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RECURRENCE EQUATIONS FOR THE PROBABILITY
DISTRIBUTION OF SAMPLE CONFIGURATIONS
IN EXACT POPULATION GENETICS MODELS
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Abstract

Recurrence equations for the number of types and the frequency of each type in a random
sample drawn from a finite population undergoing discrete, nonoverlapping generations
and reproducing according to the Cannings exchangeable model are deduced under the
assumption of a mutation scheme with infinitely many types. The case of overlapping
generations in discrete time is also considered. The equations are developed for the
Wright–Fisher model and the Moran model, and extended to the case of the limit
coalescent with nonrecurrent mutation as the population size goes to ∞ and the mutation
rate to 0. Computations of the total variation distance for the distribution of the number of
types in the sample suggest that the exact Moran model provides a better approximation
for the sampling formula under the exact Wright–Fisher model than the Ewens sampling
formula in the limit of the Kingman coalescent with nonrecurrent mutation. On the
other hand, this model seems to provide a good approximation for a �-coalescent with
nonrecurrent mutation as long as the probability of multiple mergers and the mutation
rate are small enough.

Keywords: Ewens sampling formula; coalescent theory; Cannings model; Wright–Fisher
model; Moran model; exchangeable population genetics model; �-coalescent

2010 Mathematics Subject Classification: Primary 60C05
Secondary 92D15

1. Introduction

The Ewens sampling formula (see Ewens (1972), with an addendum by Karlin and McGregor
(1972), and see Ewens (1990), (2004, pp. 111–119) for historical perspectives) gives the joint
distribution of the number of types with the number of copies of each type in a random sample
taken from a large population under neutral mutation allowing for infinitely many possible
types. This formula was first deduced under the assumption of a binomial reproduction scheme
according to the Wright–Fisher model for a finite haploid population undergoing discrete,
nonoverlapping generations as the population size N goes to ∞ and the mutation rate per
individual per generation u goes to 0, such that the scaled mutation rate with N generations
taken as the unit of time tends to a finite limit θ/2. More generally, the formula applies to
a sample drawn at random from a large population reproducing according to the Cannings
exchangeable model in discrete time (see Cannings (1974)), as long as the limit coalescent
backward in time as the population size N goes to ∞, with c−1

N time steps taken as the unit
of time, is the Kingman coalescent (see Kingman (1982)). Here cN represents the probability
that two individuals randomly chosen at the same time are copies of the same individual one
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time step back. This is known to be the case if and only if the rate of triple mergers tends to 0
(see Möhle (2000) and Möhle and Sagitov (2001)). This is the case, for instance, for the Moran
model with overlapping generations with one individual replaced at a time (see Moran (1958)).

The Ewens sampling formula comes up in other biological contexts, e.g. in birth-and-death
processes with immigration from a large mainland population (see Joyce and Tavaré (1987) and
Tavaré (1989)) or in the Wright-island model for populations subdivided into a large number of
demes (see Wright (1931) and Moran (1959)), with migration playing the role of mutation and
identity-by-descent to a common ancestor defining types. When dealing with local populations,
it is particularly relevant to relax the assumptions of large population size and small migration
rate. This has been considered with local reproduction of the Wright–Fisher or Moran type
(see Wakeley (2003), Wakeley and Takahashi (2004), and Fu (2006)) for instance, and exact
sampling formulae for these cases have ascertained diffusion approximations for finitely-many-
islands models as the number of demes goes to ∞ (see Lessard (2007)). The establishment of
these formulae relied on a direct combinatorial approach previously used to deduce the Ewens
sampling formula (see Griffiths and Lessard (2005), and see Hoppe (1984), (1987) for related
arguments in Polya-like urn models). The approach has been extended to diploid populations
(see Lessard (2009)).

In this paper we consider the exact Cannings model for a finite population and we deduce
recurrence equations for the joint distribution of the number of types with the number of copies
of each type in a random sample, as well as the marginal distribution for the number of types. We
develop the equations in the cases of the Wright–Fisher model and the Moran model. Passing
to the limit of large population size and small mutation rate yields recurrence equations in the
case of a general coalescent as well as in the particular case of a �-coalescent, which allows
for multiple mergers but not for simultaneous mergers, in agreement with previous studies
(see Möhle (2006), and see Dong et al. (2007) and Freund and Möhle (2009) for more recent
studies). The total variation distance for the distribution of the number of types is considered to
compare the exact distribution in the case of the Wright–Fisher model to the exact distribution
in the case of the Moran model and to the distribution predicted by the Ewens sampling formula.
This distribution is also compared to the distribution obtained in the case of a �-coalescent
modeling rare events of replacement of a fixed proportion of the population by the descendants
of a single individual, as studied in Eldon and Wakeley (2006).

2. Recurrence equation for the probability of an ordered sample configuration

Consider a population ofN haploid individuals undergoing discrete generations, and suppose
that there are infinitely many possible types. Under neutrality, the N individuals of any
given generation, arbitrarily labeled from 1 to N , are supposed to leave descendants in the
next generation, possibly including some of the parents themselves, in numbers given by
exchangeable random variables z1, . . . , zN , respectively, such that the total population size
remains unchanged, that is, z1 +· · ·+ zN = N (see Cannings (1974)). From one generation to
the next, mutation events creating entirely novel types are assumed to occur such that the number
of mutant descendants left by the N parents, denoted by µ1, . . . , µN , are also exchangeable
random variables. Then, the number of nonmutant descendants left by the N parents, denoted
by ν1, . . . , νN , are exchangeable and given by νj = zj −µj for j = 1, . . . , N . More precisely,
the N two-dimensional random variables (µ1, ν1), . . . , (µN, νN), with µj + νj = zj for
j = 1, . . . , N , are exchangeable.

Letp(n), where n = (n1, . . . , nk)with |n| = ∑k
i=1 ni = n, be the stationary probability of a

particular ordered sample configuration with multiplicities of types given by n. More precisely,
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this is the probability that a sample of n individuals drawn at random without replacement in
any given generation of the population at equilibrium exhibits k types, arbitrarily labeled from
1 to k with type i represented exactly ni times at given positions for i = 1, . . . , k, once the
sample is arbitrarily ordered. Note that

p0(n) = n!p(n)∏k
i=1 ni !

