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The concept of the average effect of an allele pervades much of evolutionary population genetics. In this
context the average effect of an allele is often considered as the main component of the “fitness” of that
allele. It is widely believed that, if this fitness component for an allele is positive, then the frequency
of this allele will increase, at least for one generation in discrete-time models. In this note we show
that this is not necessarily the case since the average effect of an allele on fitness may be different
from its marginal additive fitness even in a one-locus setting in non-random-mating populations.
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1. Introduction

The idea that more fit parents leave disproportionately more
offspring than less fit parents, that this higher fitness is in part
inherited by the offspring of the more fit parents leading to a
steady increase in the frequency of the more fit type, is at the
core of the Darwinian theory. In terms of Mendelian genetics, this
idea became, loosely, that more fit alleles increase in frequency
over successive generations, this statement then being the basic
idea of the Darwinian theory when cast in Mendelian terms.

The “fitness”, or fitness contribution, of an allele requires a
precise definition. In his statement of the Fundamental Theorem
of Natural Selection (FTNS), Fisher (1930, 1958) took the view
that the average effect of an allele can be seen as the “fitness” of
that allele. The average effect of an allele plays a fundamental role
in the analysis of the correlation between relatives, in the concept
of the additive genetic variance, and therefore in the concept
of narrow heritability defined as the proportion of this variance
in the total variance. It is also central to Fisher’s evolutionary
ideas and to the modern version of the Fundamental Theorem of
Natural Selection (see Ewens and Lessard, 2015, and references
therein).

In this note we focus on the evolutionary significance of the
average effect of an allele. We therefore address the following
genetical parallel of the Darwinian paradigm: Does a positive
value of the average effect of any allele imply an increase (at least
for one generation in discrete-time models) in the frequency of
that allele?

* Corresponding author.
E-mail address: sabin.lessard@umontreal.ca (S. Lessard).

1 W.J. Ewens and S. Lessard contributed equally to this work.

https://doi.org/10.1016/j.tpb.2022.10.001
0040-5809/© 2022 Elsevier Inc. All rights reserved.

2. The analysis

It is sufficient for our purposes to limit the discussion below
to an infinite diploid population undergoing discrete, nonoverlap-
ping generations and where the fitness of any individual depends
on the genotype at one autosomal locus only, denoted locus
A, allowing n alleles Ay, ..., A,. There are two average effect
concepts, and Fisher (1958, p. 35) confusingly uses both without
any clarification. Here we focus on the « definition (Ewens, 2004,
p. 62). Suppose that at the time of conception of some parental
generation (called time t below) the frequency of the ordered
genotype AiA; is Py, so that the frequency p; of A; at this time is
given by p; = Zj P;. Suppose also that the fitness of this genotype
understood as its mean viability from conception to the time of
reproduction is w; = wj; > 0, so that the mean population
fitness w at time ¢ is ), . Pjw; > 0. Then, using the least squares

method, the “time t” vdfues of the average effects a1, ..., a, of

A1, ..., A, respectively, are found by minimizing
ZPij(wU—ﬁJ—ai—aj)z (1)
ij

with respect to the «; values, subject to the constraint ), ajp; =
0. This constraint ensures that, except in the trivial case where all
«; values are zero, at least one «; value is positive and at least one
is negative. If for all (i, j) combinations w;; can be written exactly
in the form w + ¢; 4 ¢; for some ¢; and ¢; with Zi cpi = 0, as in
the example below, then the ¢; values are precisely equal to the
«; values.

The minimization deriving from the expression given in (1)
leads to a set of simultaneous equations defining the «; values,
typified by

picti + Zpijaj = w(Ap;). (2)
j
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In this equation Ap; is the inter-generational change of the fre-
quency of the allele A; between the times of conception of the
parental and offspring generations, respectively. An alternative
expression for Equation (2) given in Lessard (1997) is

2> " Gjoy = w(Apy),

J

(3)

where C; = E(fif;) with f; and f; being defined as the frequencies
of A; and A;, respectively, with possible values 0, 1/2 or 1 in
the diploid genotype of an individual chosen at random and E
denoting the expectation. Note that, owing to the constraint on
the o; values, we may take C; = Cov(f;, f;) = E(fifj) — pip; in
the above expression with Cov denoting the covariance. Note also
that w(Ap;) = pia;, where a; is the deviation of the marginal
fitness of A; from the mean fitness in the population, called its
average excess (see, e.g., Lessard, 1997, and references therein).

