIV 0
0 0 0 0_

where “*” indicates an evaluation at the genotypic equilibrium p* and V(p*)=
D, V/w*. Trying eigenvectors in the form (a§; b§; c§; 0) where £ is an eigenvector
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for V(p*), the relevant eigenvalues correspond to the eigenvalues of

[ F3 i w*(Ff—F%) ]
2F* 2 2F*
M3 1 wH*(M¥—-M¥)
2M* 2 2M*

(D2)
F3
| 2F*

w*(Ft~F3)
2F*

(14+1) %(1“) (141)
J

where A is an eigenvalue of V(p*) different from 1. Apart from 0, the relevant
eigenvalues are in the form

*(F¥ _ % *( ¥ _ E¥) |2
%{H———’\w (21‘:* FZ):t\/[l———Aw (f;,* F ] +2AQ*} (D3)

These quantities are less than 1 in magnitude if and only if AQ*<0 for every
possible A.

For a mutant allele A,.,, the relevant eigenvalues are those of (D2) with A
replaced by (wk,,/w* —1) where wk,, is the quantity defined in (6). Therefore the
condition for external instability is (w},, — w*)Q*> 0.