(1)

is the corresponding probability for labeled types at any positions, and that

p∗(n) = p0(n)∏n
j=1 bj (n)!

(2)

is the corresponding probability for unlabeled types at any positions. Here bj (n) represents
the number of types represented j times in a sample with multiplicities of types given by
n = (n1, . . . , nk), that is, the number of indices i such that ni = j . For instance, p0(2, 1, 1)
is the probability of all the ordered sample configurations (1, 2, 2, 3), (3, 2, 2, 1), (2, 2, 1, 3),
(2, 2, 3, 1), (1, 3, 2, 2), (3, 1, 2, 2), (2, 1, 3, 2), (2, 3, 1, 2), (1, 2, 3, 2), (3, 2, 1, 2), (2, 1, 2, 3),
(2, 3, 2, 1), each one being of probability p(2, 1, 1), while p∗(2, 1, 1) = p0(2, 1, 1)/(2! 1! 1!)
is the probability of three types in a sample of size 4, two types being represented once and one
type being represented twice.

Condition on coalescence events involving lineages of sampled individuals of the same type
and mutation events occurring on lineages associated with types represented once in the sample
from one generation to the previous generation. Then the probability of a particular ordered
sample configuration with multiplicities of types given by n can be expressed in the form

p(n) =
∑

0≤l≤n

q(n, l)p(n − l), (3)

with the convention that p(0) = 1, where l = (l1, . . . , lk), with 0 ≤ li ≤ ni , but li = ni
possible only if ni = 0 or 1 for i = 1, . . . , k, gives the number of individuals of each type lost
in one generation backward in time as a result of coalescence or mutation events. Therefore,
n−l gives the multiplicities of types in the ordered configuration of the parents of the nonmutant
descendants. Note that l = |l| = ∑k

i=1 li is the total number of coalescence or mutation events,
while li = ni = 1 corresponds to the mutation event that gave rise to type i for i = 1, . . . , k.
Moreover, q(n, l) represents the probability that n sampled individuals arranged in a specific
order and partitioned into labeled subsets of sizes n1, . . . , nk , respectively, are exact copies
of n − l parents arranged in a specific order and partitioned into labeled subsets of sizes
n1 − l1, . . . , nk − lk , respectively, with the convention that a mutant individual is not an exact
copy of any parent (see Figure 1).

Explicitly, we have

q(n, l) =
(
N

n − l

)(
N

n

)−1 ∑
(ai,r )

E

(
(M)m

k∏
i=1

ni−li∏
r=1

(
νi,r

ai,r

))
, (4)

where νi,r stands for the number of nonmutant descendants left in the next generation by a parent
of type i for r = 1, . . . , ni − li , while M = ∑N

j=1 µj designates the total random number of
mutant descendants among whichm are sampled and labeled. In fact, νi,r can be replaced with
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Figure 1: Ordered sample of n = 10 individuals exhibiting k = 5 types labeled from 1 to 5 with
multiplicities n1 = 4, n2 = 1, n3 = 3, n4 = 1, n5 = 1 in the individuals themselves and n1 − l1 = 2,
n2 − l2 = 0, n3 − l3 = 1, n4 − l4 = 0, n5 − l5 = 1 in the n− l = 4 parents of the nonmutant individuals.

A mutation event is indicated by a black circle on a line of descent.

νr + ∑i−1
j=1(nj − lj ), since the variables ν1, . . . , νN are exchangeable, while m represents the

number of types i such that li = ni = 1. This may occur if and only if ni − li = 0 under the
constraint that ni = li is possible only if ni = 0 or 1, so that

m =
∑

{i : ni−li=0}
ni.

Moreover, (ai,r ) designates an array of positive integers satisfying

ai,1 + · · · + ai,ni−li = ni

for all i such that ni − li ≥ 1. In (4) we used the notation
(
N

n

)
= N !
(
∏k
i=1 ni !)(N − n)!

for the multinomial coefficient,

(M)m = m!
(
M

m

)
= M(M − 1) · · · (M −m+ 1)

for the falling factorial, and the convention that

ni−li∏
r=1

(
νi,r

ai,r

)
= 1

whenever ni − li = 0.
Equation (4) can be deduced by ordering theN descendants of a given generation as follows:

first order all the mutant descendants and then order the nonmutant descendants from the N
parents in turn. The denominator in (4) is obtained by sampling in turn without replacement
subsets of ni descendants for i = 1, . . . , k. The numerator in (4) is obtained by sampling in turn
without replacementmmutant descendants and then subsets of the nonmutant descendants from
ni − li parents, with at least one descendant per parent and a total of ni nonmutant descendants
for i = 1, . . . , k. Moreover, the parents of subsets of nonmutant descendants are all different.

Note that, using an inclusion–exclusion argument and the exchangeability property as in
Möhle (2004), the probability of no mutation or coalescence event affecting the sampled
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individuals from one generation to the previous generation, which depends on the sample
size n, is given by

q(n, 0) = E

( n∏
r=1

νr

)
=

n∑
j=1

(−1)n−j
(
n

j

)
E

((∑j
r=1 νr

n

))
. (5)

Substituting (5) into (3), rearranging terms, and defining

Q(n, l) = q(n, l)

1 − q(n, 0)
, (6)

which is a conditional probability given that at least one event of coalescence or mutation affects
sampled individuals from one generation to the previous generation, we obtain the following
result.

Result 1. The probability of a particular ordered sample configuration in the Cannings model
with infinitely many types satisfies the recurrence equation

p(n) =
∑

0<l≤n

Q(n, l)p(n − l). (7)

The summation is over l = (l1, . . . , lk), 0 ≤ li ≤ ni for i = 1, . . . , k, with a strict inequality
on the left-hand side for some i such that l = ∑k

i=1 li > 0 and an equality possible on the
right-hand side only if ni = 0 or 1.

Corollary 1. Considering all generations backward in time with at least one event of coales-
cence or mutation affecting the ancestry of the original sample, we have

p(n) =
n∑

τ∗=1

∑
(lτ )

τ∗∏
τ=1

Q

(
n −

τ−1∑
σ=1

lσ , lτ

)
.