Our focus is on the set of «; values and their relation to the
set of Ap; values. The collection of equations in (2) provides
an implicit relation between these two sets of values, and in
principle leads to explicit expressions for the ¢; values in terms of
the various Ap; values. Our aim is to explore the relation between
these two sets of values to answer the question posed earlier:
Does «; > 0 imply Ap; > 0, and conversely?

If mating is at random in the generation preceding the parental
generation, so that Hardy-Weinberg proportions hold for geno-
type frequencies in the parental generation, then P; = p;p; for
all (i, j) combinations and the second term on the left-hand side
of Eq. (2) is

Z Pijaj = Di Z pjaj = 0.
J J

Therefore, we have pja; = w(Ap;), from which «; and Ap; always
have the same sign if p; > 0 and w > 0.

If mating is not necessarily at random in the generation pre-
ceding the parental generation but there are only two possible
alleles at locus A, so that pp = 1—pq, aapr = —oprand f, = 1—f;
with 0 < p; < 1, then Eq. (3) for i = 1 becomes

(4)

_ 20
w(Ap1) = 2(Cria1+Craarp) = ] !
1

2
(E(2)—p?) = ——LVar(f;)
-D 1—-p;

(5)

with Var denoting the variance. First, we note that w(Ap,)
piaq if and only if Var(f;) = p1(1 — p1)/2, which means Hardy-
Weinberg proportions for genotype frequencies. More impor-
tantly, we have in the general case of two alleles at a single
locus that, if w > 0, then «y is of the same sign as Ap;, and
similarly by symmetry «; and Ap, have the same sign. This result
is in agreement with Equations (2.62) and (2.66) in Ewens (2004).
So far, therefore, the view that «; can be taken as the “fitness”
contribution of A;, in the sense that a positive value of «; leads to
an increase in the frequency of A;, can be sustained.

When there are three or more alleles at locus A, the relation
between «; and Ap; is not immediately clear, and we proceed
by considering a simple example. Suppose that there are three
alleles possible, Aq, A, and As, and that the fitness values of the
possible genotypes are given by the following symmetric array,
with the paternally-derived gene indicated by the columns and
the maternally-derived gene indicated by the rows:

Aq Ay Az
A; 1.018 1.018 0.937
A, 1.018 1.018 0.937 (6)
A3 0.937 0.937 0.856

47

Theoretical Population Biology 148 (2022) 46-48

Moreover, the ordered genotype frequencies assuming non-
random mating in the previous generation are supposed to be as
follows:

Al Ay As
1 2 1
At 5§ 5 0
A 2 2 0
2 9 9
A; 3 0 0

The allele frequencies are p; = 4/9 for A, p, = 4/9 for A,
and p; = 1/9 for A3. Combining (6) and (7), the mean fitness w
is 1.

Given that w = 1, the fitnesses given in (6) are exactly in the
form w + o + o for i,j = 1,2, 3, with @y = a; = 0.009, a3 =
—0.072, and pqoq + paoa + p3az = 0. This shows the fact that
these «; values are the average effects of Ay, A, and As, as the
notation anticipated.

Changing his example to fitness instead of stature, and para-
phrasing, the form w +«;+«; is precisely what Fisher (1930, page
32) described as not necessarily representing the real fitnesses
of AjA;, but as being more intimately involved with evolutionary
changes than the fitnesses w; themselves. It is in effect the
interpretation of this view that we are addressing.