The summation is over a number of steps backward in time τ ∗ going from 1 to n and over all
histories of coalescence or mutation events represented by a sequence (lτ ). The sequence (lτ )
is compatible with an ordered sample configuration with multiplicities of types given by n, that
is, satisfying 0 < lτ ≤ n − ∑τ−1

σ=1 lσ as in Result 1 for τ = 1, . . . , τ ∗, with
∑τ∗
σ=1 lσ = n.

Remark. Substituting (1), (2), (4), and (6) into recurrence equation (7), and using the identity
M = N − ∑N

j=1 νj and the exchangeability property of ν1, . . . , νN , it has been checked that
∑

n1≥···≥nk≥0
n1+···+nk=n

p∗(n) = 1 (8)

for n = 2, 3, 4 from explicit expressions for p∗(n) (see Appendix A).

3. Recurrence equation for the number of types in the sample

The probability that a sample of size n contains exactly k different types for 1 ≤ k ≤ n can
be expressed as

fn(k) =
∑

n1≥···≥nk≥1
n1+···+nk=n

p∗(n). (9)
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Therefore, a recurrence equation for fn(k) could be deduced from the recurrence equation for
p(n) given in Result 1, since p∗(n) is related to p(n) through (1) and (2).

An alternative approach is to resort to arguments similar to those previously used. Noting
that the number of mutation events is necessarily less than or equal to k with equality possible
only if k = n, while the number of coalescence events is always bounded by n− k, we obtain
the recurrence equation

fn(k) =
k−1+δn,k∑
m=0

n−k∑
c=0

h(n,m, c)fn−m−c(k −m), (10)

with the convention that f0(0) = 1, and δn,k = 1 if k = n and 0 otherwise. Here h(n,m, c) is
the probability ofm mutation events and c coalescence events without mutation in a sample of
size n from one generation to the previous generation. This probability is given explicitly by

h(n,m, c) =
(
N

n− l

)(
N

n

)−1 ∑
(ar )

E

((
M

m

) n−l∏
r=1

(
νr

ar

))
, (11)

where l = m+ c and (ar) is an array of n− l positive integers satisfying

a1 + · · · + an−l = n−m.

When m = n and c = 0, we have

h(n, n, 0) = E

((
M

m

))(
N

n

)−1

.

Let us define

H(n,m, c) = h(n,m, c)

1 − h(n, 0, 0)
, (12)

where h(n, 0, 0) = E(
∏n
r=1 νr), which is a conditional probability given that at least one event

of coalescence or mutation affects the sample from one generation to the previous generation.
Then, rearranging the terms in (10) yields the following result.

Result 2. The probability for the number of types in a sample under the Cannings model with
infinitely many types satisfies the recurrence equation

fn(k) =
k−1+δn,k∑
m=0

n−k∑
c=δm,0

H(n,m, c)fn−m−c(k −m), (13)

where δ designates the Kronecker delta.

Corollary 2. Considering all generations backward in time with at least one event of coales-
cence or mutation affecting the ancestry of the original sample, we obtain

fn(k) =
n∑

τ∗=1

∑
(mτ ,cτ )

τ∗∏
τ=1

H

(
n−

τ−1∑
σ=1

mσ −
τ−1∑
σ=1

cσ ,mτ , cτ

)
,

where mτ ≥ 0 and cτ ≥ 0, τ = 1, . . . , τ ∗, with at least one strict inequality, with mτ∗ > 0,
cτ∗ = 0,

∑τ∗
τ=1mτ = k, and

∑τ∗
τ=1 cτ = n− k.
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Remark. Explicit expressions for fn(k) can be obtained recursively by substituting (11) and
(12) into (13), or, equivalently, by using (9). Then, owing to (8), the identity

∑n
k=1 fn(k) = 1

is ascertained at least for n = 2, 3, 4.

4. Nonoverlapping generations

In this section we consider the case of nonoverlapping generations with independent mutation
events creating entirely novel types for descendants with probability u per descendant. The
numbers of nonmutant descendants left by the N parents of a given generation, denoted by
ν1, . . . , νN , given the total numbers of descendants left by theN parents, denoted by z1, . . . , zN ,
which are assumed to be exchangeable, are independent random variables that follow a binomial
distribution with parameters z1, . . . , zN , respectively, and 1 − u.

Considering n parents in a given generation and conditioning on the total numbers of
descendants that they leave in the next generation, we obtain

E

( n∏
r=1

νr

)
= (1 − u)n E

( n∏
r=1

zr

)
.

More generally, we have

E

(
(M)m

n−l∏
r=1

(νr )ar

)
= um(1 − u)n−m(N − n+m)m E

(n−l∏
r=1

(zr )ar

)
,

with the notation (x)r = x(x − 1) · · · (x − r + 1) for the falling factorial, where a1, . . . , an−l
are positive integers satisfying

∑n−l
r=1 ar = n−m. This can be checked by considering the

conditional probability generating function

G(s, t | z) = E

( N∏
j=1

s
µj
j t

νj
j

∣∣∣∣ z1, . . . , zN

)
=

N∏
j=1

(sju+ tj (1 − u))zj ,

where s = (s1, . . . , sN ), t = (t1, . . . , tN ), and z = (z1, . . . , zN). Then, the partial derivative
∂nG(s1, t | z)/∂sm∂t

a1
1 · · · ∂tan−ln−l , where 1 = (1, . . . , 1) is the N -dimensional unit vector,

evaluated at s = 1 and t = 1, yields

E

(
(M)m

n−l∏
r=1

(νr )ar

∣∣∣∣ z1, . . . , zN

)
= um(1 − u)n−m(N − n+m)m

n−l∏
r=1

(zr )ar . (14)

Taking the expected value with respect to z in (14) gives the desired result. Similarly, we have

E

(
(M)m

k∏
i=1

ni−li∏
r=1

(νi,r )ai,r

)
= um(1 − u)n−m(N − n+m)m

× E

( k∏
i=1

ni−li∏
r=1

(zi,r )ai,r

)
,

under the condition that
∑k
i=1

∑ni−li
r=1 ai,r = n−m. This is the case for the array (ai,r ) in (4).
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Finally, using the identities (N − n + m)m(N − n)! = (N − n + m)! and
∏k
i=1 ni ! =∏k

i=1(ni −mi)!, where mi = 1 if ni = li = 1 and 0 otherwise, we obtain

h(n,m, c) =
(
N
n−l

)(
n
m

)
um(1 − u)n−m

∑
(ar )

E
(∏n−l

r=1

(
zr
ar

))
(
N
n−m

)
for the probability in (11) and

q(n, l) =
(
N

n−l

)
um(1 − u)n−m

∑
(ai,r )

E
(∏k

i=1
∏ni−li
r=1

(
zi,r
ai,r

))
(
N

n−m

)
for the probability in (4), where m = (m1, . . . , mk) and m = ∑k

i=1mi . Therefore, we obtain
the following result.

Result 3. In the case of nonoverlapping generations with infinitely many types, the coefficients
in the recurrence equations of Results 1 and 2 are given by

Q(n, l) =
(
N

n−l

)
um(1 − u)n−m

∑
(ai,r )

E
(∏k

i=1
∏ni−li
r=1

(
zi,r
ai,r

))
(
N

n−m

)(
1 − (1 − u)n E

(∏n
r=1 zr

))
and

H(n,m, c) =
(
N
n−l

)(
n
m

)
um(1 − u)n−m

∑
(ar )

E
(∏n−l

r=1

(
zr
ar

))
(
N
n−m

)(
1 − (1 − u)n E

(∏n
r=1 zr

)) ,

respectively, where l = m+ c.

Remark. The coefficients in Result 3 can be obtained directly by conditioning on all the
mutation events affecting sampled descendants and the total numbers of descendants left by
their parents.

5. Wright–Fisher model

In the case of nonoverlapping generations with a reproduction scheme according to the
Wright–Fisher model (see Fisher (1930, pp. 83–96) and Wright (1931)), the random vector
(z1, . . . , zN) for each generation follows a multinomial distribution with parameters N and
(1/N, . . . , 1/N), whose probability generating function is

G(s) = E

( N∏
j=1

s
zj
j

)
=

(
1

N

N∑
j=1

sj

)N
,

where s = (s1, . . . , sN ). Therefore, we obtain

E

( n∏
r=1

zr

)
= ∂n

∂s1 · · · ∂snG(s)
∣∣∣∣
s=1

= (N)n

Nn
.

More generally, we have

E

(n−l∏
r=1

(zr )ar

)
= ∂n

∂s
a1
1 · · · ∂san−ln−l

G(s)

∣∣∣∣
s=1

= (N)n−m
Nn−m , (15)
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if a1, . . . , an−l are positive integers satisfying
∑n−l
r=1 ar = n−m, and similarly

E

( k∏
i=1

ni−li∏
r=1

(zi,r )ai,r

)
= (N)n−m

Nn−m , (16)

if ai,r ≥ 1 for all (i, r) with 1 ≤ r ≤ ni − li and
∑k
i=1

∑ni−li
r=1 ai,r = n−m. On the other

hand, we have
1

(n− l)!
∑
(ar )

(n−m)!∏n−l
r=1 ar !

= S
(n−l)
n−m

and ∑
(ai,r )

(
∏k
i=1(ni)li )

(
∏k
i=1

∏ni−li
r=1 ai,r !)

=
k∏
i=1

S(ni−li )ni
,

where S(r)n denotes the Stirling number of the second kind, which represents the number of
ways that a set of n distinct elements can be partitioned into r nonempty subsets (see, e.g.
Abramowitz and Stegun (1965, p. 824)). Substituting the above expressions and the identity
(N)n−m(N − n+m)! = (N)n−l (N − n+ l)! into Result 3 yields the following result.

Result 4. In the case of the Wright–Fisher model with infinitely many types, the coefficients in
the recurrence equations of Results 1 and 2 are given by

Q(n, l) = (Nu)m(1 − u)n−m(N)n−l
∏k
i=1 S

(ni−li )
ni

Nn − (1 − u)n(N)n

and

H(n,m, c) =
(
n

m

)
(Nu)m(1 − u)n−m(N)n−lS(n−l)n−m

Nn − (1 − u)n(N)n
, (17)

respectively, where l = m+ c.

6. Moran model

In the case of overlapping generations in discrete time, the exchangeable random variables
z1, . . . , zN with z1 + · · · + zN = N represent the numbers of descendants left by the N
individuals of the population in one time step, including the individuals that survive. Assuming
that a parent leaving any new descendant survives, that only the new descendants can mutate,
and that all mutation events are independent and each one occurs with the same probability u,
the only difference with the case of nonoverlapping generations is that the variable νr −1 given
zr for zr ≥ 1 follows a binomial distribution with parameters zr−1 and 1−u for r = 1, . . . , N .

In the case of the Moran model (see Moran (1958), (1962, pp. 78–85)), the vector

z = (z1, z2, z3, . . . , zN)

is a random permutation of (2, 0, 1, . . . , 1) with probability (N − 1)/N , and (1, . . . , 1) other-
wise. This models a population of size N in which, at each time step, an individual is chosen
at random to produce one offspring and this offspring replaces one of the individuals of the
population chosen at random, not excluding the parent of the offspring. Moreover, it is assumed
that the offspring produced can mutate with probability u independently of everything else.
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Conditioning on the distribution of z, we find that

E

( n∏
r=1

νr

)
= 1 − n(n− 1 + u)

N2 − n(N − n)u

N2 ,

since the variable
∏n
r=1 νr takes the value 0 with probability (n(N − 1 + u))/N2, the value 2

with probability (n(N − n)(1 − u))/N2, and the value 1 otherwise. Moreover, only one event
of coalescence or mutation can occur at a time, so that

Q(n, l) = 0

unless l = ej , the standard j th unit vector (that is, lj = 1 and li = 0 for all i �= j ) for some
1 ≤ j ≤ k. In this case, if nj = 1 then there is mutation of type j one generation backward in
time and no other mutation event (m = 1) or coalescence event involving other types (ai,r = 1
for all i �= j ), so that

E

(
(M)m

k∏
i=1

ni−li∏
r=1

(νi,r )ai,r

)
= E

(
M

n−1∏
r=1

νr

)
= (N − n+ 1)u

N
,

sinceM
∏n−1
r=1 νr takes the value 1 with probability ((N−n+1)u)/N and the value 0 otherwise.