Since w = 1 there is no normalization needed to find the
genotype frequencies at the time of reproduction of the parental
generation. Allowing for the various fitness values given in (6),
these are :

Ay Ay As
A1 §x1.018 £x1.018 §x0.937

A; $x1.018 £x1.018 0 (®)
A; 3x0.937 0 0

Now, whatever the mating scheme is and as long as there is
no difference in fertilities, the frequency of A; in the offspring
generation is

3 1 1
—x1.018 + = x0.937 = —x3.991 (9)
9 9 9

compared to 4/9 in the parental generation at conception. The
change Ap, in the frequency of A; is (3.991 — 4)/9 = —0.001 < O,
despite the fact that «; is positive. Note, however, that the
average effect and average excess for the other two alleles are
of the same sign, since Ap, (4 x 1.018 — 4)/9 > 0 and
Aps =(0.937 — 1)/9 < 0 with @y > 0 and o3 < 0.

3. Discussion

The assumption that fitnesses depend on the alleles at one lo-
cus only is of course quite unrealistic. We have chosen the simple
example above in this setting to show that it is not necessarily
true that a positive value of the average effect «; of an allele A;
implies an increase in the frequency of A;. Owing to Eq. (2) that
implicitly defines the average effects, an increase in the frequency
of A; occurs under the conditions p; > 0 and w > 0 if and only if
a; > 0, where

(10)

is the marginal additive fitness of A;. This is the expected additive
fitness of an individual given that a gene chosen at random at
locus A in this individual is A;. Let us recall that the additive
fitness of an individual, or its genetic value in fitness, is defined as
the sum of the average effects of all the alleles in this individual
on fitness. We note that the sign of @; may differ from the sign
of «; in non-random-mating populations as a result of correlation
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between allele frequencies within an individual so that P; = p;p;
does not necessarily hold for all j indices. Curiously, more than
two alleles at the same locus are necessary for this correlation to
overcome the effect of the average effect on the sign of the change
in the allele frequency. It is worth noting that Fisher used a two-
allele setting in the original edition of The Genetical Theory of
Natural Selection (Fisher, 1930) and made only superficial changes
to address the more general case of multiple alleles at one locus in
the revised edition (Fisher, 1958). As for the multi-locus setting,
it was not analyzed in Fisher’s book.

In cases where the fitness of any individual depends on the
allelic genes that the individual has at multiple loci, the concept
of average effect can be extended (see, e.g., Castilloux and Lessard,
1995; Lessard, 1997, or Ewens, 2004, Section 7.4). With n alleles
Ax1, ..., A, at locus k, the average effects are implicitly defined
by the set of linear equations in the form

Z Z Quijjatj = w(Apy;).

£k j

Here, «y; is the average effect of allele A, whose frequency
at locus k is py, while Py is the frequency of the ordered
genotype AyAy; at locus k and Qi twice the probability that,
in an individual chosen at random, a gene chosen at random
from locus k is Ay; and a gene chosen independently at locus I
is Aj. The left-hand side in Eq. (11) is equal to pyax where ay;
represents the marginal additive fitness of Ay; at locus k with the
same interpretation as in a one-locus setting. In a more general
multi-locus setting, however, we may expect the occurrence of
more discrepancies between the signs of the average effect and
the corresponding change in allele frequency with correlation
between allele frequencies across loci coming into play. This is
perhaps especially the case where the population mean fitness
decreases from one generation to the next due to recombination
and epistatic effects, which can happen even for the case of
random mating (see, e.g., Ewens, 2004, section 6.2). Let us recall
that the equality Qu;j = 2pwpy; for I # k, which corresponds to

Prittki + Z Py ok + (11)
j

48

Theoretical Population Biology 148 (2022) 46-48

linkage equilibrium, does not generally hold whatever the mating
system is. It would be an interesting challenge to delimit the cases
where a positive value of «y; implies an increase in frequency of
Ayi: it is perhaps only rarely that this does not happen. How-
ever, the calculation of average effects as the numbers of loci
and alleles at each locus increase might be out of reach given
the amount of data on the population state to collect and the
dimension of the linear system to solve. For now we can at least
say that the identification of the sign (positive or negative) of the
average effect of an allele determines the sign of the change in its
frequency is not necessarily correct. In other words, the sign of
the average effect may differ from the sign of the average excess
and, reminding ourselves that an average effect is the result of
linear regression of fitness on allele frequency, this can occur
more generally in multiple linear regression for any variables.
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