On the other hand, if l = ej with nj > 1 then there is coalescence of two lineages of type j
one generation backward in time and no other coalescence event (ai,r = 2 for one and only one
r for k = j and 1 otherwise) or mutation event (m = 0), so that

E

(
(M)m

k∏
i=1

ni−li∏
r=1

(νi,r )ai,r

)
= E

(
ν1(ν1 − 1)

n−1∏
r=2

νr

)

= 2(N − n+ 1)(1 − u)

N2 ,

since ν1(ν1 − 1)
∏n−1
r=2 νr takes the value 2 with probability ((N − n+ 1)(1 − u))/N2 and the

value 0 otherwise.
Moreover, we note that there are nj − 1 arrays (ai,r ) satisfying the above conditions. In

such circumstances, (4) and (6) lead to

Q(n, ej ) = njNu

n(n− 1 + (N − n+ 1)u)

if nj = 1 and

Q(n, ej ) = nj (nj − 1)(1 − u)

n(n− 1 + (N − n+ 1)u)

if nj > 1.
Multiplying all terms for a history of coalescence or mutation events represented by a

sequence of standard unit vectors (lτ ) compatible with an ordered sample configuration with
multiplicities given by n, that is, satisfying 0 < lτ ≤ n − ∑τ−1

σ=1 lσ for τ = 1, . . . , τ ∗, with∑τ∗
σ=1 lσ = n, we obtain

(
∏k
i=1 ni !)(

∏k
i=1(ni − 1)!)Nkuk(1 − u)n−k

n! (∏n
r=1(r − 1 + (N − r + 1)u))
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for
∏τ∗
τ=1Q(n − ∑τ−1

σ=1 lσ , lτ ) if τ ∗ = n, and 0 otherwise. Moreover, the number of possible
histories with τ ∗ = n is n! /(∏k

i=1 ni !) . Therefore, introducing the scaled mutation rate θ
defined as

θ = Nu

1 − u

and the notation

θ(n) =
n∏
r=1

(θ + r − 1)

for the rising factorial, Corollary 1 leads to the following result.

Result 5. The probability of a particular ordered sample configuration in the Moran model in
discrete time with infinitely many types is given by

p(n) = θk
∏k
i=1(ni − 1)!
θ(n)

. (18)

Remark. Result 5 is in agreement with Trajstman (1974), who deduced the stationary distribu-
tion in the whole population assuming that the offspring produced at each time step can replace
any other individual chosen at random, including the parent, with θ defined as Nu/(1 − u).
See, e.g. Ewens (2004, pp. 118, 340) for a discussion and some perspectives.

Remark. For the number of types in the sample, (1), (2), (9), and (18) yield

fn(k) = θk|s(k)n |
θ(n)

, (19)

where

|s(k)n | =
∑

n1≥···≥nk≥1
n1+···+nk=n

n!
(
∏k
i=1 ni)(

∏n
j=1 bj (n)!)

is the unsigned Stirling number of the first kind that represents the number of permutations of
n elements which contain exactly k permutation cycles. This is a well-known formula (see,
e.g. Ewens (2004, pp. 114, 118)). Note that, since

∑n
k=1 fn(k) = 1, it follows from (19) that

|s(k)n | is the coefficient of θk in θ(n), which is also a well-known fact (see, e.g. Abramowitz and
Stegun (1965, p. 824)).

7. Limit coalescent

We come back to the Cannings model with nonoverlapping generations. Let us define

�((ar)) = (N)n−l E(
∏n−l
r=1(zr )ar )

(N)n−m
, (20)

where a1, . . . , an−l ≥ 1 and a1 + · · · + an−l = n − m. This represents the probability of a
particular (ar)merger one generation backward in time. More precisely, this is the probability
that n − m individuals chosen at random without replacement in a given generation descend
from exactly n− l parents in the previous generation, labeled arbitrarily from 1 to n− l, with
exactly ar of the individuals in particular descending from parent r for r = 1, . . . , n− l.
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Parents

Descendants 1 2 3 4 5 6 7 8

1 2 3 4

Figure 2: Eight nonmutant individuals labeled with the ranks, from 1 to 8, in which they are sampled
without replacement in a given generation, and partitioned into subsets S1 = {1, 2}, S2 = {3, 5, 7},
S3 = {4}, and S4 = {6, 8} according to their parents labeled with the ranks, from 1 to 4, in which they

appear for the first time in sampling the eight descendants.

Expression (20) can be explained as follows. Let us sample n − m individuals one at a
time at random without replacement in a given generation. This procedure will order not only
the sampled individuals but also their parents, which are both labeled with the ranks in which
they appear for the first time (see Figure 2). Regrouping the sampled individuals descending
from the same parents gives a partition of {1, . . . , n − m} into subsets S1, . . . , Sn−l for some
l ≥ m with Sr containing the descendants of parent r among the n − m sampled individuals,
for r = 1, . . . , n − l. Given that the total numbers of descendants left by these parents are
z1, . . . , zn−l , the probability of a partition satisfying |Sr | = ar ≥ 1 for r = 1, . . . , n − l with∑n−l
r=1 ar = n−m is

∏n−m
j=1 pj , where

pj = (N − r + 1)zr
N − j + 1

if j is the smallest integer in Sr (the first descendant of parent r) and

pj = zr − α + 1

N − j + 1

if j is the αth smallest integer in Sr (the αth descendant of parent r). Multiplying all terms and
taking the expectation over z1, . . . , zn−l gives (20).

Similarly, the expression

�((ai,r )) = (N)n−l E(
∏k
i=1

∏ni−li
r=1 (zi,r )ai,r )

(N)n−m
,

where ai,r ≥ 1 for r = 1, . . . , ni − li and i = 1, . . . , k, with

k∑
i=1

(ni − li ) = n− l,

ni−li∑
r=1

ai,r = ni, and
k∑
i=1

ni−li∑
r=1

ai,r = n−m,

represents the probability of a particular (ai,r ) merger one generation backward in time. This
is consistent with the previous definition since (ai,r ) is an array of n− l positive integers that
sum up to n− l. Conversely, the previous definition corresponds to the case of an array (ai,r )
with k = 1, n1 = n−m, and n1 − l1 = n− l.
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Moreover, note that

�(1) = E

( n∏
r=1

zr

)
,

where 1 stands for an array (ar) defined by ar = 1 for r = 1, . . . , n, gives the probability of
no merger affecting a sample of size n one generation backward in time.

Let

cN = �(2) = E(z1(z1 − 1))

N − 1
,

where the 2 stands for an array (ar) defined by ar = 2 for r = 1. This is the probability that
two individuals chosen at random in a given generation descend from the same parent. Suppose
that this probability goes to 0 in the limit of a large population size, that is, limN→∞ cN = 0.
Assume that

lim
N→∞

�((ai,r ))

cN
= φ((ai,r )) < ∞,

as soon as (ai,r ) is different from 1 (see, e.g. Möhle and Sagitov (2001)). This limit corresponds
to the rate of a particular (ai,r ) merger with c−1

N generations taken as the unit of time when N
goes to ∞. Moreover, let

lim
N→∞

1 −�(1)
cN

= λn < ∞.

This is the limiting rate of change of n lineages by coalescence. In particular, we have λ2 =
φ(2) = 1. Note that limN→∞�(1) = 1, under the above assumptions. Finally, assume that
limN→∞ 2uc−1

N = θ. Then, letting N go to ∞ in Result 3 leads to the following result.

Result 6. As N → ∞, the coefficients in the recurrence equation of Result 1 in the case of
nonoverlapping generations with infinitely many types as given in Result 3 tend to

Q∞(n, l) =
∏k
i=1(ni)li

nθ/2 + λn

∑
(ai,r )

φ((ai,r ))∏k
i=1

∏ni−li
r=1 ai,r !

(21)

if m = 0 and l > 0,

Q∞(n, l) = θ/2

nθ/2 + λn

if l = m = ei for some i = 1, . . . , k, and 0 otherwise. Similarly, the coefficients in Result 2
tend to

H∞(n,m, c) = (n)c

nθ/2 + λn

∑
(ar )

φ((ar))∏n−c
r=1 ar !

(22)

if m = 0 and c > 0,

H∞(n,m, c) = nθ/2

nθ/2 + λn

if m = 1 and c = 0, and 0 otherwise.

Remark. Result 6 implies that mutation events are isolated in the case of the limit coalescent:
mutation events are not compatible with coalescence events and only one mutation event can
occur at a time.
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Remark. Explicit expressions for p∗(n), n = 2, 3, 4, in the limit coalescent obtained from
Result 6 are given in Appendix B. It can be checked that these probabilities sum up to 1 for a
fixed sample size. Result 6 is in agreement with Freund and Möhle (2009), but it was obtained
here as a limit case of an exact result for a finite population.

8. The �-coalescent

In the case of no simultaneous mergers in the limit coalescent, called the �-coalescent (see
Pitman (1999) and Sagitov (1999)), only the arrays of numbers that have only one element
larger than 1, given by c + 1, have to be considered in (21) and (22) of Result 6. This implies
that there are ni − c possible arrays (ai,r ) in (21) with l = cei for some i = 1, . . . , k, and n− c
possible arrays (ar) in (22), with both arrays satisfying

k∏
i=1

ni−li∏
r=1

ai,r ! =
n−c∏
r=1

ar ! = (c + 1)!.

Moreover, there exists a nonnegative finite measure � on [0, 1] such that

φ((ai,r )) = φ((ar)) = λn,c+1 =
∫

[0,1]
xc−1(1 − x)n−c−1�(dx)

and

λn =
n−1∑
c=1

(
n

c + 1

)
λn,c+1 =

∫
[0,1]

1 − (1 − x)n−1(1 − x + nx)

x2 �(dx)

for n ≥ 2. All this leads to the following result, which is in agreement with Möhle (2006) (see
also Dong et al. (2007) for more general conditions on the coalescent process for regenerative
recursions).

Result 7. In the case of a�-coalescent in the limit asN → ∞, the limit coefficients in Result 6
are given by

Q∞(n, cei ) =
(
ni

c + 1

)
λn,c+1

nθ/2 + λn

if 1 ≤ c ≤ ni − 1,

Q∞(n, ei ) = θ/2

nθ/2 + λn

if ni = 1 for some i = 1, . . . , k, and Q∞(n, l) = 0 otherwise, and

H∞(n, 0, c) =
(

n

c + 1

)
λn,c+1

nθ/2 + λn
(23)

if 1 ≤ c ≤ n− 1,

H∞(n, 1, 0) = nθ/2

nθ/2 + λn
, (24)

and H∞(n,m, c) = 0 otherwise.

Remark. Kingman’s (1982) coalescent corresponds to the case � = δ0, where δ0 denotes the
Dirac measure at 0. Then, we have λn,c+1 = 1 when c = 1 ≥ n − 1, and 0 otherwise, while
λn = n(n− 1)/2. This is the case in the limit of a large population in the Wright–Fisher model
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owing to (15) and (16), with cN = N−1, and, therefore, θ = limN→∞ 2Nu. In the expression
given in Corollary 1 for the probability of a particular ordered sample with multiplicities of types
given by n, only the histories (lτ ) with lτ = ei for some i = 1, . . . , k and all τ = 1, . . . , τ ∗,
and, therefore, for τ ∗ = n since

∑τ∗
τ=1 lτ = n, have to be considered, for which

τ∗∏
τ=1

Q

(
n −

τ−1∑
σ=1

lσ , lτ

)
= θk(

∏k
i=1 ni !)(

∏k
i=1(ni − 1)!)

n!θ(n) ,

owing to Result 7. Moreover, there are n! /(∏k
i=1 ni !) possible histories, from whichp(n) takes

the form of (18) as in the Moran model, in agreement with Ewens’s (1972) sampling formula.
As a consequence, the formula for the number of types will also be the same and given by (19).
Note that this formula can be deduced directly from (23) and (24) using the fact that |s(k)n | is
the coefficient of θk in θ(n).

Remark. If � = δψ for some 0 < ψ < 1 (the Dirac coalescent) then we have

λn,c+1 = ψc−1(1 − ψ)n−c−1 (25)

for 1 ≤ c ≤ n− 1 and

λn = 1 − (1 − ψ)n − nψ(1 − ψ)n−1

ψ2 (26)

for n ≥ 2. Such a�-coalescent models a situation where mergers occur when the offspring of
a single individual count for a proportion ψ of the population. More precisely, this situation is
obtained in the limit of a large population size when, e.g. in each generation with probability
N−α for some 0 < α < 1, a single individual chosen at random in the population has a
probability ψ of being the parent of each descendant in the next generation compared to (1 −
ψ)/(N − 1) for each of the other individuals. Otherwise, this probability is 1/N for every
individual. This is a modified Wright–Fisher model, which reduces to the standard Wright–
Fisher model when ψ = 1/N . In this case,

cN = ψ2N−α(1 +O(N1−α)), (27)

and the scaled mutation rate is defined as θ = limN→∞ 2uc−1
N . It was applied to oyster

populations in Eldon and Wakeley (2006).

9. Total variation distance

Being valid in the realm of the Kingman coalescent with mutation, the Ewens sampling
formula provides a good approximation for samples taken from a finite population obeying the
Cannings model as long as the population size is large enough, the mutation rate small enough,
and the distribution of the number of descendants of an individual not too skewed. In order to
evaluate to what extent the approximation is accurate when these conditions are relaxed, the
total variation distance for the distribution of the number of types can be considered.

Let us denote by fWF
n (k), fM

n (k), f
K
n (k), and f EW

n (k) the probability of k types in a random
sample of size n taken from a population under the assumptions of the exact Wright–Fisher
(WF) model ((13) and (17)), the exact Moran (M) model ((19) with θ = 2Nu/(1 − u)), the
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Table 1: Total variation distance between different models for the probability distribution of the number
of types in a random sample of size n from a population of size N with mutation rate u per generation, or

θ per unit of time.

n N u K − WF M − WF θ ψ K − EW

5 10 0.1 0.0626 0.0259 2 0.1 0.0250
0.3 0.1845 0.0749 0.3 0.0778
0.5 0.3200 0.1089 0.5 0.1343
0.7 0.3869 0.0976 0.7 0.2109
0.9 0.3922 0.0437 0.9 0.3233

50 0.1 0.0534 0.0195 10 0.1 0.0477
0.3 0.1030 0.0326 0.3 0.1453
0.5 0.1131 0.0304 0.5 0.2412
0.7 0.1111 0.0223 0.7 0.3284
0.9 0.1015 0.0090 0.9 0.3994

100 0.1 0.0429 0.0148 20 0.1 0.0439
0.3 0.0601 0.0183 0.3 0.1230
0.5 0.0613 0.0159 0.5 0.1862
0.7 0.0584 0.0113 0.7 0.2342
0.9 0.0526 0.0045 0.9 0.2775

10 10 0.1 0.1054 0.0489 2 0.1 0.0572
0.3 0.3152 0.1310 0.3 0.1601
0.5 0.4952 0.2014 0.5 0.2618
0.7 0.6411 0.2682 0.7 0.3414
0.9 0.8409 0.1754 0.9 0.4221

50 0.1 0.0908 0.0338 10 0.1 0.0902
0.3 0.1930 0.0736 0.3 0.2653
0.5 0.3214 0.1034 0.5 0.4107
0.7 0.3764 0.0900 0.7 0.5583
0.9 0.3743 0.0396 0.9 0.6798

100 0.1 0.0768 0.0274 20 0.1 0.1001
0.3 0.1699 0.0574 0.3 0.3257
0.5 0.2170 0.0620 0.5 0.5129
0.7 0.2267 0.0483 0.7 0.6383
0.9 0.2133 0.0201 0.9 0.7112

Kingman (K) coalescent ((19) with θ = 2Nu), and the Eldon and Wakeley (EW)�-coalescent
((13) with (23), (24), (25), (26), (27), and θ = limN→∞ 2uc−1

N ), respectively.
The total variation distance between two models, say K and WF, for a sample size n is

dvn(K,WF) = 1

2

n∑
k=1

|f K
n (k)− fWF

n (k)|.

Of course, the total variation distance depends not only on the sample size but also on N and
u, or θ . Numerical results for a range of parameter values are presented in Table 1.

The Moran model with adjusted population size and mutation rate generally provides a
better approximation to the exact Wright–Fisher model than the Kingman coalescent with the
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population size taken as the unit of time for the sample sizes (n = 5 or 10), population sizes
(N = 10, 50, or 100), and mutation rates per generation (u = 0.1, 0.3, 0.5, 0.7, or 0.9) that
have been considered. Moreover, in both cases, the total variation distance increases with the
sample size, which is expected since the sample size corresponds to the number of possible
values for the number of types. It also generally decreases with increasing population size, as
Table 1 suggests, but there are exceptions. For instance, the value of dv5(K,M) in the case
u = 0.1 goes from 0.019 96 when N = 30 to 0.020 13 when N = 40. Finally, in both cases,
the total variation distance increases as the mutation rate increases at least for small values of
the mutation rate, which is expected since then simultaneous mutation events are rare, but it
often decreases for large enough values of the mutation rate, which is surprising.

The total variation distance between the Eldon and Wakeley�-coalescent and the Kingman
coalescent increases with the sample size (n = 5 or 10) and the proportion of the population
replaced (ψ = 0.1, 0.3, 0.5, 0.7, or 0.9), but not necessarily with the scaled mutation rate
(θ = 2, 10, or 20). The values of this rate correspond toN = 10, 50, or 100, respectively, with
u = 0.1 in the case of the Wright–Fisher model. Table 1 shows that dvn(K,EW) is of the same
order of magnitude as dvn(K,WF) in the ψ = 0.1 case, but much greater when ψ is larger.

Appendix A

From (1), (2), (4), and (6), Result 1 yields

p̃(1) = N(1 − E(ν1)),

p̃(2) = N E(ν1(ν1 − 1)),

p̃(1, 1) = 2N E(Mν1)+ E(M(M − 1)),

p̃(3) = 3N(N − 1)E(ν1(ν1 − 1)ν2)p
∗(2)+N E(ν1(ν1 − 1)(ν1 − 2)),

p̃(2, 1) = 3N(N − 1)E(ν1(ν1 − 1)ν2)p
∗(1, 1)+ 3N(N − 1)E(Mν1ν2)p

∗(2)
+ 3N E(Mν1(ν1 − 1)),

p̃(1, 1, 1) = 3N(N − 1)E(Mν1ν2)p
∗(1, 1)+ 3N E(M(M − 1)ν1)

+ E(M(M − 1)(M − 2)),

p̃(4) = 6N(N − 1)(N − 2)E(ν1(ν1 − 1)ν2ν3)p
∗(3)

+ 3N(N − 1)E(ν1(ν1 − 1)ν2(ν2 − 1))p∗(2)
+ 4N(N − 1)E(ν1(ν1 − 1)(ν1 − 2)ν2)p

∗(2)
+N E(ν1(ν1 − 1)(ν1 − 2)(ν1 − 3)),

p̃(3, 1) = 4N(N − 1)(N − 2)E(ν1(ν1 − 1)ν2ν3)p
∗(2, 1)

+ 4N(N − 1)(N − 2)E(Mν1ν2ν3)p
∗(3)

+ 4N(N − 1)E(ν1(ν1 − 1)(ν1 − 2)ν2)p
∗(1, 1)

+ 12N(N − 1)E(Mν1(ν1 − 1)ν2)p
∗(2)+ 4N E(Mν1(ν1 − 1)(ν1 − 2)),

p̃(2, 2) = 2N(N − 1)(N − 2)E(ν1(ν1 − 1)ν2ν3)p
∗(2, 1)

+ 3N(N − 1)E(ν1(ν1 − 1)ν2(ν2 − 1))p∗(1, 1),

p̃(2, 1, 1) = 6N(N − 1)(N − 2)E(ν1(ν1 − 1)ν2ν3)p
∗(1, 1, 1)

+ 4N(N − 1)(N − 2)E(Mν1ν2ν3)p
∗(2, 1)

+ 12N(N − 1)E(Mν1(ν1 − 1)ν2)p
∗(1, 1)

+ 6N(N − 1)E(M(M − 1)ν1ν2)p
∗(2)+ 6N E(M(M − 1)ν1(ν1 − 1)),
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p̃(1, 1, 1, 1) = 4N(N − 1)(N − 2)E(Mν1ν2ν3)p
∗(1, 1, 1)

+ 6N(N − 1)E(M(M − 1)ν1ν2)p
∗(1, 1)+ 4N E(M(M − 1)(M − 2)ν1)

+ E(M(M − 1)(M − 2)(M − 3)),

where

p̃(n) = (N)n

(
1 − E

( n∏
r=1

νr

))
p∗(n),

with ν1, . . . , νN being exchangeable nonnegative integer-valued random variables and M =
N − ∑N

j=1 νj ≥ 0. Then, we find that

p̃(2)+ p̃(1, 1) = N E(ν1(ν1 − 1))+ 2N E(Mν1)+ E(M(M − 1))

= N(N − 1)(1 − E(ν1ν2)),

p̃(3)+ p̃(2, 1)+ p̃(1, 1, 1) = N E(ν1(ν1 − 1)(ν1 − 2))+ 3N(N − 1)E(ν1(ν1 − 1)ν2)

+ 3N E(Mν1(ν1 − 1))+ 3N(N − 1)E(Mν1ν2)

+ 3N E(M(M − 1)ν1)+ E(M(M − 1)(M − 2))

= N(N − 1)(N − 2)(1 − E(ν1ν2ν3)),

p̃(4)+ p̃(3, 1)+ p̃(2, 2)+ p̃(2, 1, 1)+ p̃(1, 1, 1, 1)

= 6N(N − 1)(N − 2)E(ν1(ν1 − 1)ν2ν3)

+ 3N(N − 1)E(ν1(ν1 − 1)ν2(ν2 − 1))

+ 4N(N − 1)E(ν1(ν1 − 1)(ν1 − 2)ν2)

+N E(ν1(ν1 − 1)(ν1 − 2)(ν1 − 3))

+ 4N(N − 1)(N − 2)E(Mν1ν2ν3)

+ 12N(N − 1)E(Mν1(ν1 − 1)ν2)

+ 4N E(Mν1(ν1 − 1)(ν1 − 2))

+ 6N(N − 1)E(M(M − 1)ν1ν2)

+ 6N E(M(M − 1)ν1(ν1 − 1))

+ 4N E(M(M − 1)(M − 2)ν1)

+ E(M(M − 1)(M − 2)(M − 3))

= N(N − 1)(N − 2)(N − 3)(1 − E(ν1ν2ν3ν4)).

Appendix B

Using (1) and (2), Result 6 yields

p∗(2) = φ(2)

θ + λ2
,

p∗(1, 1) = θ

θ + λ2
,

p∗(3) = 2φ(3)+ 6φ(2, 1)p∗(2)
3θ + 2λ3

,

p∗(2, 1) = 3θp∗(2)+ 6φ(2, 1)p∗(1, 1)

3θ + 2λ3
,
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p∗(1, 1, 1) = 3θp∗(1, 1)

3θ + 2λ3
,

p∗(4) = φ(4)+ 6φ(2, 1, 1)p∗(3)+ 3φ(2, 2)p∗(2)+ 4φ(3, 1)p∗(2)
2θ + λ4

,

p∗(3, 1) = 4φ(2, 1, 1)p∗(2, 1)+ 4φ(3, 1)p∗(1, 1)+ 2θp∗(3)
2θ + λ4

,

p∗(2, 2) = 2φ(2, 1, 1)p∗(2, 1)+ 3φ(2, 2)p∗(1, 1)

2θ + λ4
,

p∗(2, 1, 1) = 6φ(2, 1, 1)p∗(1, 1, 1)+ 2θp∗(2, 1)

2θ + λ4
,

p∗(1, 1, 1, 1) = 2θp∗(1, 1, 1)

2θ + λ4
,

with λ2 = φ(2), λ3 = φ(3)+ 3φ(2, 1), and λ4 = φ(4)+ 4φ(3, 1)+ 3φ(2, 2)+ 6φ(2, 1, 1).
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